

TDOT Structures Division November 2022

Table of Contents

Table of Contents	i
Preface	ii
Chapter 1. Course Overview	1
Chapter 2. OpenBridge Modeler (OBM) Exercises	2
2.1 Objectives	2
2.2: WorkSet/File Creation and References	2
2.2.1 Exercise: OpenBridge Designer (OBD) File and WorkSet Creation	3
2.2.2 Exercise: OBM File Creation	9
2.2.3 Exercise: Reference Roadway Geometry and Terrain Files	11
2.3: Model a Bridge Deck and Barriers	14
2.3.1 Exercise: Set up Bridge, Add SupportLines, and Rotate View	14
2.3.2 Exercise: Set up a Deck Template and Create a Deck	21
2.3.3 Exercise: Create Barriers	29
2.4: Create a Beam Layout, Model Beams, and Add Diaphragms	35
2.4.1 Exercise: Create a Beam Layout	35
2.4.2 Exercise: Model Beams	38
2.4.3 Exercise: Add Diaphragms	41
2.5: Model Abutments, Wingwalls, Pier, and Bearings	46
2.5.1 Exercise: Model Abutments	46
2.5.2 Exercise: Model Wingwalls	51
2.5.3 Exercise: Model a Pier	56
2.5.4 Exercise: Model Bearing Elements	65
2.6: Model Approach Slabs with Barriers and Sleeper Slabs	72
2.6.1 Exercise: Model Approach Slab with Barriers	72
2.6.2 Exercise: Model Sleeper Slabs	83

Preface

Purpose & Need

The **3D BRIDGE MODELING I** OpenBridge Modeler (OBM) Manual is the first document in a series of training manuals to be released by the Tennessee Department of Transportation (TDOT). Bentley's OBM software is being adopted and implemented statewide by TDOT as the new **3D modeling** design software, which will ultimately replace MicroStation V8i. This manual provides introductory exercises using the OBM **3D modeling** workflow. Analysis and structural design are performed outside of OBM and, therefore, are not covered in this manual. Additional documentation on advanced topics such as steel bridges, skewed substructure, and plans production will be released in the future. Development is ongoing for workspace customization, standards, and naming conventions.

<u>Disclaimer</u>

The **3D BRIDGE MODELING I** Manual is developed based on <u>OpenBridge Designer</u> <u>CONNECT Edition 2021 Release 2</u>, Version **10.10.20.34** (OpenBridge Modeler <u>CONNECT Edition 2021 Release 2</u>, Version **10.10.20.92**). The combined TDOT OpenRoads Designer (ORD)/OpenBridge Modeler (OBM) workspace (**10.10.20.34**) should be used in conjunction with this manual, but the workspace is not yet fully configured for OBM. If you have any technical issues or recommendations for this manual, please contact TDOT CADD Support at <u>TDOT.ORD@tn.gov</u>.

When new versions of OpenBridge Modeler are released, there may or may not be a schema change. For example, when going from 10.10 to 10.11, there is a schema change. However, when going from 10.10 R1 to 10.10 R2, there is no schema change. When attempting to open an older file in a newer version of the program, the file will automatically be upgraded to the latest file format. A back-up file with an extension of .bak will be automatically created to preserve the file in the previous version.

Starting with 2021 Release 1, OpenBridge Modeler now supports side-by-side installation. This means you could have a previous version of OBM on the same machine, and without uninstalling it, you could install the new version on the same machine. You simply choose the version you wish to run. Note that there are separate install folders for each new version

Chapter 1. Course Overview

Course Description and Objectives:

This course introduces users to the **modeling** functionality of the OpenBridge Modeler (OBM) CONNECT software, which is Bentley's current drafting and design platform that has been adopted for use by TDOT. This course was designed to be an <u>exercise-only</u> manual, without a lecture component. While tips and notes are present throughout, users who are not familiar with Bentley CONNECT software (MicroStation, OpenRoads Designer, etc.), may find it helpful to review TDOT's Fundamentals (ORD) Manual since many of the non-bridge concepts and workspace setup are identical.

At the conclusion of this course, participants will be able to:

- 1. Create an OBD file, a WorkSet, an OBM file, and add references.
- 2. Model a Bridge Deck and Barriers.
- 3. Create a Beam Layout, Model Beams, and Add Diaphragms.
- 4. Model Abutments, Wingwalls, Piers, and Bearings.
- 5. Create Approach Slabs and Sleeper Slabs

Target Audience:

This course is designed for Project Development staff, or anyone using the modeling tools for highway and bridge design.

Pre-Requisites:

- Familiarity with TDOT's design policies, procedures, and standards.
- A working knowledge of Windows 10.
- While not required, a review of the Fundamentals (ORD) Manual may be helpful.

Chapter 2. OpenBridge Modeler (OBM) Exercises

The exercises in this chapter are intended to give users a basic understanding of the process for creating a 3D bridge model. The goal is to create a bridge model that will integrate with the ORD models developed by other disciplines on a project.

In this case, we will access **OpenBridge Modeler (OBM)** within **OpenBridge Designer (OBD)**. However, the process would be similar if accessing OBM separately.

In general, the **Explorer** can be opened within the **Primary** tools, if needed. Refer to the Fundamentals (ORD) Manual for more insight on the **Explorer**. Feature Definitions are contained within a library and are part of the overall workspace managed by TDOT CADD support and cannot be edited.

Take Note!

Any data entered within a tool can be edited after placement using **Properties** (**OpenBridge Modeler** >> **Primary** >> **Properties**). You can also isolate and select different bridge elements using the OpenBridge Model tab of the **Explorer** (**OpenBridge Modeler** >> **Primary** >> **Properties**) and expanding the elements. See Bentley Help (**OpenBridge Modeler** >> **Help** >> **Help Contents**) for more information on the tools used in this manual.

2.1 Objectives

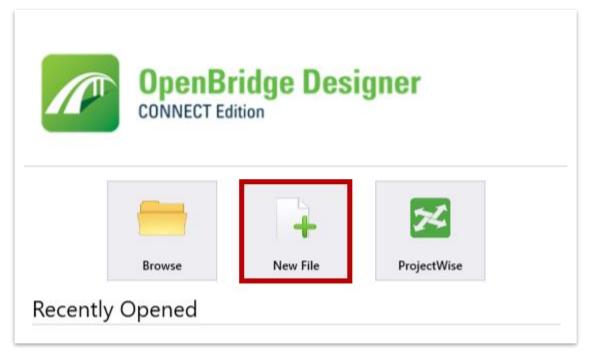
At the conclusion of this chapter, participants will be able to:

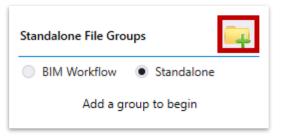
- 1. Create a new workset, a new OBD file, a new OBM file, and reference Roadway Geometry and Terrain files.
- 2. Model a bridge deck and add barriers.
- 3. Place a beam layout, beams, and add intermediate/end diaphragms.
- 4. Model abutments with wingwalls, pier, and bearing elements.
- 5. Create approach slabs (Reinforced Concrete Pavement at Bridge Ends) with barriers and sleeper slabs.

2.2: WorkSet/File Creation and References

In the following exercises, we will create a workset and OBD file both named **123456.00**_ **OBM_TR** and a bridge model named **TDOT_TR_OBM_Model.dgn**, which will then be used for the upcoming exercises. We will then attach the Roadway references required to begin modeling a bridge.

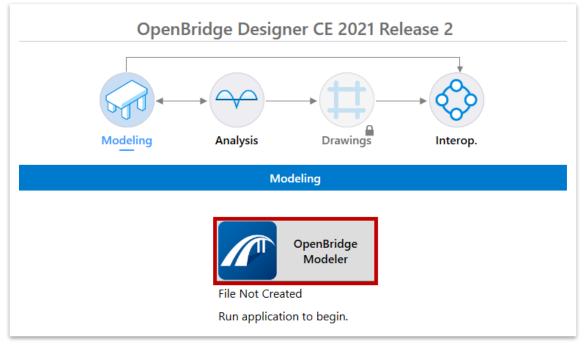
The file names used in this manual serve as general guidance for training purposes only. The procedures are intended to teach the necessary tools and TDOT's OBM workspace.

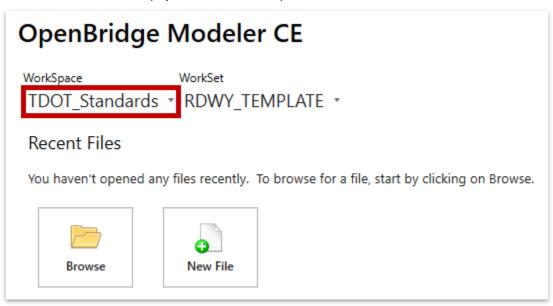

3D BRIDGE MODELING I OpenBridge Modeler | CONNECT Edition NOVEMBER 2022


2.2.1 Exercise: OpenBridge Designer (OBD) File and WorkSet Creation

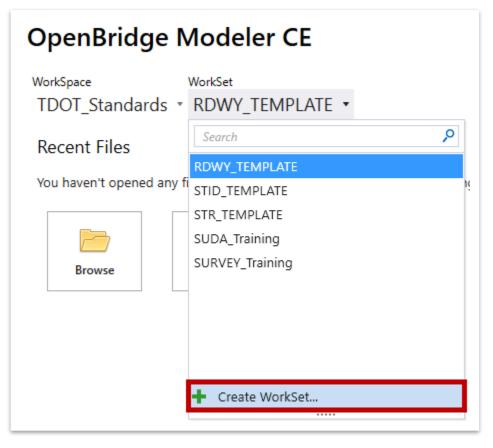
In this exercise, we will create an OBD file that will be used to access OBM and can also be used to access other Bentley analysis software: LEAP Bridge Steel, LEAP Bridge Concrete, and RM Bridge. We will then create a new workset.

1. Launch OBD from your desktop or Windows menu. Select **New File** and enter the name of the OBD file: **123456.00_OBM_TR.obdx**. Save the file to your desktop.

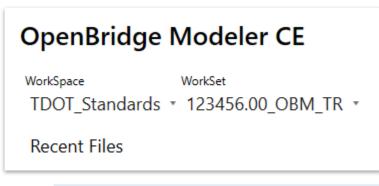

2. Select **Standalone** in the left panel and then select the **Add Standalone Group** button. Name the group **TDOT_OBM_TR** and click **OK**.



3. Select the **OpenBridge Modeler** button and OBM will launch in another window. If not using OBD, simply select the OBM icon from your desktop or Windows menu.


4. Select the TDOT_Standards Workspace from the drop-down menu. The first time you open OBM, it will show No WorkSpace by default. Each time thereafter, it should remember the TDOT_Standards Workspace and have it prepopulated. Notice that after selecting the workspace, by default it populates the WorkSet with RDWY_TEMPLATE (alphabetical order).

5. Before we create a new file, we need to create a new project **WorkSet**. Select **Create WorkSet** from the workset drop-down menu.

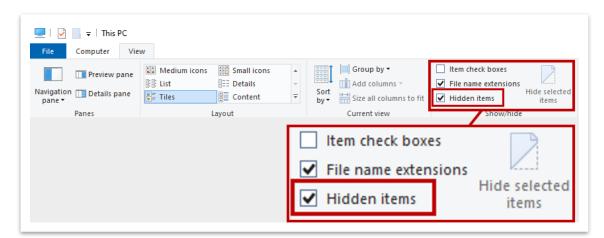


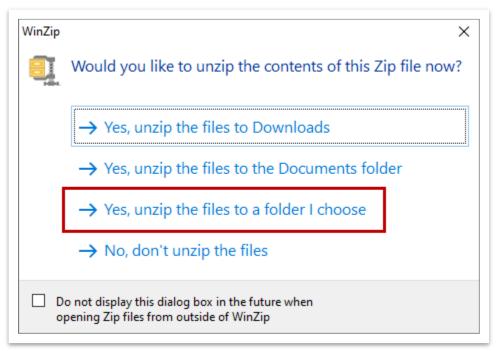
- 6. The Create WorkSet dialog will appear.
 - a. Type the name 123456.00_OBM_TR.
 - b. Select the **STR_TEMPLATE** as the template. Plans production will be covered in a future OBM manual.
 - c. Leave the **Create Folders Only** option in the top right section unchecked and click **OK**.

Name: Description:	123456.00_OBM_TR	
Template:	STR_TEMPLATE	Only
+ Add a Custom Property *		
Folder locations		
Root Folder:	C\ProgramData\Bentley\OpenBridge Designer CE 10.10.20\OpenB	
Design Files:	C\ProgramData\Bentley\OpenBridge Designer CE 10.10.20\OpenB	Browse.
Standard Files:	C/\ProgramData\Bentley\OpenBridge Designer CE 10.10.20\OpenB	
Standards Subfolders:	Cell;Data;Dgnlib;Macros;Seed;Sheet Borders;Superelevation;Symb;1	
ProjectWise Projects		
(click Browse to attach a Project	B	rowse

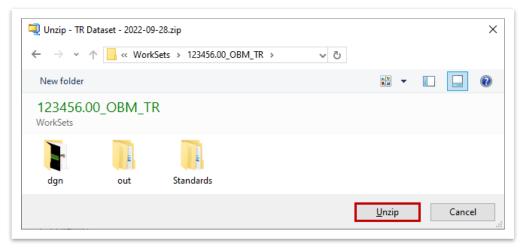
7. Notice your new project WorkSet is now populated.

When using OBM for plans production, WorkSet properties will be used for sheet information. This topic will be covered in later OBM manuals, but the concepts can be found in the Fundamentals (ORD) Manual.




 Now that we have created a workset, the applicable project folders have been created on the C drive. Go ahead and download the provided class zip file and set Hidden Items to be shown within File Explorer.

The **Program Data** folder where the **WorkSets** are located is a hidden folder by default. In your C drive folder, make sure that **Hidden Items** is checked under **View >> Show / Hide,** as shown below.


9. Unzip the training files. Select the option to choose the folder they are unzipped to. This option must be selected to place the files in the correct location.

10. Unzip the files to the newly created project folder (C:\ProgramData\Bentley\ OpenBridge Designer CE 10.10.20\OpenBridge Modeler\Configuration\Work Spaces\TDOT_Standards\WorkSets\123456.00_OBM_TR\).

11. Check the **Do this for all affected files** option at the bottom and then select **Replace the file in the destination folder**. **Note:** Your options may look slightly different if using a different application to unzip the class files.

Confirm	n File Overwrite X
	The folder already contains this file.
	Would you like to replace the existing file: C:\ProgramData\Bentley\OpenBridge Designer CE 10.10.20\OpenBridgeModeler\Configuration\Wor\TDOT_TR_Geometry.dgn 1,423KB 9/14/2022 3:53 PM
	with this one: TDOT_TR_Geometry.dgn 1,423KB 9/14/2022 3:53 PM
	ightarrow Replace the file in the destination folder
	ightarrow Skip this file
	→ Keep both files WinZip will assign the file a unique file name
	Do this for all affected files

12. The files have been updated and you are ready to begin

Any pre-created class file that is opened in this manual will likely yield an alert about not belonging to a workset. Always select your **123456.00_OBM_TR** workset and then click **Open**.

