

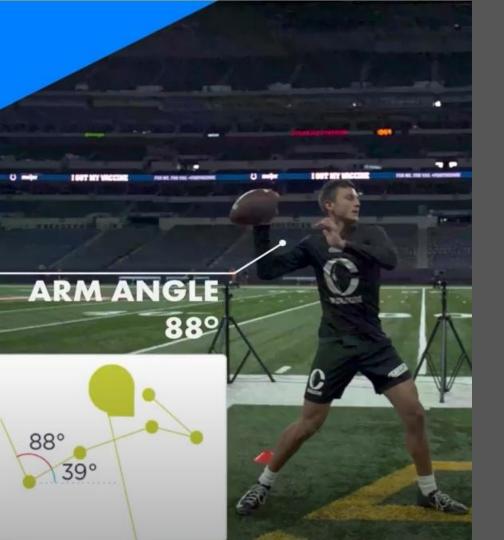
Workers Comp It Matters

Using Wearable Technology and Data analysis to Reduce Risk of Injury and Return Injured Workers Back to Their Pre-injury Workload

Scott Coleman, Sports Physiotherapist, CEO, Preventure

Using Wearable Technology and Data analysis

to Reduce Risk of Injury and Return Injured Workers Back to Their Pre-injury Workload


Current Problems with Workplace Injury Prevention and RTW Programs

Education / training methods are ineffective at changing behaviour

Limited by time and resources

Approaches are not specific to individual injury risks

Assessments are observation and

The Most Effective Injury Prevention and RTW Programs

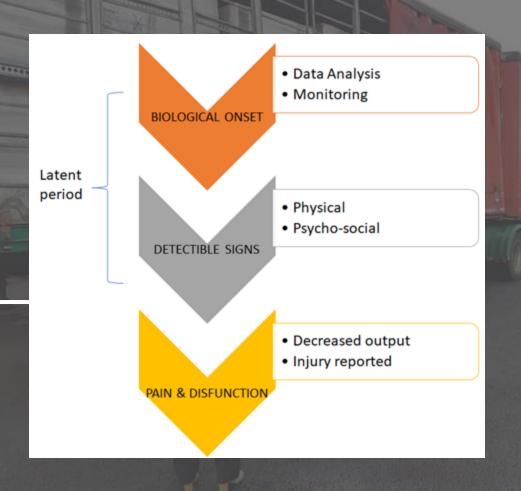
Sports-based programs (supported by research)

You need to measure movement *quality* and *quantity*

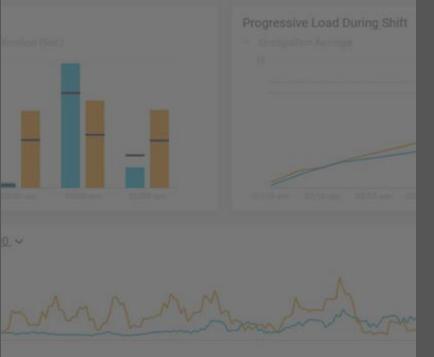
Establishing specific baselines using load

"Load is the process of quantifying the amount of physical training that an athlete undertakes using variables relevant for their sport (accelerometer data.

Preventative Measures


Primary Prevention

- Task assessments
- Screening


Secondary Prevention

 Early detection of onset

Tertiary Prevention

Monitoring Load for Secondary and Tertiary Prevention

Simply measuring range of motion is not enough

Types of Load

- External Load (biomechanical)
- Internal Load (physiological)
- Chronic Load (long duration)
- Acute Load (short duration)
- Acute / Chronic Load ratio (Training Stress Balance)