2.2.2 Exercise: OBM File Creation

In this exercise, we will create a new OBM file that we will use to begin modeling our bridge. After creation, it should be accessed through the OBD interface.

1. Let's now create a New File to use for the remaining exercises.

OpenBridge	Modeler CE
^{WorkSpace} TDOT_Standards	WorkSet • 123456.00_OBM_TR •
Recent Files	
You haven't opened an	y files recently. To browse for a file, start by clicking on Browse.
Browse	Dew File

To open a previously created file, select the appropriate WorkSpace and WorkSet, and select the **Browse** button.

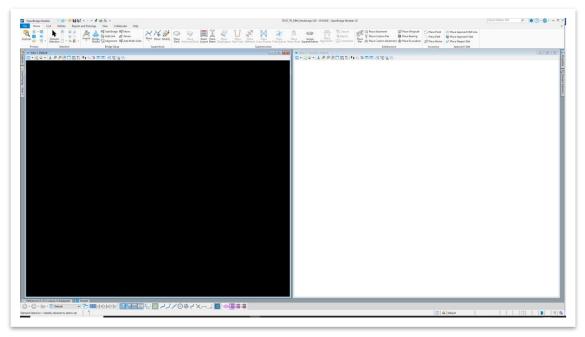
Take Note!

2. Notice that the default folder location is the dgn folder within the 123456.00_OBM

_TR workset that was just created. C:\ProgramData\Bentley\OpenBridge Designer CE 10.10.20\OpenBridgeModeler\Configuration\WorkSpaces\TDOT _Standards\WorkSets\123456.00_OBM_TR\dgn\.

3. In the **File name** field, type in **TDOT_TR_OBM_Model**.

File name:	TDOT_TR_OBM_Model.dgn ~	· [Save
Save as type:	MicroStation DGN Files (*.dgn)	•	Cancel
Seed:	ards\OpenBridge Modeler\Seed\TDOTSeed3D_OBM.dgn	ם [Browse



 To select the seed, click Browse. This will open another window. Navigate to C:\ProgramData\Bentley\OpenBridge Designer CE 10.10.20\OpenBridge Modeler\Configuration\ Organization-Civil\TDOT_Standards\OpenBridge Modeler\Seed\. This is where the OBM seed files are located.

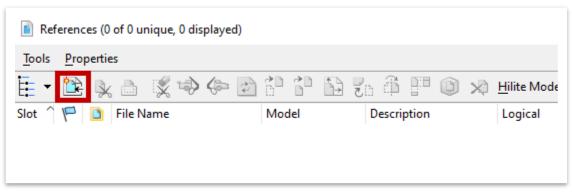
			Save
Save as type: MicroSt	tation DGN Files (*.dgn)	\sim	Cancel
Seed: ards\Op	enBridge Modeler\Seed\TDOTSeed3	D_OBM.dgn	Browse

- 5. Select the TDOTSeed3D_OBM.dgn seed file and click Open.
- 6. Notice that by default, the **TDOT_TR_OBM_Model** file that you just created will be saved in the DGN folder under the **123456.00_OBM_TR** workset.
- 7. Click **Save** and the file will open.

In this manual, we will not discuss interface setup. Refer to the Fundamentals (ORD) Manual for information.

2.2.3 Exercise: Reference Roadway Geometry and Terrain Files

In this exercise, we will attach multiple models of a roadway geometry file, as well as a terrain file that we will later use to set footing elevations. We will continue to utilize the same **TDOT_TR_OBM_Model.dgn** file.



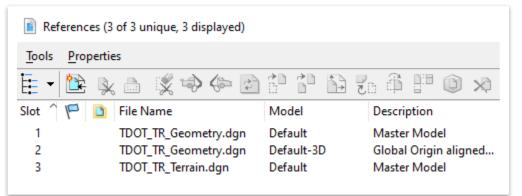
You can change the units that are displayed by going to File >> Settings >> File >> Design File Settings >> Working Units.

 First, make sure the **OpenBridge Modeler** workflow is selected in the upper left corner. Then, click the **References** button to open the Reference window. **Note:** The References can be found in the **Home** ribbon tab of any workflow, within the **Primary** group.

 Click the Attach Reference button and browse to the TDOT_TR_Geometry.dgn file located here: C:\ProgramData\Bentley\OpenBridge Designer CE 10.10.20\ OpenBridgeModeler\Configuration\WorkSpaces\TDOT_Standards\WorkSet s\123456.00_OBM_TR\dgn\. It should open to this folder by default. After selecting the dgn, click Open. Click OK in the pop-up alert about the file not belonging to the active workset.

3. In the **Reference Attachment Properties** dialog box, confirm that the **Attachment Method** is set to **Coincident - World**. Click **OK**.

-	DT_TR_Geometry.dgn	
	WorkSets\123456.00_OBM_TR\dgn\TDOT_TR_Geometry.dgn	_
Model: Defa	ault 🔻	
Logical Name:		
Description: Ma	ster Model	
Orientation:		
View	Description	
Coincident	Aligned with Master File	
Coincident - Wo	rld Global Origin aligned with Master File	
Standard Views		
Saved Views (no Named Boundar		
	it's (none)	
Detail Scal		
	le: 1"=20'	
Detail Scal Sc <u>a</u> le (Master:Re Named Grou	le: 1"=20' ▼ f): 1.00000000 : 1.00000000	
Sc <u>a</u> le (Master:Re	le: 1"=20' f): 1.00000000 : 1.00000000 p:	
Sc <u>a</u> le (Master:Re Named Grou	ie: 1"=20' f): 1.00000000 : 1.00000000 p: n:	
Sc <u>a</u> le (Master:Rei Named Grou Revisio	le: 1"=20' f): 1.00000000 : 1.00000000 p: li: li: li: li: li: li: li: l	0
Sc <u>a</u> le (Master:Rei Named Grou Revisio Le <u>v</u> i	le: 1"=20'	0
Sc <u>a</u> le (Master:Re Named Grou Revisio Le <u>v</u> <u>N</u> ested Attachment <u>D</u> isplay Override	le: 1"=20'	0
Sc <u>a</u> le (Master:Re Named Grou Revisio Le <u>v</u> <u>N</u> ested Attachment <u>D</u> isplay Override	le: 1"=20' f): 1.00000000 : 1.00000000 p: r:	0
Sc <u>a</u> le (Master:Rei Named Grou Revisio Le <u>v</u> <u>N</u> ested Attachment <u>D</u> isplay Override Ne <u>w</u> Level Displa Global LineStyle Scal	le: 1"=20' f): 1.00000000 : 1.00000000 p: r:	0
Sc <u>a</u> le (Master:Rei Named Grou Revisio Le <u>v</u> <u>N</u> ested Attachment <u>D</u> isplay Override Ne <u>w</u> Level Displa Global LineStyle Scal	le: 1"=20' f): 1.00000000 g:	0


4. The TDOT_TR_Geometry.dgn should now be attached. ORD geometry files generally have at least two models. Attach the same TDOT_TR_Geometry.dgn again but select the Default-3D model. In geometry files with superelevations, there will be additional models. However, our geometry does not contain superelevation information.

Reference Attachment Properties for TDOT_TR_Geom	try.dgn X
File Name: TDOT_TR_Geometry.dgn	
Full Path:\WorkSets\123456.00_OBM_TR\dgn\T	OT_TR_Geometry.dgn
<u>M</u> odel: Default-3D	-
Logical Name: Ref	
Description: Global Origin aligned with Master File	

5. Click the **Attach Reference** button one more time and select **TDOT_TR_Terrain** .dgn. This is the ground elevation file and can be used to set footing elevations.

6. Select the **Fit View** button at the top of the view windows for both **View 1 - Top** and **View 2 - Isometric**. The newly referenced files will now be visible.

 For the purposes of modeling our bridge, the Default-3D model of the TDOT_TR_Geometry.dgn reference and the TDOT_TR_Terrain.dgn reference should be set to not display. This will make navigating the model easier. Close the References dialog box.

References	(3 of 3 unique, 1 displayed)			
<u>T</u> ools <u>P</u> rope	rties			
🗄 🛛 隆 I	x 🗅 🕺 🗢 🖡	2616	🔁 🕫 🛱	🖽 🛈 🖈 E
Slot 🏴 🗋	File Name	Model	Description	Orier Preser 💽
Slot 🏴 🛅 1	File Name TDOT_TR_Geometry.dgn	Model Default	Description Master Model	Orier Preser ⊡ C Wir ✓
Slot 🏴 🗋 1 2				C Wir 🗸

Annotation scale can be used to adjust the text size if desired. By default, the seed file will have a 1"=20' scale for design models.

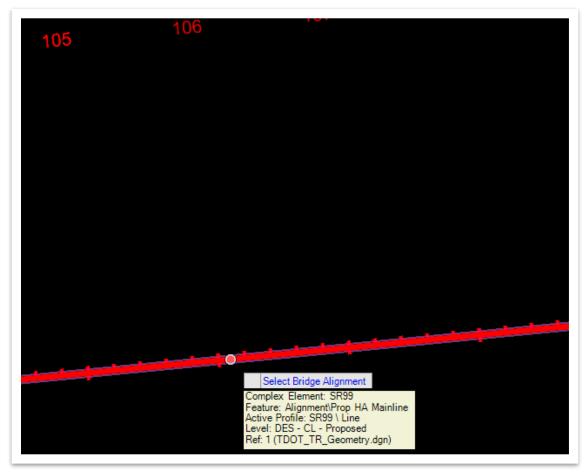
Take Note!

2.3: Model a Bridge Deck and Barriers

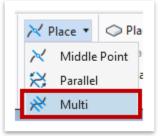
In the following exercises, we will add a bridge to the dgn created in the previous exercise. Once the bridge is added, we will set up SupportLines, a bridge deck, and traffic barriers along the deck. For this training we will create a deck template for the deck modeling, but we will be using a pre-generated barrier template.

2.3.1 Exercise: Set up Bridge, Add SupportLines, and Rotate View

In this exercise, we will add a bridge to the dgn and set up the SupportLines that will represent the location of each substructure element. Once the SupportLines are set up, we will rotate the view of the dgn to provide a cleaner look. We will continue to utilize the same **TDOT_TR_OBM_Model.dgn** file. **Note:** In the workset dgn folder, there is a dgn file with **Begin** in the name for each overall section. If necessary, you can access the applicable file (**TDOT_TR_OBM_Model_2.3_Begin.dgn**) from the dataset and then proceed with the exercises.


- 1. First, open the Add Bridge tool (OpenBridge Modeler >> Home >> Bridge Setup). In the Add Bridge dialog box, select the following settings:
 - a. Main >> Description: TDOT TR OBM Model
 - b. Main >> Structure Number: 123456
 - c. Unit >> Name: Unit1
 - d. Unit >> Bridge Type: Beam Slab (P/S or RC Concrete Girders)
 - e. All settings not explicitly listed can be kept as default. Note: Do NOT click X.

🔏 Add Bridge		\times
Main		*
Description	TDOT TR OBM Model	
Structure Number	123456	
Requires Road Alignment		
Use Road Alignment For Stationing		
Unit		*
Name	Unit 1	
Description		
Bridge Type	Beam Slab (P/S or RC Concrete Girders)	\sim
Feature		*
Feature Definition	Bridge_decorations	\sim
Name Prefix	Bridge	


Notice the cursor prompt: Select Bridge Alignment. Select the SR99 alignment as shown below. Data Point (left click) to accept the selection and then the new bridge will be created.

If you move your cursor into space while using a tool, there will be instructions as to what input/clicks the program is expecting. This message will also be in the lower left corner of the screen.

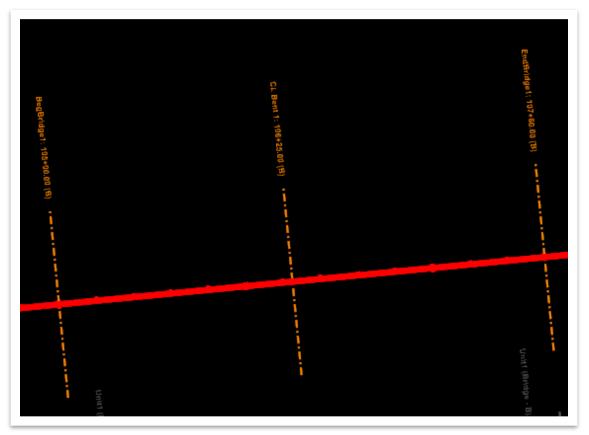
Take Note!

3. Now we need to create the SupportLines. Open the Place (Multi) tool (OpenBridge Modeler >> Home >> SupportLine >> Place).

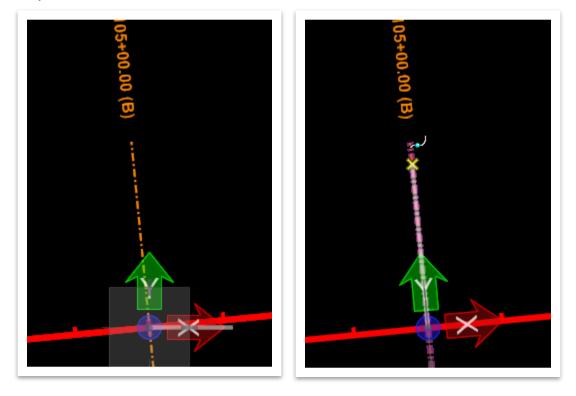
- 4. In the **Place Multi SupportLines** dialog box, select the following settings. **Note:** You could also follow the cursor prompts to select the settings before accepting each one.
 - a. Skew Angle: Checkmark (00°00'00").
 - b. Length: Checkmark (100:0), keep Offset set to 0:0. Note: This is the length of the SupportLine itself. The SupportLine should be long enough to extend beyond the limits of the proposed deck.
 - c. Span Length: Checkmark (125:0).
 - d. Start Station: Checkmark (105+00.00).
 - e. End Station: The value should remain unchecked.
 - f. Number of SupportLines: 3
 - g. All settings not explicitly listed can be kept as default.

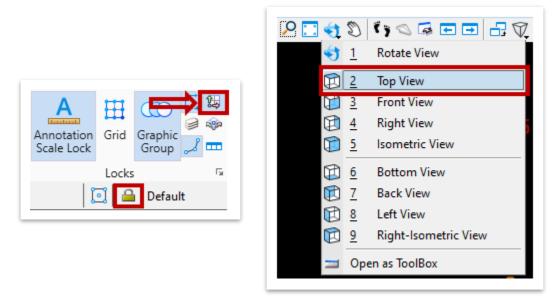
🔏 Place Multi S	- 🗆 X
Main	^
Skew Angle	00°00'00''
Length	100:0
Offset	0:0
Span Length	125:0
Start Station	105+00.00
End Station	107+50.00
SupportLines Nu	mber 🔺
Number of SupportLines	3
Direction Mode	*
Direction Mode	Skew 🗸
Feature	^
Feature Definition	Supportline 🗸

In this exercise, the **End Station** does not need to be checkmarked as the end station will be calculated by the program using the **Start Station** and **Span Length** values we provided. Various combinations of values may be checked and unchecked to arrive at the same conclusion in the future. For example, we could instead provide the **Start Station** and **End Station** but leave the **Span Length** unchecked; in which case, the program will use those checked values and the number of SupportLines to calculate the **Span Length**.

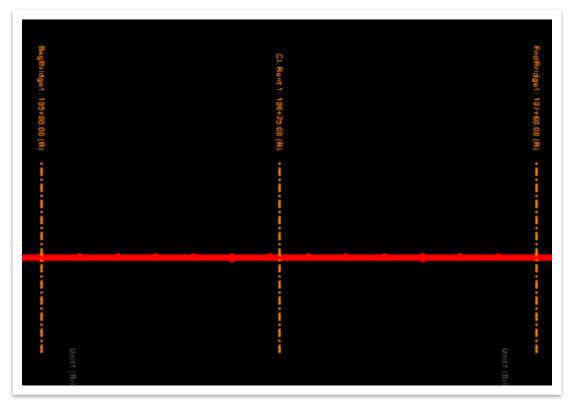

- 5. After this information is entered, the user can **Data Point** in space to confirm the **Start Location**.
- 6. Then, **Data Point** again to confirm the **Skew**. **Data Point** again to confirm the **End Location**.
- The Place Multi SupportLines window will then open. Here, the user can modify each characteristic of these SupportLines. Update the characteristics as follows to match the image below:
 - a. Name: Update
 - i. "SupportLine1" to "BegBridge1"
 - ii. "SupportLine2" to "CL Bent 1"
 - iii. "SupportLine3" to "EndBridge1"
 - b. Span Length: Update for EndBridge1 from 125:0 to 135:0. This will automatically update the Station for this SupportLine to be 107+60.00.
 - c. Click **OK**.

4	Place	e Multi SupportL	ines				×
	#	Name	Station	Angle	Span Length	Length	Horizontal Offset
٠	1	BegBridge1	105+00.00	00°00'00"	0:0	100:0	0:0
	2	CL Bent 1	106+25.00	00°00'00"	125:0	100:0	0:0
	3	EndBridge1	107+60.00	00°00'00"	135:0	100:0	0:0


8. The **SupportLines** should now be shown. The **Place Multi SupportLines** tool will automatically allow you to start the placement of another set of SupportLines, but you can end the placement by right clicking in the view window or by selecting another tool.

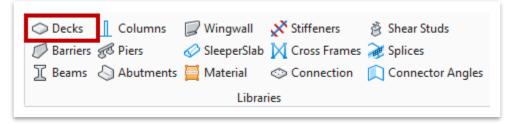


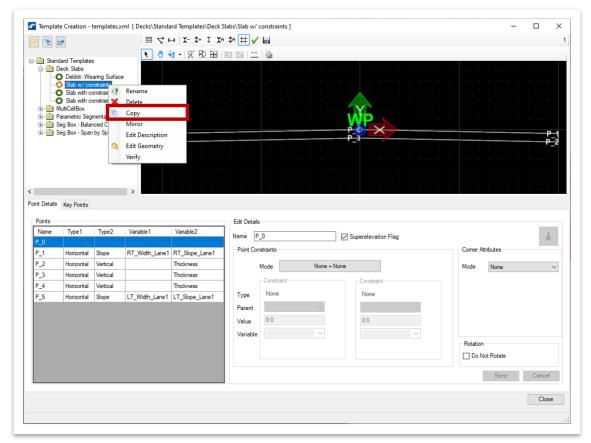
9. Now we need to rotate the orientation of View 1 to be parallel with the screen. First, we need to set the Auxiliary Coordinate System (ACS). Open the Define by Points tool (OpenBridge Modeler >> Utilities >> ACS >> Define an ACS or [Hold Shift] + [type] R + [type] A) and then place the ACS at the intersection of the BegBridge1 SupportLine and the alignment line. Select a point on the alignment to define the x-axis. Then, select a point on the SupportLine to define the y-axis.



10.Once the ACS is defined, click the Locks icon at the bottom of the screen and select ACS Plane Lock. Once the ACS Plane Lock is enabled, in View 1, select View Rotate >> Top View or [Hold Shift] + [Right Click] + [type] T.

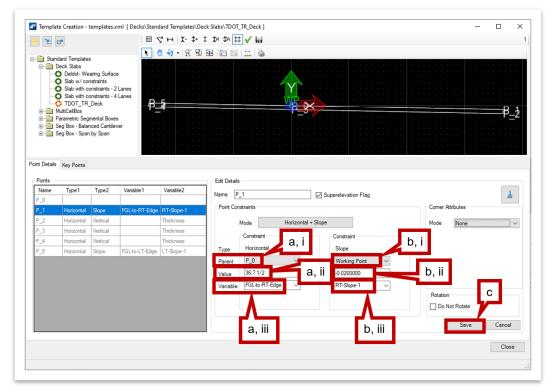
11. View 1 of the alignment should now be parallel with the screen. Go to File >> Save Settings or [Hold Ctrl] + [type] F to ensure the ACS rotation is saved.




2.3.2 Exercise: Set up a Deck Template and Create a Deck

In this exercise, we will create a new deck template to use specifically for this bridge. Once created, we will model the deck using the SupportLines set up in the previous exercise as the deck limits. However, the begin and end of deck will be offset short of the SupportLines to account for the modeling of integral abutment in upcoming Exercise 2.5.1. We will continue to utilize the same **TDOT_TR_OBM_Model.dgn** file (or **TDOT_TR _OBM_Model_ 2.3_Begin.dgn**) from the previous portion of the exercise.

1. First, open the **Decks** tool (**OpenBridge Modeler >> Utilities >> Libraries**), which will open the deck template library.


2. In the **Template Creation - templates.xml** window, expand the **Standard Templates** and **Deck Slab** folders, and then right click on **Slab w/ constraints** and select **Copy**.

- 3. Right click the copied template named **Slab w/ constraints-Copy** and select **Rename**. Rename the template to **TDOT_TR_Deck**.
- 4. Highlight **P_1** in the **Points** section and select the following settings.
 - a. Change the Horizontal constraint to the following:
 - i. Parent: P_0
 - ii. Value: 36:7.5. Note: The software converts to a fraction automatically.
 - iii. Variable: RT_Width_Lane1. Note: Once the correct value is selected, rename it by clicking in the Variable box and typing FGL-to-RT-Edge.
 - b. Change the **Slope** constraint to the following:
 - i. Parent: Working Point
 - ii. Value: -0.020
 - iii. Variable: RT_Slope_Lane1. Note: Once the correct value is selected, rename it by clicking in the Variable box and typing RT-Slope-1.
 - c. Click Save to update the graphical view.

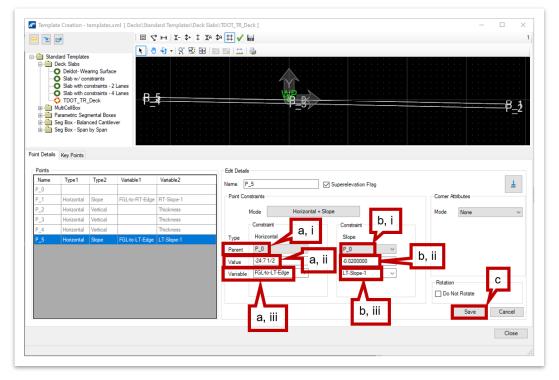
Checking the **Superelevation Flag** box will allow the program to override the assigned slope to the selected point. If there is a superelevation model within the roadway file, the **Superelevation** tool can be used to automatically model the superelevation transition. We will not use the **Superelevation** tool in this introductory manual.

- 5. Highlight **P_2** in the **Points** section and select the following settings.
 - a. Change the Vertical constraint to the following:
 - i. Parent: P_1
 - ii. Value: -0:8.25
 - iii. Variable: Thickness
 - b. Click Save to update the graphical view. Note: The Horizontal constraint is set to: Parent >> P_1 and Value >> 0:0, so the adjustment made in the previous step resulted in P_2 also shifting further from the Working Point.

				;∺ X-\$+‡)	¥e 1e ++ ./								
2	5												
	Jard Template Deck Slabs Deldot-We Slab w/t co Slab with c Slab with c Slab with c TDOT_TR AutiCellBox Parametric Seg leg Box - Spar	earing Surfac nstraints onstraints - : onstraints - : _Deck _Deck mental Boxe nced Cantile	2 Lanes 4 Lanes 85				Y ₽_₹>						Β
t Details Points	Key Points				Edit Detai	ils							
Name	Type1	Type2	Variable1	Variable2	Name	P_2		Superelevatio	on Flag				1
_0			FGL-to-RT-Edge	RT-Slope-1		onstraints				Comer A	Attributes		-
		Slope											
_1	Horizontal		TGERONTPEdge										
_2	Horizontal	Vertical	TGER04KT-Edge	Thickness		Mode	Horizontal +	Vertical	a, i	Mode	None		~
_ 2 _3						Mode Constraint	Horizontal +	Vertical Constrain	· ·		None		~
_2	Horizontal Horizontal	Vertical Vertical	FGLto-LT-Edge	Thickness Thickness Thickness	Туре		Horizontal +		· ·		None		~
_2 _3 _4	Horizontal Horizontal Horizontal	Vertical Vertical Vertical		Thickness Thickness Thickness	Type	Constraint	Horizontal +	Constrain	· ·	Mode	None		~
_2 _3 _4	Horizontal Horizontal Horizontal	Vertical Vertical Vertical		Thickness Thickness Thickness		Constraint Horizontal		Constrain Vertical	· ·		None		~
_2 _3 _4	Horizontal Horizontal Horizontal	Vertical Vertical Vertical		Thickness Thickness Thickness	Parent	Constraint Horizontal P_1 0:0		Constrain Vertical P_1		Mode	None		~
_2 _3 _4	Horizontal Horizontal Horizontal	Vertical Vertical Vertical		Thickness Thickness Thickness	Parent Value	Constraint Horizontal P_1 0:0	~	Constrain Vertical P_1 -0:8 1/4		Mode		b	~
_2 _3 _4	Horizontal Horizontal Horizontal	Vertical Vertical Vertical		Thickness Thickness Thickness	Parent Value	Constraint Horizontal P_1 0:0	~	Constrain Vertical P_1 -0:8 1/4		Mode a, ii Rotation		b	~
_2 _3 _4	Horizontal Horizontal Horizontal	Vertical Vertical Vertical		Thickness Thickness Thickness	Parent Value	Constraint Horizontal P_1 0:0	~	Constraint Vertical P_1 -0:8 1/4 Thicknes		Mode a, ii Rotation	n Not Rotate	ľ	
_2 _3 _4	Horizontal Horizontal Horizontal	Vertical Vertical Vertical		Thickness Thickness Thickness	Parent Value	Constraint Horizontal P_1 0:0	~	Constrain Vertical P_1 -0:8 1/4		Mode a, ii Rotation	n	b	
_2 _3 _4	Horizontal Horizontal Horizontal	Vertical Vertical Vertical		Thickness Thickness Thickness	Parent Value	Constraint Horizontal P_1 0:0	~	Constraint Vertical P_1 -0:8 1/4 Thicknes		Mode a, ii Rotation	n Not Rotate	Cano	

- 6. Highlight **P_3** in the **Points** section and select the following settings.
 - a. Change the Vertical constraint to the following:
 - i. Parent: P_0
 - ii. Value: -0:8.25
 - iii. Variable: Thickness
 - b. Click Save to update the graphical view.

ء 🕑 🕯	-			• ⊨ ¥- \$+ ‡	20 40 井 🗸 님
	dard Template Deck Stabs Deldot-We Stab w/ co Stab with c Stab with c Stab with c TDOT_TR MultiCellBox Parametric Seg Box - Spar	earing Surfac nstraints onstraints - 2 onstraints - 4 _Deck mental Boxe nced Cantile	2 Lanes 4 Lanes	5	B
nt Details Points	Key Points				Edit Details
Name	Type1	Type2	Variable1	Variable2	Name P_3 Superelevation Flag
P_0					
P_1	Horizontal	Slope	FGL-to-RT-Edge		Point Constraints Comer Attributes
P_1 P_2	Horizontal	Vertical	FGL-to-RT-Edge	Thickness	Point Constraints Comer Attributes
P_1 P_2 P_3	Horizontal Horizontal	Vertical Vertical	FGL-to-RT-Edge	Thickness Thickness	Point Constraints Comer Attributes
P_1 P_2 P_3 P_4	Horizontal Horizontal Horizontal	Vertical Vertical Vertical		Thickness Thickness Thickness	Point Constraints Point Constraint Mode Horizontal + Vertical Constraint C
P_1 P_2 P_3	Horizontal Horizontal	Vertical Vertical	FGL-to-RT-Edge	Thickness Thickness Thickness	Point Constraints Mode Horizontal + Vertical a, i Type Horizontal Vertical Vertical Vertical A, i
P_1 P_2 P_3 P_4	Horizontal Horizontal Horizontal	Vertical Vertical Vertical		Thickness Thickness Thickness	Point Constraints Mode Horizontal + Vertical a, i Type Horizontal Vertical Vertical A, i Parent P_0 A, ii
P_1 P_2 P_3 P_4	Horizontal Horizontal Horizontal	Vertical Vertical Vertical		Thickness Thickness Thickness	Point Constraints Mode Horizontal + Vertical a, i Type Horizontal Parent P_0 V Value 0.0 0 0.0 1/4 a, ii
P_1 P_2 P_3 P_4	Horizontal Horizontal Horizontal	Vertical Vertical Vertical		Thickness Thickness Thickness	Point Constraints Mode Horizontal + Vertical a, i Type Horizontal Perent P.0 V Pricel P.0 A, ii Value 0.0 0.14 Variable Variable Vari
P_1 P_2 P_3 P_4	Horizontal Horizontal Horizontal	Vertical Vertical Vertical		Thickness Thickness Thickness	Point Constraints Point Constraint Mode Horizontal + Vertical A, i Vertical Parent Parent Parent Parent Parent Value 0.0 Value Variable Vertical Retation b
P_1 P_2 P_3 P_4	Horizontal Horizontal Horizontal	Vertical Vertical Vertical		Thickness Thickness Thickness	Point Constraints Mode Horizontal + Vertical a, i Type Horizontal Perent P.0 V Pricel P.0 A, ii Value 0.0 0.14 Variable Variable Vari
P_1 P_2 P_3 P_4	Horizontal Horizontal Horizontal	Vertical Vertical Vertical		Thickness Thickness Thickness	Point Constraints Mode Horizontal + Vertical A, i Vertical Parent Value 0.0 Variable Var
P_1 P_2 P_3 P_4	Horizontal Horizontal Horizontal	Vertical Vertical Vertical		Thickness Thickness Thickness	Point Constraints Mode Horizontal + Vertical A, i Vertical Parent Value Variable Var


- 7. Highlight **P_4** in the **Points** section and select the following settings.
 - a. Change the Vertical constraint to the following:
 - i. Parent: P_5
 - ii. Value: -0:8.25
 - iii. Variable: Thickness
 - b. Click **Save** to update the graphical view.