Calculating Load

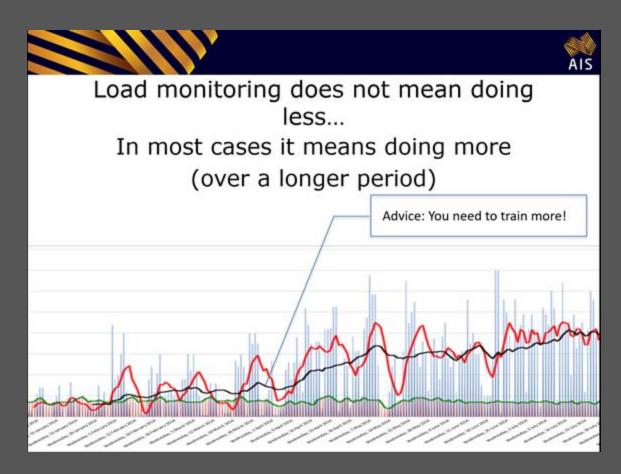
Table 1 Summary and Evaluation of Some Common Methods Used to Monitor Athlete Training Load and/or Responses										
Method	Cost	Hardware needed	Software needed	Ease of use	Valid	Reliable	Used to interpret	Used to prescribe	Variables	
Internal Measures										
RPE	L	N	Y/N	н	M-H	M-H	Y	Y	Single variable in AU (time dependent)	
Session rating of perceived exertion	L	N	Y/N	н	M-H	M-H	Y	Y	Single variable in AU (time dependent)	
TRIMP ⁴	L-M	Y	Y	М	M-H	M-H	Y	N	Single variable in AU (time dependent)	
Wellness questionnaires*	L	N	Y/N	M-H	М	M-H	Y	Y/N	Ratings, checklists, AU scale measures	
Psychological inventories (eg, POMS, Rest-Q-Sport)*	L-M	N	Y/N	M-H	M-H	М-Н	Y	Y	Ratings, checklists, AU scale measures	
Heart-rate indices	L-M	Y	Y	Н	Н	M-H	Y	Y	Heart rate, time in zones, HR variability/recovery measures, etc	
Oxygen uptake	H	Y	Y	L	н	H	Y	Y	VO2, metabolic equivalents	
Blood lactate	м	Y	Y/N	М	н	н	Y	Y	Concentration	
Biochemical/hematological assessments	M-H	Y	Y/N	L	Н	M-H	Y	Y	Concentrations, volumes	
External Measures										
Time	L	Y	Y/N	н	Н	н	Y	Y	Units of time (s, min, h, d, wk, y)	
Training frequency	L	N	N	н	н	н	Y	Y	Session count	
Distance/mileage	L	Y/N	Y/N	H	H	H	Y	Y	Units of distance (m, km)	
Movement repetition counts	L	Y/N	Y/N	M-H	н	M-H	Y	Y	Activity counts (eg, steps, jumps, throws)	
Training mode	L	Y/N	N	н	н	H	Y	Y	Weight training, run, cycle, swim, row, etc	
Power output.	M-H	Y	Y	L-M	н	н	Y	Y	Relative (W/kg) and absolute power (W)	
Speed	L-M	Y	Y/N	M-H	н	н	Y	Y	Speed measures (m/s, m/min, km/h)	
Acceleration	L-M	Y	Y	L	Н	н	Y	Y	Acceleration measures (m/s2)	
Functional neuromuscular tests	L-M	Y	Y/N	М	M-H	H	Y	Y	Countermovement-jump and drop-jump measures	
Acute:chronic-workload ratio	L-M	Y/N	Y	М	M-H	M-H	Y	Y	Size of acute training load relative to chronic load	
GPS measures	м	Y	Y	М	M-H	М	Y	Y	Velocity, distance, acceleration, time in zones, location	
Metabolic power	М	Y	Y	L-M	L-M	М	Y	N	Energy equivalent	
Time-motion analysis video (automated)	н	Y	Y	L	M-H	М	Y	Y	Velocity, location, acceleration	
Time-motion analysis video (nonautomated)	M-H	Y	Y	L	M-H	М	Y	Y	Velocity, location, acceleration	
Accelerometry	м	Y	Y	L-M	M-H	м	Y	N	x-y-z g force	
Player load	М	Y	Y	М	М	М	Y	Y	Single variable in AU (time dependent)	

Abbreviations: L, low; M, medium; H, high; Y, yes; N, no; AU, arbitrary units.