	-			*∺ ¥- \$+ ‡	XA \$A 🕂 🖌 📙	
2						
	dard Template Deck Stabs Deldot-We Stab w/ co Stab with c Stab with c Stab with c TDOT_TR MutiCellBox Parametric Seg Box - Balan Seg Box - Spar	aring Surfac nstraints onstraints - 2 onstraints - 4 _Deck mental Boxe nced Cantile	2 Lanes I Lanes	5	B_8	——β <u>-</u> 2
nt Details Points	Key Points				Edit Details	
Name	Type1	Type2	Variable1	Variable2	Name P_4 Superelevation Flag	1
P_0						
P_1	Horizontal	Slope	FGL-to-RT-Edge	RT-Slope-1	Point Constraints Corner Attributes	
P_2	Horizontal	Vertical		Thickness	Mode Horizontal + Vertical a, i Mode Non	e ~
P_3	Horizontal	Vertical		Thickness	Constraint Constraint	
	Horizontal	Vertical		Thickness		
P_4 P_5	Horizontal	Vertical Slope	FGL-to-LT-Edge		Type Horizontal Vertical	
			FGL-to-LT-Edge		Type Horizontal Vertical Parent P_5 V	
			FGL-to-LT-Edge		Type Horizontal Vertical	
			FGL-to-LT-Edge		Type Horizontal Vertical Parent P_5 Vertical A, ii	
			FGLto-LT-Edge		Type Horizontal Vertical Parent P_5 Value Value 0.0 0.8 1/4	b
			FGLto-LT-Edge		Type Horizontal Vertical Parent P_5 Value 0.0 0.8 1/4 Variable Thickness	
			FGLto-LT-Edge		Type Horizontal Vertical Parent P_5 Value 0.0 0.8 1/4 Variable Rotation Do Not Rota	ite
			FGLto-LT-Edge		Type Horizontal Vertical Parent P_5 Value 0.0 0.0 11/4 Variable Rotation Do Not Rote	ite
			FGLto-LT-Edge		Type Horizontal Vertical Parent P_5 Value 0.0 0.8 1/4 Variable Rotation Do Not Rota	ite

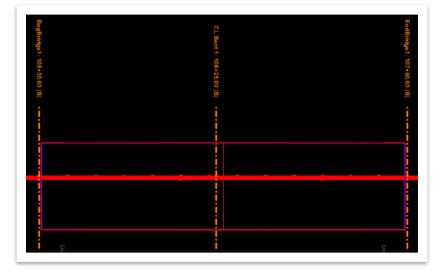
- 8. Highlight **P_5** in the **Points** section and select the following settings.
 - a. Change the Horizontal constraint to the following:
 - i. Parent: P_0
 - ii. Value: -24:7.5
 - iii. **Variable:** LT_Width_Lane1. **Note:** Once the correct value is selected, rename it by clicking in the box and typing "**FGL-to-LT-Edge**".
 - b. Change the **Slope** constraint to the following:
 - i. Parent: P_0
 - ii. Value: -0.020
 - iii. Variable: LT_Slope_Lane1. Note: Once the correct value is selected, rename it by clicking in the box and typing "LT-Slope-1".
 - c. Click **Save** to update the graphical view. **Note:** The horizontal offset of P_4 was updated automatically with the change to P_5.

9. Click **Close** to close the **Template Creation** window. The new deck template is now complete and is ready to be used with the **Place Deck** tool.

- 10.Now let's create the deck. Open the **Place Deck** tool (**OpenBridge Modeler** >> **Home** >> **Superstructure**). In the **Place Deck** dialog box, select the following settings.
 - a. Template Name: TDOT_TR_Deck
 - b. Start Station Offset: 1:6
 - c. End Station Offset: -1:6
 - d. Deck Material: Deck Concrete
 - e. Feature Definition: Deck

hace Deck		\times
Deck		*
Template Name	TDOT_TR_De	eck
Start Station Offset	1:6	
End Station Offset	-1:6	
Horizontal Offset	0:0	
Vertical Offset	0:0	
Add Constraints		
Chord Tolerance	0.1000000	
Max Dist Between Sections	3:3 3/8	
Analytical Deck		
Material		*
Deck Material	Deck Concrete	e
Build Order		*
Build Order	1	
Feature		*
Feature Definition	Deck	\sim
Name Prefix	Deck	

Station offsets are provided at the start and end of the bridge deck to account for the manner in which the integral abutments are being modeled. At these locations, the end wall will align with the top of deck.



Notice the cursor prompt: Select 1st Deck Boundary (SupportLine). Select BegBridge1. Notice the next cursor prompt: Select 2nd Deck Boundary (SupportLine). Select the 2nd Deck Boundary.

12. Data Point (left click) to accept. The deck will be created as seen below.

If a superelevation transition is present in the roadway design, a separate superelevation model will be present in the alignment dgn. This superelevation can then be applied to the bridge by selecting **Open Bridge Modeler >> Home >> Superstructure >> Assign Superelevation**.

2.3.3 Exercise: Create Barriers

In this exercise, we will learn how to use the provided TDOT templates in the model to create elements. We will import a barrier template that has been pre-modified for the training model and use it to model barriers on either side of the bridge deck. We will continue to utilize the same **TDOT_TR_OBM_Model.dgn** file (or **TDOT_TR_OBM_ Model_ 2.3_Begin.dgn**) from the previous portion of the exercise.

1. First, open the **Barriers** tool (**OpenBridge Modeler >> Utilities >> Libraries**), which will open the barrier template library.

2. In the Template Creation - templates.xml window, click on the Import tool.

🎢 Template Creation - temp	plates.xml
😑 🔁 🛃	

3. The Import Templates window should open. Navigate to where the dataset files are located and select the Deck&Barrier-Templates_TDOT_TR.xml file, and then click Open (C:\ProgramData\Bentley\OpenBridge Designer CE 10.10.20\ OpenBridge Modeler\Configuration\WorkSpaces\TDOT_Standards\Work Sets\123456.00_OBM_TR\Standards\TemplateLibrary\TR_OBM_Templates).

4. Select the desired templates to import by clicking in the empty box next to the **TDOT** template folder. A checkmark will now fill the box. Then click **Import** to add the TDOT barrier templates to the template library. **Note:** Additional barrier types will be added to the workspace in the future.

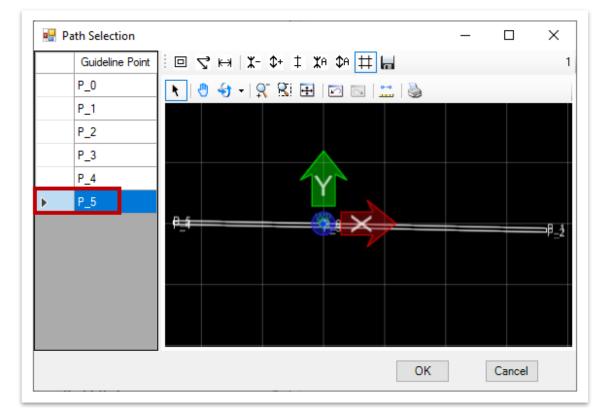
T Import Templates	- D X
🔺 🔄 🗹 🛛 Barriers	
Barriers	
	Import Cancel
	Import Cancel

5. Now we will create the bridge barriers. Open the **Place Barrier** tool (**OpenBridge Modeler** >> **Home** >> **Accessory**).

- 6. We will first setup the left barrier. In the **Place Barrier** dialog box, select the following settings.
 - a. Template Name: STD-1-1SS_LT_SingleSlopeParapet
 - b. Start Station Offset: -1:6
 - c. End Station Offset: 1:6
 - d. Horizontal Offset: 1:2.5. Note: This value denotes the horizontal offset of the barrier template's Working Point (WP), which is typically the inside edge of the barrier to the edge of the deck.
 - e. Barrier Material: Traffic Barrier. Note: This material can be found under the Miscellaneous tab within the Material Library.
 - f. Feature Definition: Barrier
 - g. All settings not explicitly listed can be kept as default.

hace Barrier	- 🗆 X
Barrier	*
Template Name	STD-1-1SS_RT_!
Start Station Offset	-1:6
End Station Offset	1:6
Horizontal Offset	1:2 1/2
Vertical Offset	0:0
Material	*
Barrier Material	Traffic Barrier
Solid Placement	*
Chord Tolerance	0.1000000
Max Dist Between Sections	16:4 7/8
Template Orientation	Vertical 🗸
End Cut Orientation	Follow Skew 🗸
Build Order	*
Barrier Build Order	1
Feature	*
Feature Definition	Barrier 🗸
Name Prefix	Barrier

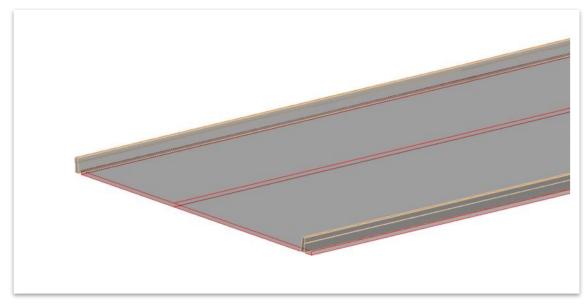
Take Note!


A barrier's limits are always placed in relation to the start and end of the selected candidate (deck). Because the deck limits were offset from the SupportLines in Exercise 2.3.2 to accommodate the end walls, the barriers will need to be extended beyond the deck at each end by using the **Start Station Offset** and **End Station Offset**. This ensures that the barriers are extended to the SupportLines and present atop of the end walls.

- 7. Select the deck that was just created as the **Candidate** by left clicking on the deck.
- 8. **Reset** (right click) to end the candidate selection and then **Data Point** (left click) in space. This will open the **Path Selection** window.
- 9. Click on Select Guideline from List to open the Path Selection window.

🞢 Pa	th Selection	_		×
	Candidate		-	
•	📥 WP			
	Select	Alignment		
	Select Gui	deline from Li	st	
		ОК	Cance	el

10. Select **P_5** from the list as the **Guideline Point** and click **OK**.


11. Verify that the blue check mark is showing and click **OK**. The barrier should now be displayed on top of the deck.

🖉 Pa	✓ Path Selection - □ ×					
	Candidate					
•	📥 WP					
	Se	lect Alignment				
	Select (Guideline from Li	st			
		ОК	Cancel			

12. Repeat Steps 5-11 to place the **Right Barrier**. In Step 6 change the selected template to **STD-1-1SS_RT_SingleSlopeParapet** and change the horizontal offset to **-1:2.5**. In Step 10 select **P_1** as the **Guideline Point**.

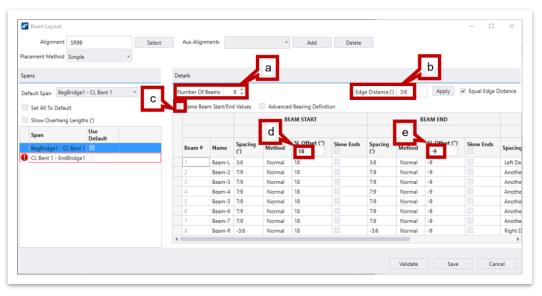

2.4: Create a Beam Layout, Model Beams, and Add Diaphragms

In the following exercises, we will create a beam layout to set the centerlines and beam limits for the bridge. We will then use the beam layout to model the beams using an existing Bulb-Tee section template. Lastly, we will add diaphragms to the bridge based on the span arrangement.

2.4.1 Exercise: Create a Beam Layout

In this exercise, we will create a beam layout that will define the locations of the beam centerlines, as well as, the limits of the beam ends for both spans of the bridge. We will continue to utilize the same **TDOT_TR_OBM_Model.dgn** file (or **TDOT_TR_OBM_Model_2.4_Begin.dgn**).

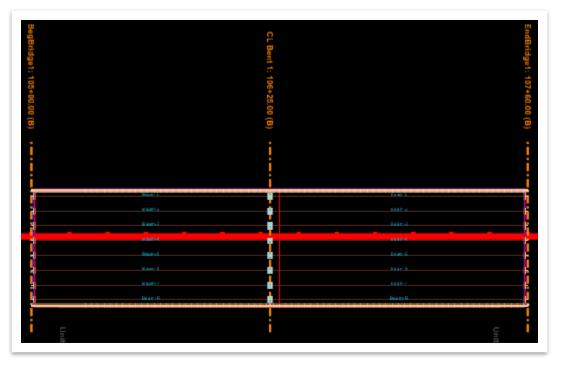
- First, we need to create the beam layout. Open the Beam Layout tool (Open Bridge Modeler >> Home >> Superstructure). Placing the beam layout is required before the 3D beam elements can be placed.
- 2. Notice the cursor prompt: **Select Start Limit Line**. Select **BegBridge1**. Notice the next cursor prompt: **Select End Limit Line**. Select **EndBridge1**.



3. **Data Point** (left click) to accept the Limit Lines and then open the **Beam Layout** window.

- 4. In the **Beam Layout** window, you can modify how the beams will be placed in the model. Go ahead and select the following settings.
 - a. Number Of Beams: 8
 - b. Edge Distance: 3:6. Then ensure Equal Edge Distance is checked and click Apply. Note: The Beam-L and Beam-R will now have a Spacing of 3:6 and -3:6, respectively.
 - c. Same Beam Start/End Values: Uncheck
 - d. Beam Start >> SL Offset: 18"
 - e. Beam End >> SL Offset: -9"
 - f. All settings not explicitly listed can be kept as default.

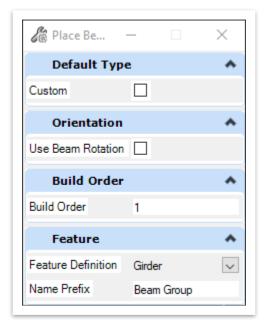
The **Validate** button in the **Beam Layout** window can be used to see a preview of how the proposed beam layout would look in **2D** prior to fully generating the layout. This can help minimize the need to make edits after the beam layout has been created.


- Repeat Step 4 for the second span. Select CL Bent 1 EndBridge1 in the Span section of the Beam Layout window by highlighting the span. The SL offsets will be different for this span so go ahead and select the following settings.
 - a. Beam Start >> SL Offset: 9"
 - b. Beam End >> SL Offset: -18"

Spans					
Default Span	efault Span BegBridge1 - CL Bent 1 *				
Set All To Default					
Show Overhang Lengths (')					
Span	Span				
BegBridge	1 - CL Bent 1				
🕛 CL Bent 1 -	- EndBridge1				

If spans have different numbers of beams, the **Number of Beams** can simply be changed for individual spans. Likewise, this is applicable to any other variable present within the **Beam Layout** window.

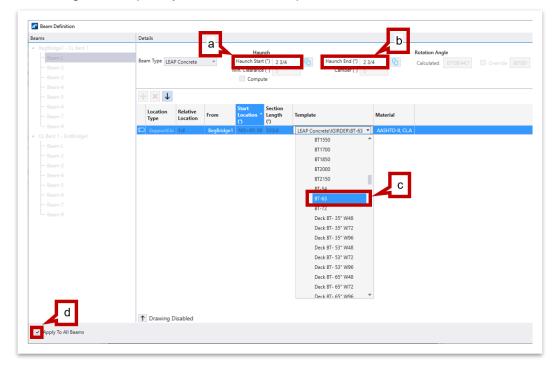
6. Click **Save** at the bottom of the window to place the **Beam Layout** in the model, which is shown below.