*Measures of training response.

Calculating Load

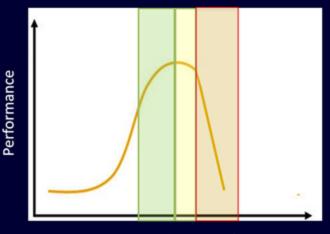
Internal Load (physiological)


- RPE / Wellness Questionnaires
- HR
- Galvanic Skin Resistance
- Temperature
- VO2 & Blood Lactate

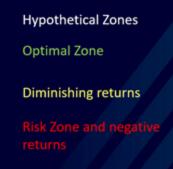
External Load (biomechanical)

- Time / Duration
- Accelerometry

Monitoring vs Reducing Load


Avoiding peaks and troughs

Ben Ray Smith - Australian Institute of Sport and Athletics Australia


Optimal Load

Establishing baselines for each occupation, task and location that are relevant and specific.

Training Load

Optimal Loading

Please note this is a hypothetical graph based on current research

Ben Ray Smith - Australian Institute of Sport and Athletics Australia

Addressing the Needs of the Worker

Valid and reliable wearable technology to measure worker movements

Data analysis to identify and reduce risks and build confidence in movement

Providing live feedback to drive behaviour change

(Carlson A. et al. 2003; Winston F K et al. 2010; Thaler R & Sunstein C. 2008)

...in combination with education and exercise

(Harrington 2004: Deck ly Kim 2015: Sigurdsson

Addressing the Needs of the Employer

RTW using data analysis

- Identify injury risks for work tasks
- Gradual, progressive increase in workload

Reducing risk of re-injury

- Worker Load Management (acute and chronic)
- Sustained Postures

Creating a safe work environment

Wearable Tech Enables Remote WHS Service Delivery

Is Wearable Tech Really Applicable to WHS?

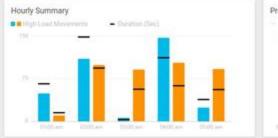
• Awkward postures

Recent survey research :

80% of OHS professionals would

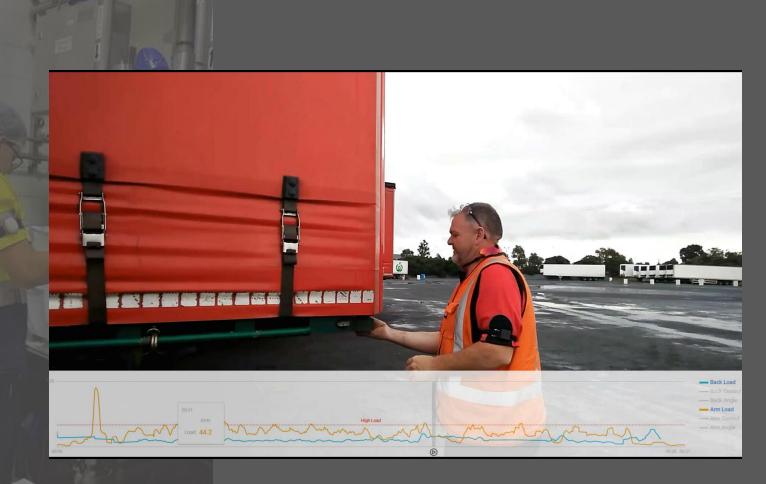
consider using wearable tech

- Forceful exertions
- Repetitive movements / fatigue


(Schall, 2018)

Current Solution to Deliver WHS Services Remotely

1. Acute Load = Task Assessments


- Job Task Dictionary
- Best practice benchmarks for training
- Assess new workers or injured workers
 2. Chronic Load = Movement Coach

- Occupation Profiles
- Identify high risk workers
- Gradually build up to full workload for RTW

Current Solution

Case Study 1 Fatigue Monitoring

- **Key Findings** 1. The worker began the shift moving in a way that reflected the manual handling training that they had received, with minimal high load movements (chart 1).
 - 2. However, towards the end of the shift the worker fatigued, resulting in poor movement control and poor lifting technique with increased trunk flexion and rotation (chart 2), increasing their injury risk.

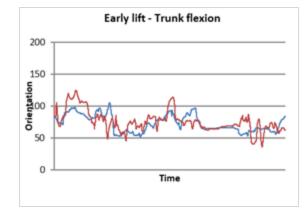
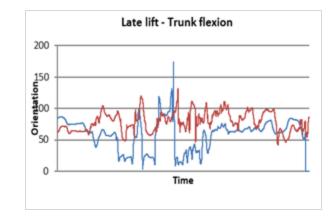
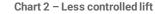
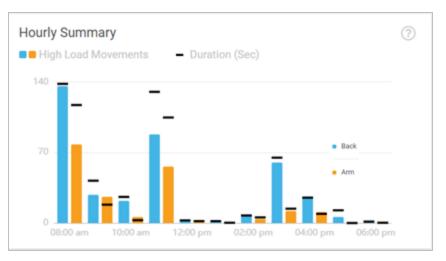




Chart 1 - Controlled lift

Case Study 2 Task Repetition

Key Findings The reports identified periods throughout the shift when the load on the worker was significantly increased. This was consistent for all workers involved in the assessment.



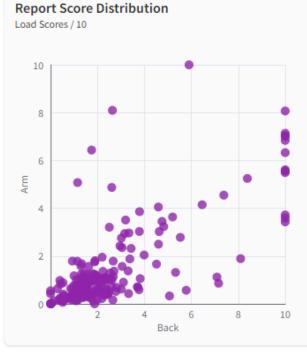
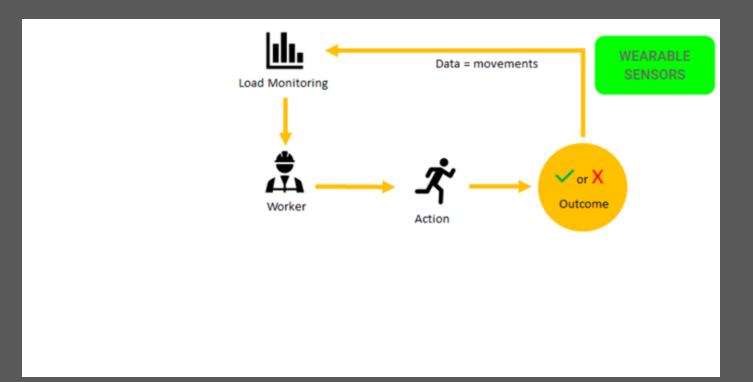


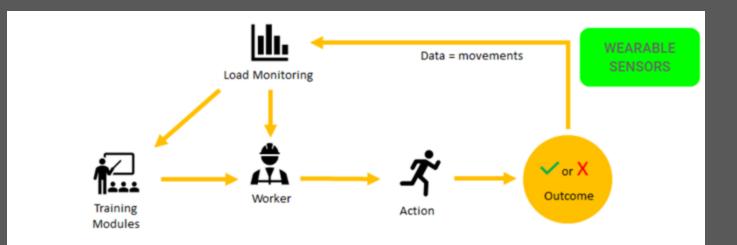
Chart 1 – Hourly summary.