2.4.2 Exercise: Model Beams

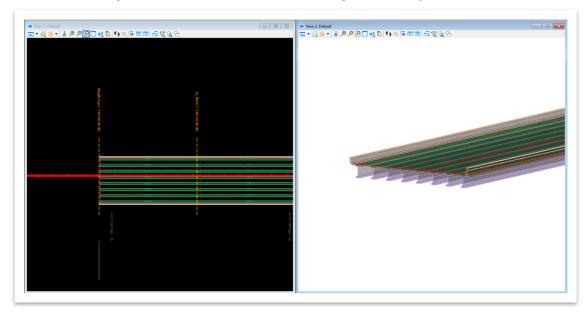
In this exercise, we will use the beam layout created in the previous portion of the exercise to model the beams that are used on the bridge. The beam template that will be used is an existing Bulb-Tee template found in the LEAP Concrete templates. We will continue to utilize the same **TDOT_TR_OBM_Model.dgn** file (or **TDOT_TR_OBM_Model_2.4_Begin.dgn**) from the previous portion of the exercise.

- 1. First, we need to add the actual beams to the bridge. To begin modeling the beams, open the **Place Beam** tool (**OpenBridge Modeler >> Home >> Super structure**).
- 2. In the Place Beam dialog box, ensure that the Feature Definition is set to Girder.



3. Notice the cursor prompt: **Select Beam Layout**. Select the **Beam Layout** by left clicking on it and then data point (left click) to accept the selection. The **Beam Definition** window should open which will allow you to modify the beam properties.

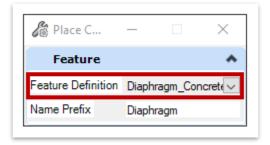
- 4. In the Beam Definition window, select the following settings.
 - a. Haunch >> Haunch Start: 2.75
 - b. Haunch >> Haunch End: 2.75
 - c. Template: I_GIRDER >> BT-63
 - d. Apply To All Beams: Check
 - e. All settings not explicitly listed can be kept as default.

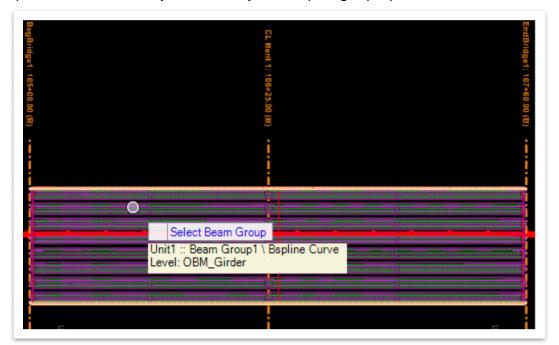


3D BRIDGE MODELING I OpenBridge Modeler | CONNECT Edition NOVEMBER 2022

5. Select **OK** and you should see the **Beam Group** that was just created.

On an actual project, users may not have uniform haunches or beams for all beams on the bridge. In this case, the **Apply To All Beams** option in Step 4 can be toggled off, and each beam's properties can be accessed one at a time by highlighting a specific beam and changing the necessary properties.




2.4.3 Exercise: Add Diaphragms

In this exercise, we will add diaphragms to the bridge model. Because we will be modeling integral abutments that will have their own backwalls, there is no need to place diaphragms at the abutments. We will model concrete diaphragms at third points in each span. The end diaphragm at the intermediate pier will not be modeled. The current version of OBM (10.10) does not allow for an end diaphragm to be applied if they are located beyond the end of the beams. Future versions of OBM will allow for end diaphragms to be applied. We will continue to utilize the same **TDOT_TR_OBM_Model.dgn** file (or **TDOT_TR_OBM_Model_2.4_Begin.dgn**) from the previous portion of the exercise.

- 1. First, we need to create the concrete diaphragms. Open the **Place Diaphragms** tool (**OpenBridge Modeler** >> **Home** >> **Superstructure**).
- 2. In the **Place Concrete Diaphragm** dialog box, ensure that the **Feature Definition** is set to **Diaphragm_Concrete**.

 Notice the cursor prompt: Select Beam Group. Left click to select and then data point (left click) to accept the selection. The Place Diaphragms window should open which will allow you to modify the diaphragm properties.

4. Before adding a section in the **Place Diaphragms** window, update the **Mode** to **Ratio By Span**.

Place Diaphragms									-	
Spans BegBridge1 - CL Bent 1	Details BegBridge	1 - CL Bent 1								
CL Bent 1 - EndBridge1	Defaults									
of the second get	Add Section Mo	ode: Ratio By Span	• L1	L2 L3	ratio of	BegBridge1 -	CL Bent 1	+ +	🗙 Del	ete Selected
	Сору									
									S	TART BEAM
	Name	Location Type	Relative Location	From	Start Distance	Start Beam	End Beam	Thickness (')	Top Vertical (")	Bottom Vertical (")
	4								.,	.,
							Validat		ave	Cancel

- 5. Next, add a new section by clicking on the green plus sign in the **Add Section** area.
- 6. Then update the following properties of the first intermediate diaphragm.
 - a. Relative Location: 0.3333333
 - b. Start Beam Offsets:
 - i. Top Vertical: -3.125
 - ii. Bottom Vertical: 10
 - c. End Beam Offsets:
 - i. Top Vertical: -3.875
 - ii. Bottom Vertical: 10
- 7. Add another section by clicking the green plus sign. Then, update the following properties of the second intermediate diaphragm.
 - a. **Relative Location:** 0.6666667. **Note:** You can enter this value before clicking the **+** in the **Add Section** window.
 - b. Start Beam Offsets:
 - i. Top Vertical: -3.125
 - ii. Bottom Vertical: 10
 - c. End Beam Offsets:
 - i. Top Vertical: -3.875
 - ii. Bottom Vertical: 10

8. Now, all diaphragms in **Span 1** have been added. All properties should now match those shown in the following two images.

Name	Location Type	Relative Location	From	Start Distance	Start Beam	End Beam	Thickness (')
Concrete Dia	Ratio By Span	0.3333333	BegBridge1 - CL Bent 1	105+41.67	Beam-L	Beam-R	1:0
Concrete Dia	Ratio By Span	0.6666667	BegBridge1 - CL Bent 1	105+83.33	Beam-L	Beam-R	1:0

ST	ART BEAM O	FFSETS	E	ND BEAM OF	FSETS		
Top Vertical (")	Bottom Vertical (")	Horizontal (")	Top Vertical (")	Bottom Vertical (")	Horizontal (")	Angle	Material
-3 1/8	10	0	-3 7/8	10	0	00°00'00"	AASHTO-II, CL.A
-3 1/8	10	0	-3 7/8	10	0	00°00'00"	AASHTO-II, CL.A

9. Because the two intermediate diaphragms are also present at the third points in **Span 2**, we can copy over these diaphragms by clicking the **Copy** button.

Spans	Details BegBridge1 - (CL Bent 1		
BegBridge1 - CL Bent 1 CL Bent 1 - EndBridge1	Defaults			
er bent i Endbildger	Add Section Mode:	Ratio By Span	• L	I L2 L3
	Copy			
	Сору			
	Name	Location Type	Relative Location	From
				From BegBridge1 - CL Bent

10. This will open the **Copy Diaphragm** dialog box. Here, checkmark the box next to **CL Bent 1 - EndBridge1** to denote the span that the diaphragms will be copied to. Then, click **Copy**.

🖉 Copy Diaphra	gm	_	×
Copy From BegBrid	dge1 - C	CL Bent 1	
Select All	Select	None	
CL Bent 1 - Er	ndBridg	e1	
			Сору
			50p)

11. A **Warning** window will open stating that copying diaphragms from Span 1 will remove any existing diaphragms in the target span (Span 2). Go ahead and click **Yes** to continue as there are currently no existing diaphragms present that will be deleted.

12. Once copied over to Span 2, click on the Span **CL Bent 1 - EndBridge1** in the **Spans** area of the **Place Diaphragms** window to see that both diaphragms have been copied to the next span.

Spans	Details CL	Bent 1 - End	Bridge1		
BegBridge1 - CL Bent 1 CL Bent 1 - EndBridge1	Defaults				
er bene i enoblinger	Add Section	Mode:	SupportLine	• L1	L2 L3
	X Delete Se	elected			
	Сору				
	Name		Location Type	Relative Location	From
	> Concrete D)iaphragm1	Ratio By Span	0.3333333	CL Bent 1 - EndBridge

If users would like to change the name of a diaphragm from the default **Concrete Diaphragm#,** highlight the diaphragm, as shown above. Then click the cell with the diaphragm's name and type the new desired name into the cell.

13. Once all diaphragms are set up in the **Place Diaphragms** window, click **Save** to generate the concrete diaphragms in the model.

2.5: Model Abutments, Wingwalls, Pier, and Bearings

In the following exercises, we will place abutments at the ends of the bridge, add wingwalls, place a pier, and place bearing pads and bearing seats under the beams created in the previous exercise. For this training, we will be using pre-generated substructure templates.

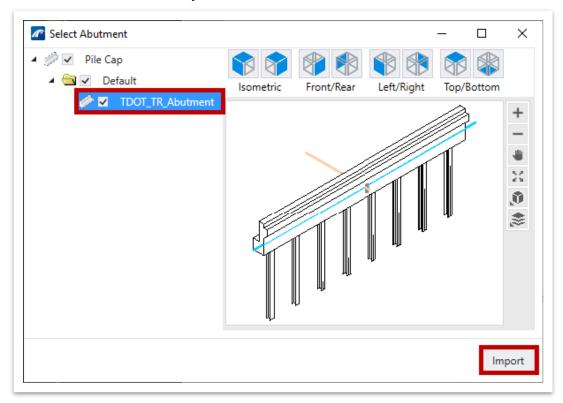
On an actual project, users will have to create project-specific abutment and pier templates within the corresponding template libraries (**OpenBridge Modeler >> Utilities >> Libraries >> Abutments** [or] **Piers)**. Template creation will be covered in additional OBM manuals. There are various provided templates to use as a starting point.

2.5.1 Exercise: Model Abutments

In this exercise, we will use a previously generated abutment template with a corbel (roadway bracket) to place an abutment at each end of the bridge. Although the abutment is structurally integral, we will not select integral as a placement option since in OBM integral is equivalent to embedded. **Note:** Wingwalls and wingbeams will be added to the abutments separately in the next exercise. We will continue to utilize the same **TDOT_TR_OBM_Model.dgn** file (or **TDOT_TR_OBM_Model_2.5_Begin.dgn**).

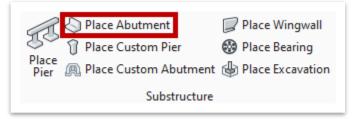
 First, we will import an abutment template that has been pre-modified for the training model. Open the Abutments tool (OpenBridge Modeler >> Utilities >> Libraries). In the Abutment Templates window, click Import.

◇ Decks ☐ Columns Ø Wingwall Notestimate Stiffeners Image: Stiffeners Ø Barriers Ø Piers Ø SleeperSlab Image: Cross Frames Image: Splices Image: Beams Abutments Image: Material Image: Connection Image: Connector Angles
Libraries
Abutment Templates
Selection
Pile Cap
Open Add Edit Copy Delete Import Export
Pile Cap
Stem Wall



 The Import Templates window should open. Navigate to where the dataset files are located and select the SubTemplates_TDOT_TR.xml file and then click Open (C:\ProgramData\Bentley\OpenBridge Designer CE 10.10.20\OpenBridge Modeler\Configuration\WorkSpaces\TDOT_Standards\WorkSets\123456.00_ OBM_TR\Standards\Template Library\TR_OBM_Templates\).

Import Templates $\leftarrow \rightarrow \checkmark \uparrow$ \land Template \land TR_OB	M_Templates	· ق	♀ Search TR_OBM_T
Organize 🔻 New folder			E 🕶 🔟 🕐
Name	Туре	Size	
Deck&Barrier-Templates TDOT_TR.xml SubTemplates_TDOT_TR.xml	XML File XML File	2,438 KB 26 KB	
File <u>n</u> ame:		✓ XML Files (<u>Open</u>	*.xml) V Cancel

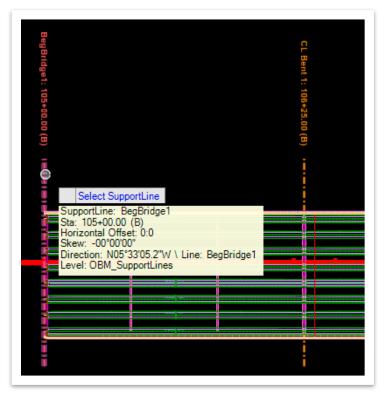

3. The **Select Abutment** window should automatically open. Select the **TDOT_TR_ Abutment** checkbox and click **Import**. The template is now available for use. Close the **Abutment Templates** window.

4. To begin abutment placement, open the **Place Abutment** tool (**OpenBridge Modeler >> Home >> Substructure**).

- 5. In the **Place Abutment** dialog box (see figure on next page), select the following settings.
 - a. **Template Name:** TDOT_TR_Abutment (**Pile Cap >> Default**). **Note:** This is the imported template.
 - b. **Conform BackWall With Deck Top:** Checkmark. This will adjust the height of the backwall to keep it aligned with the top of the deck.
 - c. Orientation: Start. This controls which direction the abutment faces.
 - d. **Cap Length Adjustment:** Aligned. This setting will automatically center the abutment cap on the deck.

If the abutment cap is not centered on the deck, you can keep the **Cap Length Adjustment** as **None** and instead use the **Horizontal Offset** to manually set the horizontal offset from the alignment to the geometric center of the abutment cap.

- e. Cap Material: Concrete >> Substructure Concrete
- f. Pile Material: Steel >> 14 x 73 H Section Piles
- g. Feature Definition: Abutment_steel_piles
- h. All settings not explicitly listed can be kept as default (see figure on next page).



🔏 Place Abutment	- 🗆 X
Solid Placement	^
Template Name	PileCap\TDOT_TR_Abi
Integral	
Horizontal Offset	0:0
Longitudinal Offset	0:0
Apply Skew To Solids	
Conform BackWall With Deck Top	\checkmark
Edit Elevation Constraints	
Orientation	Start 🗸
Cap Length Adjustment	Aligned 🗸
Material	^
Cap Material	Substructure Concrete
Column Material	
Footing Material	
Concrete Pad Material	
Pile Material	14 x 73 H Section Piles
Build Order	^
Pier Cap Build Order	1
Column Build Order	1
Footing Build Order	1
Concrete Pad Build Order	1
Pile Build Order	1
Feature	*
Feature Definition	Abutment_steel_piles
Name Prefix	Abutment

6. Notice the cursor prompt: **Select SupportLine**. Select the **BegBridge1** Support Line in **View 1** (top view) to place the abutment.

7. **Data Point** (left click) in space to confirm placement. **Reset** (right click) to close the **Place Abutment** dialog box and notice that the begin bridge abutment is now visible in both views.

=1.5884 《 - ▲ ● ● 恩 □ 45 (5) (5)	9.9 mm 4 % 9.0		■ Processing 電・200-1まが開発日またりもの言葉的の名を定め。
		Beam-L	
		Beam-2	
		Beam-3	
		Beam-4	
		Beam-5	
		Beam-6 Beam-7	
		Beam-H	
	Un		
	it1		
	Unit1 (Brid		•••••
	ïd		

8. Place the end bridge abutment by repeating Steps 4 – 7 but select the **Orientation** as **End** in Step 5.c and select the **EndBridge1** SupportLine in Step 6.

2.5.2 Exercise: Model Wingwalls

In this exercise, we will use a previously generated wingwall template to place wingwalls on either side of each abutment. We will continue to utilize the same **TDOT_TR_OBM_ Model.dgn** file (or **TDOT_TR_OBM_Model_2.5_Begin.dgn**) from the previous portion of the exercise.

 First, we will import a wingwall template that has been pre-modified for the training model. Open the Wingwall tool (OpenBridge Modeler >> Utilities >> Libraries). In the Wingwall Templates window, click Import.

◇ Decks ▲ Columns ✓ Wingwall ✓ Stiffeners
Libraries
Wingwall Templates
Selection
Wingwall
Open Add Edit Copy Delete Import Export
▶ 💭 Wingwall

 The Import Templates window should open. Navigate to where the dataset files are located and select the SubTemplates_TDOT_TR.xml file and then click Open (C:\ProgramData\Bentley\OpenBridge Designer CE 10.10.20\OpenBridge Modeler\Configuration\WorkSpaces\TDOT_Standards\WorkSets\123456.00_ OBM_TR\Standards\Template Library\TR_OBM_Templates).

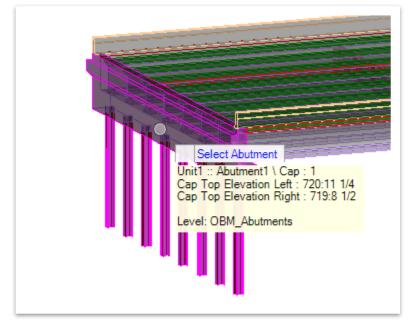
3. The **Select Wingwall** template window should automatically open. Select the **TDOT_TR_Wingwall** checkbox and click **Import**. The template is now available for use. Close the **Wingwall Templates** window.

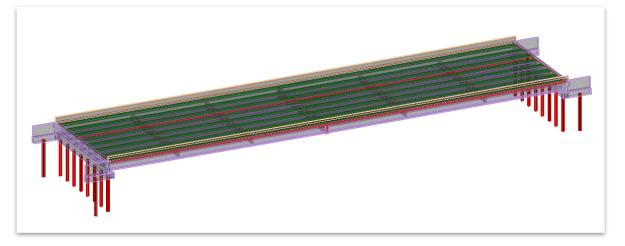
Select Wingwall Wingwall Wingwall Default	- Isometric Front/Rear Left/Right Top/Bottom		×
TDOT_TR_Wingwall			+ - + × 0
		In	nport

4. To begin wingwall placement, open the **Place Wingwall** tool (**OpenBridge Modeler >> Home >> Substructure**).

A	🔄 Place Abutment	🔎 Place Wingwall
300	🕤 Place Custom Pier	🍪 Place Bearing
Place Pier	Place Custom Abutment	💩 Place Excavation
	Substructure	

- 5. In the **Place Wingwall** dialog box (see figure on next page), select the following settings.
 - a. **Place Left Wingwall:** Checkmark. **Note:** When this box is checked, additional options in the **Place Wingwall** dialog box are available.
 - b. Template Name: TDOT_TR_Wingwall (Wingwall >> Default). Note: This is the imported template.
 - c. **Orientation:** Normal/Skewed
 - d. Vertical Offset: 0:0
 - e. Align With Abutment: Checkmark. Note: When this box is checked, additional options become available.
 - f. Align With FFBW: Checkmark
 - g. Skew Angle: 00°00'00"
 - h. All other boxes can remain unchecked for the left wingwall.
 - i. Repeat Steps 5a 5g but for the **Right Wingwall Placement** section.
 - j. Wingwall Material: Concrete >> Substructure Concrete
 - k. Footing Material: Concrete >> Substructure Concrete
 - I. Pile Material: Steel >> 14 x 73 H Section Piles
 - m. Feature Definition: Wingwall_steel_piles
 - n. All settings not explicitly listed can be kept as default (see figure on next page).


🔏 Place Wingwall	– 🗆 X
Left Wingwall Pla	cement 🔺
Place Left Wingwall	
Template Name	StandardWingWall\TD
Orientation	Normal/Skewed 🗸
Vertical Offset	0:0
Align With Abutment	\checkmark
Align With FFBW	\checkmark
Parallel To Alignment	
Skew Angle	00°00''
Adjust Height to Backwall	
Compute Length	
Right Wingwall P	lacement 🔺
Place Right Wingwall	\checkmark
Template Name	StandardWingWall\TD
Orientation	Normal/Skewed 🗸
Vertical Offset	0:0
Align With Abutment	\checkmark
Align With FFBW	\checkmark
Parallel To Alignment	
Skew Angle	00°00''
Adjust Height to Backwall	
Compute Length	
Material	^
Wingwall Material	Substructure Concrete
Footing Material	Substructure Concrete
Pile Material	14 x 73 H Section Piles
Build Order	*
Wingwall Build Order	1
Footing Build Order	1
Pile Build Order	1
Feature	*
	▲ Wingwall_steel_piles


3D BRIDGE MODELING I OpenBridge Modeler | CONNECT Edition NOVEMBER 2022

6. Notice the cursor prompt: **Select Abutment**. Select **Abutment1** to place both the left and right wingwalls. You can use either view to select the abutment.

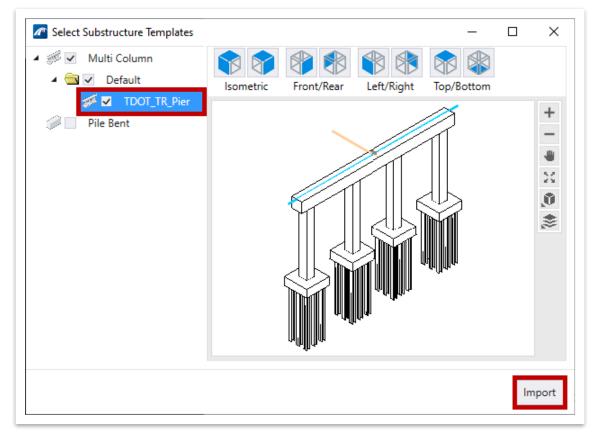
- 7. Data Point (left click) in space to confirm placement.
- 8. Select **Abutment2** to place both the left and right wingwalls for the end bridge abutment.
- 9. When you are finished placing the wingwalls, **reset** (right click) to close the **Place Wingwall** dialog box. The wingwalls at all four bridge corners should be visible.

The unique TDOT wingwall and wingbeam geometry is approximated in the training model. You may notice that the connection between wingbeam and abutment beam has slight discontinuities and the top of the wingwall is modeled as level. Enhancements have been made to future releases of OBM to better accommodate that unique geometry.

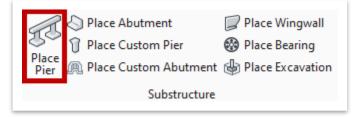
3D BRIDGE MODELING I OpenBridge Modeler | CONNECT Edition NOVEMBER 2022

2.5.3 Exercise: Model a Pier

In this exercise, we will use a previously generated pier template to place a pier. We will continue to utilize the same **TDOT_TR_OBM_Model.dgn** file (or **TDOT_TR_OBM_Model_2.5_Begin.dgn**) from the previous portion of the exercise.


1. First, we will import a pier template that has been pre-modified for the training model. Open the **Piers** tool (**OpenBridge Modeler** >> **Utilities** >> **Libraries**). In the **Pier Templates** window, click **Import**.

 ◇ Decks ☐ Columns ⊘ Barriers ⊘ Piers ⊘ Beams ◇ Abutments 	SleeperSlab	Cross Frames	Julices
	Librari	ies	
Templates			
Selection			
Multi Column			
Open Add Edit	Copy D	elete Import	Export
▶ 🚿 Multi Column			
Pile Bent			


 The Import Templates window should open. Navigate to where the dataset files are located and select the SubTemplates_TDOT_TR.xml file, and then click Open (C:\ProgramData\Bentley\OpenBridge Designer CE 10.10.20\Modeler \Configuration\WorkSpaces\TDOT_Standards\WorkSets\123456.00_OBM_ TR\Standards\Template Library\TR_OBM_Templates).

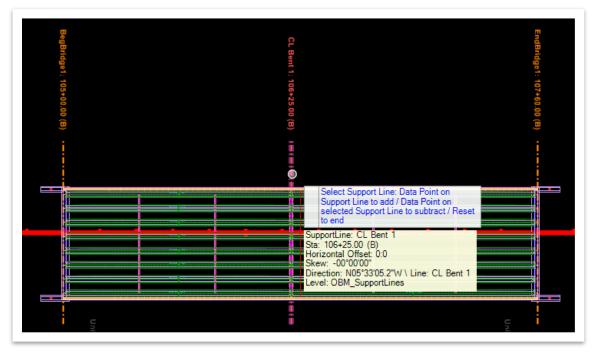
3. The Select Substructure Templates window should automatically open. Select the TDOT_TR_Pier checkbox and click Import. The template is now available for use. Close the Pier Templates window.

4. To begin pier placement, open the **Place Pier** tool (**OpenBridge Modeler** >> **Home** >> **Substructure**).

- 5. In the **Place Pier** dialog box (see figure on next page), select the following settings.
 - a. **Template Name:** TDOT_TR_Pier (**Multi Column >> Default**). **Note:** This is the imported template.
 - b. **Cap Length Adjustment:** Aligned. This setting will automatically center the pier cap on the deck.

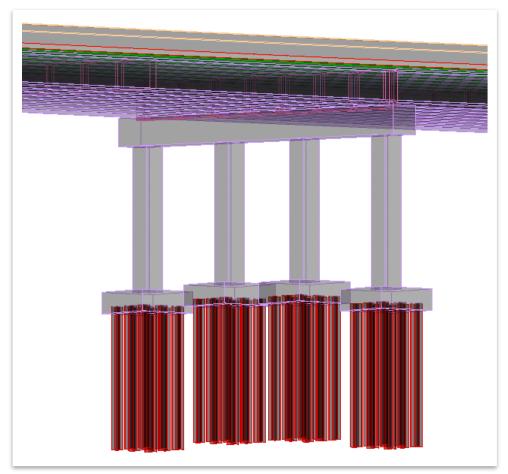
If the pier cap is not centered on the deck, you can keep the **Cap Length Adjustment** as **None** and instead use the **Horizontal Offset** to manually set the horizontal offset from the alignment to the geometric center of the abutment cap.

- c. Cap Material: Concrete >> Substructure Concrete
- d. Column Material: Concrete >> Substructure Concrete
- e. Footing Material: Concrete >> Substructure Concrete
- f. Pile Material: Steel >> 14 x 73 H Section Piles
- g. Feature Definition: Pier_steel_piles
- h. All settings not explicitly listed can be kept as default (see figure on next page).

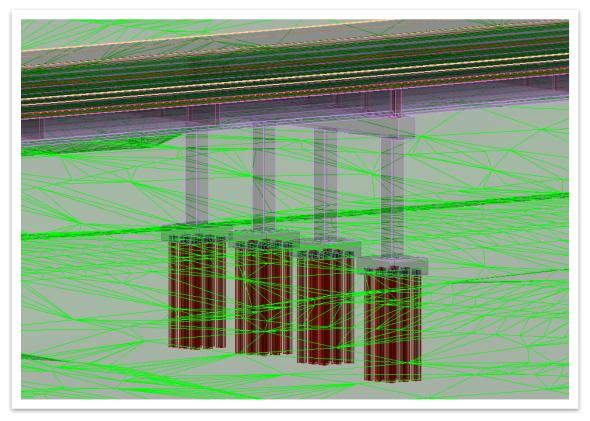


🄏 Place Pier	- 🗆 X
Solid Placement	*
Template Name	MultiColumn\TDOT_TR
Integral	
Horizontal Offset	0:0
Cap Length Adjustment	Aligned 🗸
Edit Elevation Constraints	
Apply Skew To Solids	
Material	*
Cap Material	Substructure Concrete
Column Material	Substructure Concrete
Footing Material	Substructure Concrete
Concrete Pad Material	
Pile Material	14 x 73 H Section Piles
Build Order	*
Pier Cap Build Order	1
Column Build Order	1
Footing Build Order	1
Concrete Pad Build Order	1
Pile Build Order	1
Feature	*
Feature Definition	Pier_steel_piles 🗸 🗸
Name Prefix	Pier

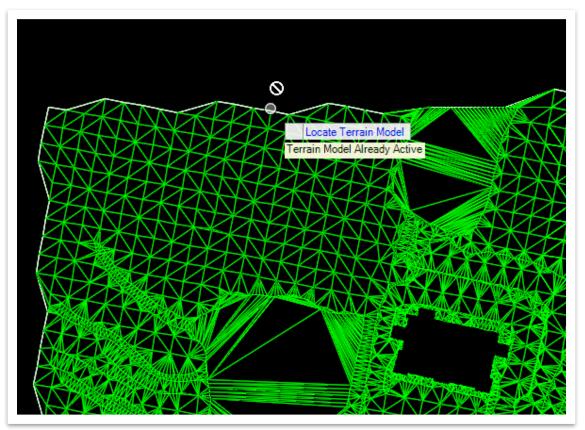
 Notice the cursor prompt: Select Support Line. Select the CL Bent 1 SupportLine in View 1 (top view) to place the pier.



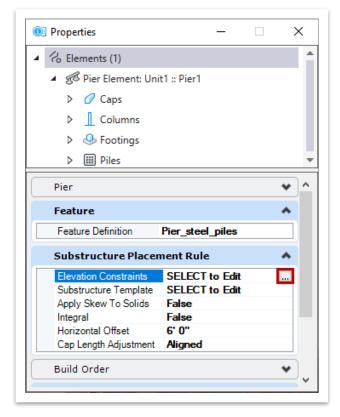
7. **Reset** (right click) in space to end placement. You can place multiple piers at once if needed prior to ending placement. **Data Point** (left click) to continue and confirm entries in the **Place Pier** dialog box.



8. When you are finished placing the pier, **reset** (right click) to close the **Place Pier** dialog box. The pier should be visible. **Note:** There are no riser blocks or bearing pads. These will be added in the next exercise and the substructure elements will shift downward after bearings are placed.


9. Next, let's set the footing elevations to be controlled by the referenced terrain model. Toggle the display on for the **TDOT_TR_Terrain.dgn** reference file and the triangles should appear.

10. The terrain file should be active by default, but if not, open the **Terrain** tool (**OpenBridge Modeler >> Home >> Bridge Setup**) and then select the boundary of the terrain. **Note:** You will need to zoom out to be able to view the boundary. If the terrain model is already active, the cursor prompt will indicate as such.

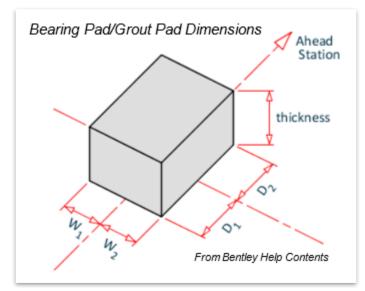

11. Now select the pier and open the **Properties** (**OpenBridge Modeler** >> **Home** >> **Primary**).

12. Click the ellipses next to Elevation Constraints.

13. Select the **Footing** tab. Change the **From DTM** value to **-3:0** and click **Apply To All** and then click OK. This sets the top of the footing elevation three feet below the ground elevations.

	ID	Constrained	Mode	Value
>	1	~	From DTM	-3:0
	2	~	From DTM	-3:0
	3	~	From DTM	-3:0
	4	~	From DTM	-3:0
No	ite: Refe	erence is top of fo	ooting elevation.	