User-friendly Data

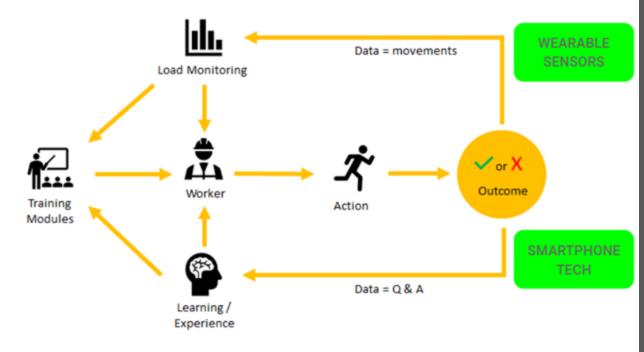
Movement Coach



Occupation Overview

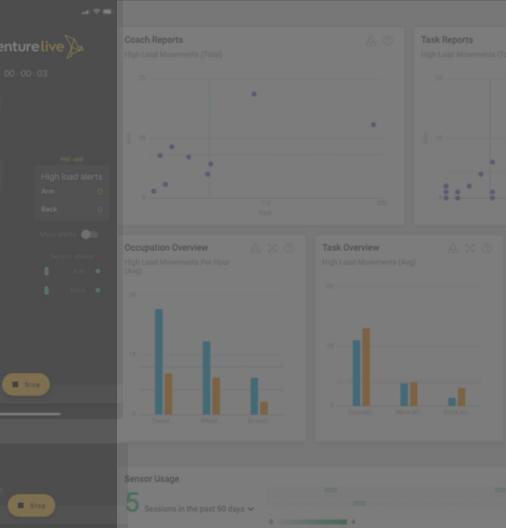

Top 3 Occupations (Avg Load Scores)

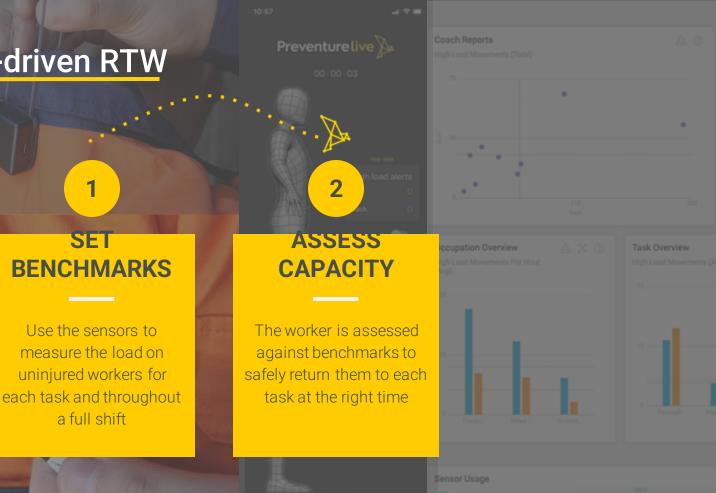
Worker Feedback



Worker Feedback

Worker Feedback


Al determines which modules for which workers



1

Use the sensors to measure the load on uninjured workers for each task and throughout a full shift

Stop

.....

SET BENCHMARKS

1

Use the sensors to measure the load on uninjured workers for each task and throughout a full shift The worker is assessed against benchmarks to safely return them to each task at the right time

Stop

BUILD UP LOAD

The workload is progressively built up to 100% over time based on the data from the sensors

II

.....

Sensor Usage

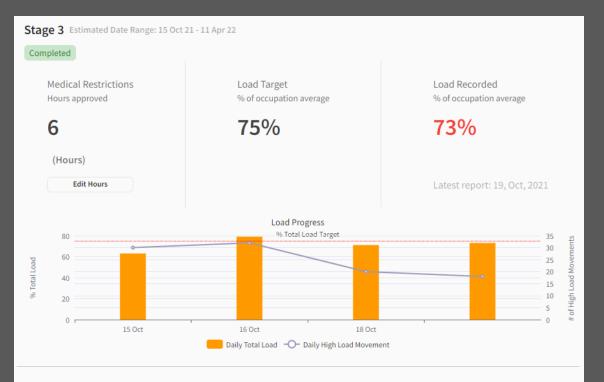
Sessions in the past 90 day

Keeping it simple by;

 Measuring the physical demands of each task

 Introducing tasks based on data

Task Assessments


This section is for distributing tasks across the Recovery Stages. Benchmark reports that have been selected for each task are listed below, indicating the amount of physical load for the body part that your RTW program is focused on. Please select the Recovery Stage that you would like each task to be introduced in. At each Recovery Stage, the worker will be assessed (using sensors and video) against the new tasks before you and the supervising medical professional approve them.