14. Notice the footing elevations were lowered. Go ahead and turn off the **TDOT_TR_ Terrain.dgn** reference file.

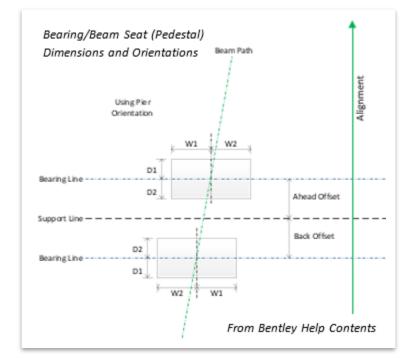

2.5.4 Exercise: Model Bearing Elements

In this exercise, we will place bearing elements at the pier and abutments. We will continue to utilize the same **TDOT_TR_OBM_Model.dgn** file (or **TDOT_TR_OBM_Model_2.5_Begin.dgn**) from the previous portion of the exercise.

1. To begin bearing placement, open the **Place Bearing** tool (**OpenBridge Modeler** >> **Home** >> **Substructure**).

🔗 🖉 Place Abutment	Place Wingwall
Place Custom Pier	😵 Place Bearing
Place Pier 👰 Place Custom Abutmen	t 낭 Place Excavation
Substructure	2

- 2. In the **Place Bearing** dialog box (figure shown after step 2r), select the following settings.
 - a. Bearing Type: Cube. Note: This corresponds to rectangular bearings.
 - b. Cube Width, W: 2:2
 - c. Cube Depth, D: 0:9
 - d. Cube Height: 0:0.5
 - e. Orientation: Girder

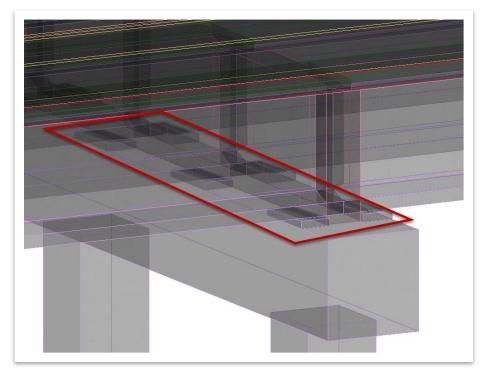


- f. **Has Bearing Seats:** Checkmark. **Note:** When this box is checked, additional options in the **Place Bearing** dialog box are available.
- g. Seat Min. Thickness: 0:3

- h. Seat D1: 0:7.5
- i. Seat D2: 0:7.5
- j. Seat W1: 1:4.5
- k. Seat W2: 1:4.5
- I. Seat Orientation: Pier
- m. Back Offset: -1:4.5
- n. Ahead Offset: 1:4.5

- o. Bearing Material: Miscellaneous >> Neoprene Bearing Pads
- p. Beam Seat Material: Concrete >> Substructure Concrete
- q. Feature Definition: Bearing
- r. All settings not explicitly listed can be kept as default (see figure on next page).

Bearing dimensions, like other bridge elements, can be edited after placement. Each bearing line can have different dimensions if needed.

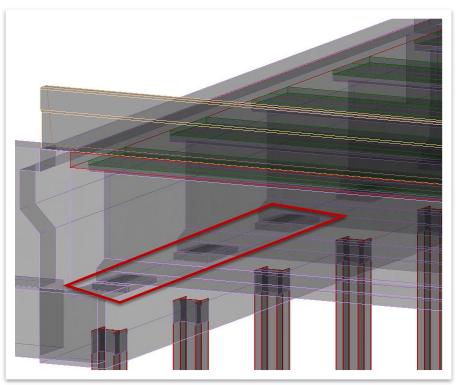

🔏 Place Bearin	- 🗆 X
Bearing	*
Bearing Type	Cube 🗸
Cube Width, W	2:2
Cube Depth, D	0:9
Cube Height	0:0 1/2
Orientation	Girder 🗸
Grout Pad/Beve	l Plate 🔺
Has Pad or Plate	
Bearing Seat	*
Has Bearing Seats	\checkmark
Model Stepped Cap	
Seat Min. Thickness	0:3
Seat D1	0:7 1/2
Seat D2	0:7 1/2
Seat W1	1:4 1/2
Seat W2	1:4 1/2
Seat Orientation	Pier 🗸
Path	*
Back Offset	-1:4 1/2
Ahead Offset	1:4 1/2
Material	*
Pad or Plate Material	
Bearing Material	Neoprene Bearing
Bearing Seat Material	Substructure Coni
Build Order	*
Pad or Plate Build Order	1
Bearing Build Order	1
Beam Seat Build Order	1
Feature	*
Feature Definition	Bearing 🗸
Name Prefix	Bearing

3D BRIDGE MODELING I OpenBridge Modeler | CONNECT Edition NOVEMBER 2022

- 3. Next, select the **CL Bent 1** SupportLine to place the beam risers and bearing pads.
- 4. After the pier SupportLine is selected, you will see a temporary graphic indicating where the bearings will be placed. **Reset** (right click) to end SupportLine selection. **Data Point** (left click) to continue and confirm entries in the **Place Bearing** dialog box. The beam risers (beat seats) and bearing pads should now be visible at the pier. **Note:** You can place multiple bearing lines at once if needed prior to ending placement with a reset. In this case, we will only place the bearings at the pier because the bearings at the abutment have different geometry.

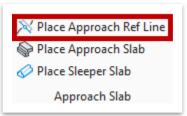
 Now we will place the bearing lines at the abutments. We will place these bearing lines at the same time since the program knows which end bent is begin and which is end. Open the Place Bearing tool once again (OpenBridge Modeler >> Home >> Substructure).

- 6. In the **Place Bearing** dialog box (see figure on next page), select the following settings.
 - a. Bearing Type: Cube
 - b. Cube Width, W: 2:2
 - c. Cube Depth, D: 0:9
 - d. Cube Height: 0:0.5
 - e. Orientation: Girder
 - f. **Has Bearing Seats:** Checkmark. **Note:** When this box is checked, additional options in the **Place Bearing** dialog box are available.
 - g. Seat Min. Thickness: 0:3
 - h. Seat D1: 0:11.5
 - i. Seat D2: 0:9.5
 - j. Seat W1: 1:4.5
 - k. Seat W2: 1:4.5
 - I. Seat Orientation: Pier
 - m. Back Offset: -2:3.5
 - n. Ahead Offset: 2:3.5
 - o. Bearing Material: Miscellaneous >> Neoprene Bearing Pads
 - p. Beam Seat Material: Concrete >> Substructure Concrete
 - q. Feature Definition: Bearing


Place Bearin	- 🗆 X
Bearing	^
Bearing Type	Cube 🗸
Cube Width, W	2:2
Cube Depth, D	0:9
Cube Height	0:0 1/2
Orientation	Girder 🗸
Grout Pad/Beve	l Plate 🔺
Has Pad or Plate	
Bearing Seat	*
Has Bearing Seats	\checkmark
Model Stepped Cap	
Seat Min. Thickness	0:3
Seat D1	0:11 1/2
Seat D2	0:9 1/2
Seat W1	1:4 1/2
Seat W2	1:4 1/2
Seat Orientation	Pier 🗸
Path	^
Back Offset	-2:3 1/2
Ahead Offset	2:3 1/2
Material	*
Pad or Plate Material	
Bearing Material	Neoprene Bearing
Bearing Seat Material	Substructure Con
Build Order	*
Pad or Plate Build Order	1
Bearing Build Order	1
Beam Seat Build Order	1
Feature	^
Feature Definition	Bearing 🗸
Name Prefix	Bearing

3D BRIDGE MODELING I OpenBridge Modeler | CONNECT Edition NOVEMBER 2022

- 7. Next, select the **BegBridge1** and **EndBridge1** SupportLines to place the beam risers and bearing pads at both locations.
- After the abutment SupportLines are selected, you will see temporary graphics indicating where the bearings will be placed. Reset (right click) to end SupportLine selection. Data Point (left click) to continue and confirm entries in the Place Bearing dialog box. Beam risers (beat seats) and bearing pads should now be visible at <u>both</u> abutments.

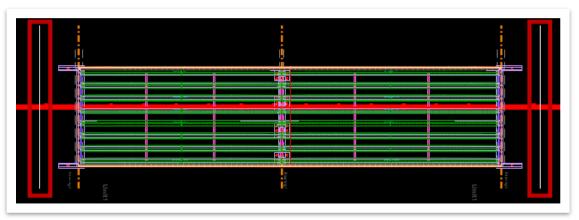

2.6: Model Approach Slabs with Barriers and Sleeper Slabs

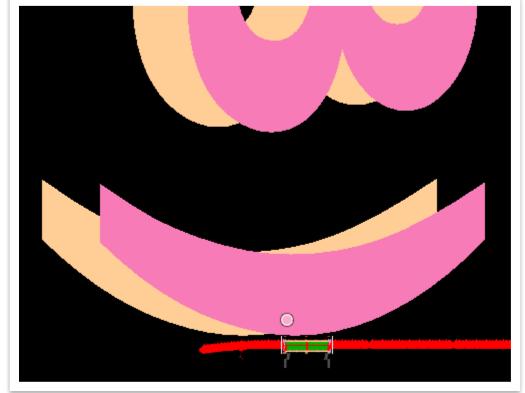
In the following exercises, we will place approach slabs (Reinforced Concrete Pavement at Bridge Ends) with barriers at either end of the bridge. We will then add a sleeper slab (footing) at the roadway side of the approach slabs. For this training, we will be using pregenerated approach slab (deck) templates. See 2.3.2 Exercise for information on how to create a deck template. Note that the nomenclature used for Reinforced Concrete Pavement at Bridge Ends will be "approach slab" in this exercise to match the software.

2.6.1 Exercise: Model Approach Slab with Barriers

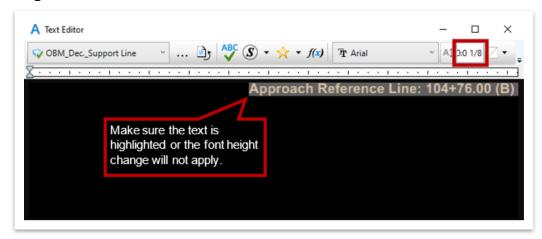
In this exercise, we will use previously generated approach slab (deck) templates to model approach slabs with barriers at either end of the bridge. We will continue to utilize the same **TDOT_TR_OBM_Model.dgn** file (or **TDOT_TR_OBM_Model_2.6_Begin**.**dgn**).

 The first step in creating an approach slab is to place an approach ref line to indicate where the approach slab begins (at begin bridge) or ends (at end bridge). Open the Place Approach Ref Line tool (OpenBridge Modeler >> Home >> Approach Slab).


- In the Place Approach Reference Line dialog box (see figure on next page), select the following settings. Note: You will notice in plan view that as the data is entered, a temporary graphic where the reference line will be placed will be visible in View 1 (top view).
 - a. Skew Angle: Checkmark (00°00'00")
 - b. Length: Checkmark (100:0)
 - c. Offset From SupportLine: Checkmark (24:0)
 - d. Location: Start
 - e. Direction Mode: Skew
 - f. **Feature Definition:** No Feature Definition. **Note:** A feature definition for approach slab reference lines will be added in future TDOT workspaces.
 - g. All settings not explicitly listed can be kept as default (see figure on next page).


+	🔏 Place Approach Refere	– 🗆 X
	Main	~
	Skew Angle	00°00'00''
	🗹 Length	100:0
	Horizontal Offset	0:0
	Offset From SupportLine	24:0
	Location	Start 🗸
	Direction Mode	*
	Direction Mode	Skew
	Feature	*
	Feature Definition	No Feature Definition
	Name Prefix	Approach Reference Line
Bearing2	Uni	

- 3. Next, **data point** (left click) in space to confirm location. **Data Point** (left click) again to continue and confirm entries in the **Place Approach Reference Line** dialog box.
- 4. In the **Place Approach Reference Line** dialog box, change the **Location** to **End** and **data point** (left click) to confirm location and then again to confirm entries. There will now be approach slab reference lines at both ends of the bridge. **Reset** (right click) to close the dialog box.

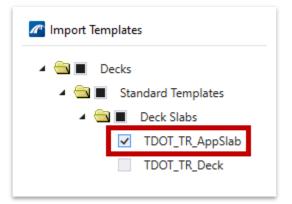


- 5. Notice that the approach slab reference line color is white (default level) and the text for the approach slab reference line is extremely large. These will be adjusted in future TDOT OBM workspace feature definitions. For this class, we will keep the default level but adjust the text.
 - a. In **View 1**, double click one of the two large lines of text. Then click the text again to open the **Text Editor**.

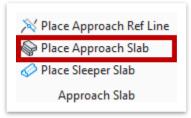
b. In the **Text Editor**, make sure the text is highlighted and change the **Font Height** to **0:0.125** and click enter or tab.

- 6. Repeat Step 5 for the other approach slab reference line text. Once updated, there should no longer be excessively large text for either.
- Now we will import an approach slab template that has been pre-modified for the training model. Open the Decks tool (OpenBridge Modeler >> Utilities >> Libraries). In the Template Creation - templates.xml window, click Import.

Decks Columns Columns	SleeperSlab	🔀 Cross Frames 褑 Splices	
Libraries			
Template Creation - templates.xml			
😑 🔁 🛃		Z° ⊨4 X- \$+ ‡ XA \$A :	#√⊟
	k (9 🔄 - 9, 🕅 🖽 🖂 🖻	A


8. The Import Templates window should open. Navigate to where the dataset files are located and select the Deck&Barrier-Templates_TDOT_TR.xml file, and then click Open (C:\ProgramData\Bentley\OpenBridge Designer CE 10.10.20\ OpenBridge Modeler\Configuration\WorkSpaces\TDOT_Standards\Work Sets\123456.00_OBM_TR\Standards\TemplateLibrary\TR_OBM_ Templates).

← → · ↑ <mark>·</mark> « Template » TR_OE	3M_Templates	~ Ō		DBM_T.
Organize 👻 New folder				
Name	Туре	Size		
Deck&Barrier-Templates_TDOT_TR.xml	XML File	2,43	8 KB	
SubTemplates_TDOT_TR.xml	XML File	20	6 KB	
File <u>n</u> ame:		V XML F	iles (*.xml)	~

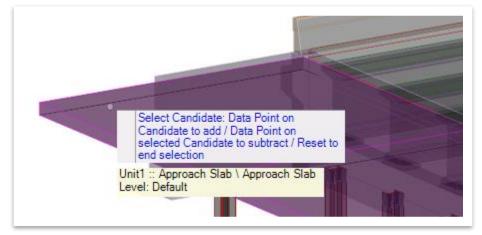


 The Import Templates window should automatically open. Select the TDOT_TR_ AppSlab checkbox and click Import. The template is now available for use. Click Close to close the Template Creation window.

10. To begin approach slab placement, open the **Place Approach Slab** tool (**Open Bridge Modeler >> Home >> Approach Slab**).

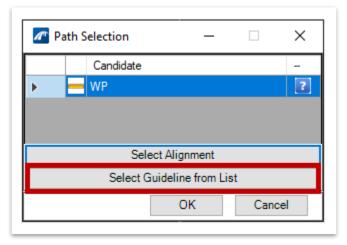
- 11. In the **Place Approach Slab** dialog box (see figure on next page), select the following settings.
 - a. Location: Start
 - b. **Template Name:** TDOT_TR_AppSlab (**Standards Templates >> Deck Slab**). **Note:** This is the imported template.
 - c. Approach Slab Material Name: Deck Concrete
 - d. **Feature Definition:** No Feature Definition. **Note:** A feature definition for approach slabs will be added in future TDOT workspaces.
 - e. All settings not explicitly listed can be kept as default (see figure on next page).

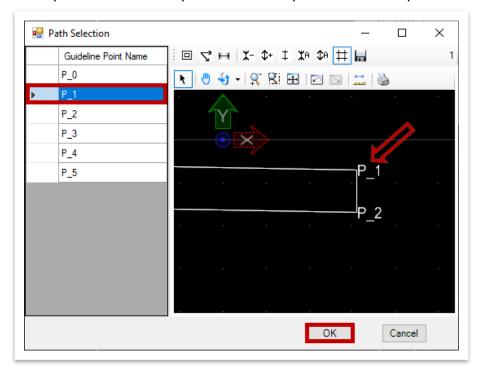
🔏 Place Approach Slab	- 🗆 X
Approach Slab	*
Location	Start 🗸
Sync With Deck	
Template Name	TDOT_TR_AppSla
Start Station Offset	0:0
End Station Offset	0:0
Horizontal Offset	0:0
Start Vertical Offset	0:0
End Vertical Offset	0:0
Add Constraints	
Chord Tolerance	0.1000000
Max Dist Between Sections	3:3 3/8
Sleeper Slab	
Material	*
Approach Slab Material Name	Deck Concrete
Build Order	*
Build Order	1
Feature	^
Feature Definition	No Feature Definitior
Name Prefix	Approach Slab


- 12. Now **data point** (left click) in space to confirm entries in the **Place Approach Slab** dialog box.
- 13. Place the <u>end</u> approach slab by opening the **Place Approach Slab** tool once again (**Open Bridge Modeler >> Home >> Approach Slab**) and changing the **Location** to **End**.
- 14. Next, we need to add barriers to the approach slab. Open the Place Barrier tool (OpenBridge Modeler >> Home >> Accessory). In the Place Barrier dialog box (see figure on next page), select the following settings to place a barrier on the <u>right</u> side of the <u>begin</u> bridge approach slab. Note: By default, the last settings used will be selected initially.
 - a. **Template Name:** STD-1-1SS_RT_SingleSlopeParapet
 - b. **Start Station Offset:** 11:6. This controls where the barrier starts in relation to the start of the approach slab. Positive is upstation and negative is backstation.
 - c. End Station Offset: 0:0. This controls where the barrier ends in relation to the end of the approach slab. Positive is upstation and negative is backstation.
 - d. **Horizontal Offset:** 0:3.5. This controls where the Working Point (**WP**) of the barrier is in relation to the candidate (approach slab). Since the approach slab ends at the wingwall but the barrier is on the wingwall, a positive value (to the right) is required to have the WP outside of the candidate.
 - e. Barrier Material: Traffic Barrier
 - f. Feature Definition: Barrier
 - g. All settings not explicitly listed can be kept as default (see figure on next page).

🄏 Place Barrier	- [\times
Barrier			*
Template Name	STD-1-1	SS_RT	<u>!</u>
Start Station Offset	11:6		
End Station Offset	0:0		
Horizontal Offset	0:3 1/2		
Vertical Offset	0:0		
Material			*
Barrier Material	Traffic B	amier	
Solid Placement			*
Chord Tolerance	0.10000	00	
Max Dist Between Sections	16:4 7/8		
Template Orientation	Vertical		\sim
End Cut Orientation	Follow S	kew	\sim
Build Order			*
Barrier Build Order	1		
Feature			*
Feature Definition	Barrier		\sim
Name Prefix	Barrier		

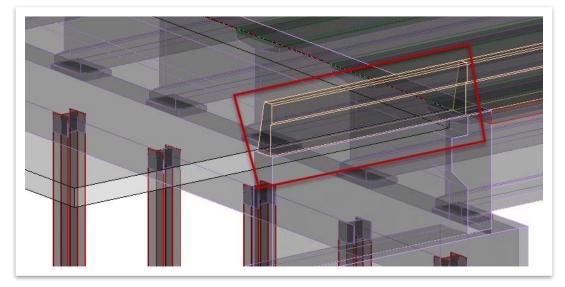
15. Notice the cursor prompt: **Select Candidate**. Select the <u>begin</u> bridge approach slab (in either view) as the candidate. The approach slab should be highlighted. **Reset** (right click) to end selection and **data point** (left click) to continue.

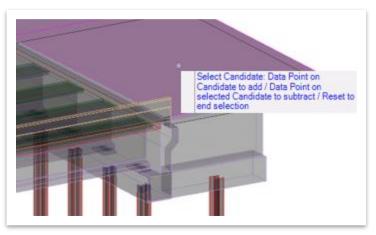




When the message reads **Reset to end selection**, you can select multiple candidates. You can use this to add barriers to multiple decks/approach slabs at once but would need to adjust the properties after placement.

16. The **Path Selection** dialog box should open automatically. Click **Select Guideline from List** to select which point on the approach slab template will be used as the control point for the horizontal (and vertical) offset values entered.


17. Another **Path Selection** dialog box should open. Select **P_1** as the **Guideline Point Name**, which corresponds with the top right edge of the approach slab. You can zoom in and out of the graphical display of the selected template to confirm which point name corresponds to which point on the template. Click **OK**.



18. Click **OK** on the previous **Path Selection** dialog box to finalize the selection. The barrier will now be visible.

- 19. Open the **Place Barrier** tool once again (**OpenBridge Modeler** >> **Home** >> **Accessory**). In the **Place Barrier** dialog box, select the following settings to place a barrier on the <u>right</u> side of the <u>end</u> bridge approach slab.
 - a. Template Name: 1SS_RT_SingleSlopeParapet
 - b. Start Station Offset: 0:0
 - c. End Station Offset: -11:6
 - d. Horizontal Offset: 0:3.5
 - e. Barrier Material: Traffic Barrier
 - f. Feature Definition: Barrier
- 20. Notice the cursor prompt: **Select Candidate**. Select the <u>end</u> bridge approach slab (in either view) as the candidate. The approach slab should be highlighted. **Reset** (right click) to end selection and **data point** (left click) to continue.

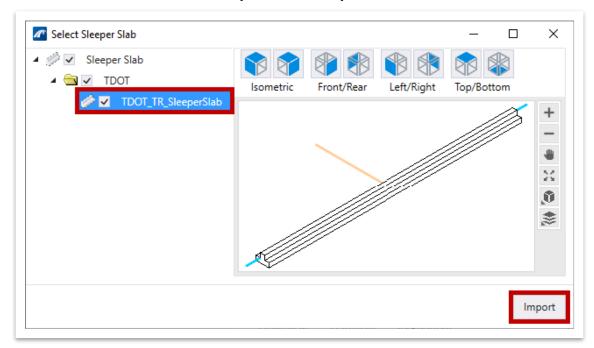
- 21. The **Path Selection** dialog box should open automatically. Click **Select Guideline from List**.
- 22. Another **Path Selection** dialog box should open. Select **P_1** as the **Guideline Point Name**, which corresponds with the top right edge of the approach slab. Click OK.
- 23. Click **OK** on the previous **Path Selection** dialog box to finalize the selection. The barrier will now be visible.
- 24. Open the **Place Barrier** tool once again (**OpenRoads Modeler** >> **Home** >> **Accessory**). In the **Place Barrier** dialog box, select the following settings to place a barrier on the <u>left</u> side of the <u>begin</u> bridge approach slab.
 - a. Template Name: 1SS_LT_SingleSlopeParapet
 - b. Start Station Offset: 11:6
 - c. End Station Offset: 0:0
 - d. Horizontal Offset: -0:3.5. Note: A negative offset indicates to the left.
 - e. Barrier Material: Traffic Barrier
 - f. Feature Definition: Barrier
- 25. Select the <u>begin</u> bridge approach slab (in either view) as the candidate. The approach slab should be highlighted. **Reset** (right click) to end selection. **Data point** (left click) to continue.
- 26. The **Path Selection** dialog box should open automatically. Click **Select Guideline from List**.
- 27. Another **Path Selection** dialog box should open. Select **P_5** as the **Guideline Point Name**, which corresponds with the top <u>left</u> edge of the approach slab. Click **OK**.
- 28. Click **OK** on the previous **Path Selection** dialog box to finalize the selection. The barrier will now be visible.
- 29. Open the **Place Barrier** tool once again (**OpenBridge Modeler** >> **Home** >> **Accessory**). In the **Place Barrier** dialog box, select the following settings to place a barrier on the <u>left</u> side of the <u>end</u> bridge approach slab.
 - a. **Template Name:** 1SS_LT_SingleSlopeParapet
 - b. Start Station Offset: 0:0
 - c. End Station Offset: -11:6
 - d. Horizontal Offset: -0:3.5. Note: A negative offset indicates to the left.
 - e. Barrier Material: Traffic Barrier
 - f. Feature Definition: Barrier

- 30. Select the <u>end</u> bridge approach slab (in either view) as the candidate. The approach slab should be highlighted. **Reset** (right click) to end selection. **Data point** (left click) to continue.
- 31. The **Path Selection** dialog box should open automatically. Click **Select Guideline from List**.
- 32. Another **Path Selection** dialog box should open. Select **P_5** as the **Guideline Point Name**, which corresponds with the top <u>left</u> edge of the approach slab. Click **OK**.
- 33. Click **OK** on the previous **Path Selection** dialog box to finalize the selection. The barrier will now be visible.

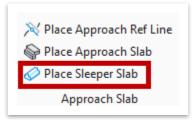
You may notice the barriers are not modeled directly on top of the wingwall. This is due to the wingwalls being modeled as level. As discussed in previous exercises, upcoming enhancements to OBM will allow for a more accurate representation of TDOT bridge geometry.

2.6.2 Exercise: Model Sleeper Slabs

In this exercise, we will use previously generated sleeper slab (footing) templates to model sleeper slabs at the roadway end of the approach slabs. We will continue to utilize the same **TDOT_TR_OBM_Model.dgn** file (or **TDOT_TR_OBM_Model_2.6_Begin**.**dgn**) from the previous portion of the exercise.


 First, we will import a sleeper slab template that has been pre-modified for the training model. Open the SleeperSlab tool (OpenBridge Modeler >> Utilities >> Libraries). In the Sleeper Slab Templates window, click Import.

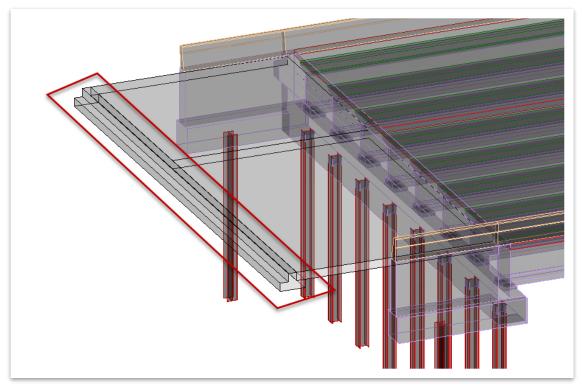
Oecks Columns	the second se		-
🗍 Beams 🖉 Abutments			
	Libra	aries	
🎢 Sleeper Slab Templates			
Selection			
Sleeper Slab			
Open Add Edit		Delete Import	Export
Sleeper Slab			-



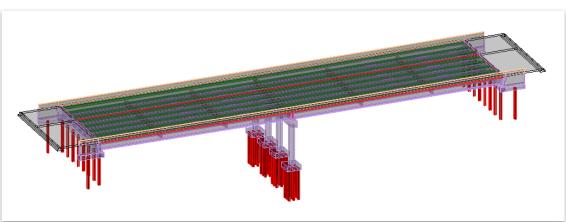
- The Import Templates window should open. Navigate to where the dataset files are located and select the SubTemplates_TDOT_TR.xml file, and then click Open (C:\ProgramData\Bentley\OpenBridge Designer CE 10.10.20\Open Bridge Modeler\Configuration\WorkSpaces\TDOT_Standards\WorkSets\123 456.00_OBM_TR\Standards\Template Library\TR_OBM_Templates\).
- 3. The **Select Sleeper Slab** window should automatically open. Select the **TDOT_TR_SleeperSlab** checkbox and click **Import**. The template is now available for use. Close the **Sleeper Slab Templates** window.

4. To begin sleeper slab placement, open the **Place Sleeper Slab** tool (**OpenBridge Modeler >> Home >> Approach Slab**).

- 5. In the **Place Sleeper Slab** dialog box, select the following settings (see figure on next page).
 - a. **Place Start Sleeper Slab:** Checkmark. **Note:** When this box is checked, additional options in the **Place Sleeper Slab** dialog box are available.
 - b. **Template Name:** TDOT_TR_SleeperSlab (**Sleeper Slab >> TDOT**) **Note:** This is the imported template.
 - c. **Sleeper Length Adjustment:** Aligned. This setting will automatically center the sleeper slab on the deck.
 - d. **Place End Sleeper Slab:** Checkmark. **Note:** When this box is checked, additional options in the **Place Sleeper Slab** dialog box are available.
 - e. **Template Name:** TDOT_TR_SleeperSlab
 - f. Sleeper Length Adjustment: Aligned
 - g. Material Name: Deck Concrete
 - h. **Feature Definition:** No Feature Definition. **Note:** A feature definition for sleeper slabs will be added in future TDOT workspaces.
 - i. All settings not explicitly listed can be kept as default (see figure on next page).



🔏 Place Sleeper Slab	- 🗆 X
Placement of Start Sleeper S	Slab 🔺
Place Start Sleeper Slab	\checkmark
Template Name	TDOT_TR_SleeperSlab
Horizontal Offset	0:0
Longitudinal Offset	0:0
Conform Back Wall With Approach Top	
Conform With Approach Bottom	
Edit Elevation Constraints	
Sleeper Length Adjustment	Aligned 🗸
Apply Skew To Solids	
Placement of End Sleeper Sl	ab 🔺
Place End Sleeper Slab	
Template Name	TDOT_TR_SleeperSlab
Horizontal Offset	0:0
Longitudinal Offset	0:0
Conform Back Wall With Approach Top	
Conform With Approach Bottom	
Edit Elevation Constraints	
Sleeper Length Adjustment	Aligned 🗸
Apply Skew To Solids	
Material	*
Material Name	Deck Concrete
Build Order	*
Build Order	1
Feature	*
Feature Definition	No Feature Definition
Name Prefix	Sleeper Slab



6. Now **data point** (left click) in space to confirm start sleeper slab entries. **Data point** (left click) in space again to confirm end sleeper slab entries. Sleeper slabs at both ends of the approach slabs should be visible.

7. The full bridge model is now complete and can be referenced in the overall roadway model to complete the corridor. The model can now be used for a variety of advanced features, including quantity reports, elevation reports, clash detection, dynamic plans production, rebar modeling, digital twin asset management and more!

Be on the lookout for future TDOT OBM manuals for additional exercises and details!