:: Collapse

Work Task	Benchmark Arm Score	Introduce in Stage	Worker Arm Score	Approved
Loading - Magic Carpet REAR	0.0 •	Stage 1 🗸 🗸	Pending	Арргоче
Boxes with new trolley	0.6 •	Stage 1 V	4.5 Tue Oct 19 2021	Approve Denied By: (Preventure) Scott
Loading timber up high	1.2 •	Stage 2 🗸 🗸	1.1 Sat Oct 02 2021	Deny Approved By: (Preventure) Scott
Boxes with standard trolley	1.2 •	Stage 2 🗸 🗸	1.4 Sun Oct 10 2021	Deny Approved By: (Preventure) Scott
Unloading	3.4	Stage 3 🗸 🗸	Pending	Арргоче
Loading - General Conveyor	5.3	Stage 3 🗸 🗸	Pending	Approve
Stack boxes on shelves	7.2	Stage 4 🗸 🗸	Pending	Арргоче
Loading boxes from delivery	7.7	Stage 4 🗸 🗸	Pending	Approve Denied By: (Preventure) Scott

Keeping it simple by;

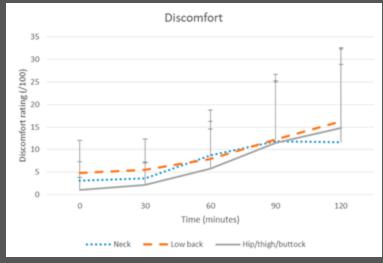
- Measuring the "light duties" load on the worker
- Gradually building up the load to build physical resilience

Tasks to be Introduced in this Recovery Stage

Unloading Loading - General Conveyor

Current Problems with Working from Home

Increased risk of musculoskeletal disorders (MSD)


Reduced physical activity

Creating a safe and productive environment

Increased Risk of MSD -Sustained Sitting

Some research reviews indicated an increased risk of MSD with prolonged occupational sitting

Baker R (2018) Int. J. Environ. Res. Public Health 2018

Increased Risk of MSD -Sustained Sitting

However, more recent reviews have failed to support this theory

(Straker L et al., 2016; Janwantanakul P. et al. 2012; Waersted M, 2010).

"It is not the sitting position itself that increases MSD risk, it is the sustained posture that often occurs whilst sitting."

Increased Risk of MSD -Sustained Posture

(Falla D & Farina D, 2007; Straker L et al., 2011 & 2016; Ariens G A. et al. 2000)

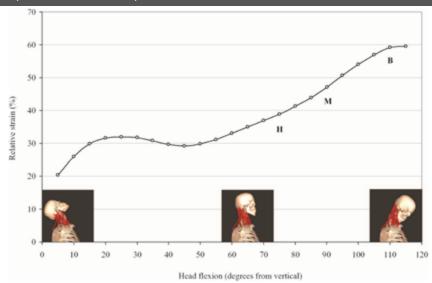
This is due to;

 prolonged isometric muscle contractions resulting in muscle pain, and

• muscle fatigue increasing load

Increased Risk of MSD -"Poor Posture"

Poor sitting posture DOES indicate poor ergonomics. If an individual worker's posture changes from upright to slouched after working for 20-30min, their workstation is not



correct

Increased Risk of MSD -"Poor Posture"

Effects of visual display position on strain

(Straker L et al. 2009)

Addressing the Needs of the Worker

Slouch Alerts

- Prompt posture correction
- Identify poor ergonomics

Stretch Alerts

- Prompt movement after sustained postures
- Specific exercises

Step Count

• Monitor activity levels

Addressing the Needs of the Employer

Reducing risk of MSD

- Workstation ergonomics
- Sustained Postures

Creating a safe work environment

• Slip / trip / fall

Encouraging healthy behaviour

- Stretch alert
- Step tracking

Maintaining worker engagement is key

• Team challenges

Addressing the Needs of the Employer

Monitoring progress and identifying trends

Questions?

Contact:

scott.coleman@preventure.live (02) 8599 7116 https://preventure.live

