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Executive Summary 

Central and eastern North America (CENA) is considered to be a moderately active 

region, but it suffers from a lack of recorded earthquakes in the magnitude-distance range of 

engineering interest. In this report, region-specific synthetic strong ground motion time histories 

are generated using a new and improved stochastic summation of Green's functions method 

(SSGFM) for CENA. In addition, the synthetics are used to develop ground motion prediction 

equations (GMPEs) for this region. 

For simulating large earthquakes, considering the effects of finite-fault rupture such as 

rupture propagation, asperities, and fault-site geometry (saturation effect) are significant and 

influential. The SSGFM is a straightforward approach in which the effect of rupture propagation 

is stochastically considered by summation over many lagged small earthquakes, without 

requiring any detailed information about the rupture process such as rise time, slip distribution, 

rupture speed, and dimensions of the fault. The summation procedure is defined to match the 

spectrum of the target event satisfying the scaling law of the source spectra. The effect of 

asperities on waveforms is brought into play by using a two-stage summation scheme through 

simulations. Since the concept of the source in the SSGFM developed in this report is point 

source, the distance defined in its framework is the distance between the site and an equivalent 

point source, called effective distance, in which the impact of the propagation path on seismic 

waves radiated from different parts of the fault is considered. However, motions come from 

different parts of the fault rupture in the extended source model, not a single point.  

This research will improve the SSGFM to convert the effective distance to the Joyner-

Boore distance, which is one the most-used distance metrics in the engineering and seismology 

fields, for a given fault size within a region with given geometrical spreading and attenuation 

functions. Further, this research will improve the summation scheme of the SSGFM to define the 

source spectrum of large earthquakes with double-corner frequency models. 
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1. Introduction 

 Introduction 

Near source and large-magnitude recordings of ground motions are of great interest to 

both seismologists and engineers, particularly for performing site-specific or regions-specific 

probabilistic seismic hazard assessment (PSHA). For instance, engineers use strong ground 

motion time histories to design important or irregular structures such as long-span bridges, 

liquefied natural gas tanks, and high-rise buildings to be able to withstand a possible damaging 

high magnitude earthquake (e.g., Haji-Soltani, 2017; Haji-Soltani and Pezeshk, 2017). In 

nonlinear dynamic structural analysis and performance-based design, a large number of input 

ground motions is required to determine the response of the structure. To modify recorded time 

histories to be representative of the target analysis condition, different methods such as spectral 

matching and ground motion scaling can be employed (Shahbazian and Pezeshk, 2010; 

Rezaeian, 2010; Yamamoto and Baker, 2013). The main shortcoming of these modifications is 

that they can intensively change the characteristics of the recorded time histories; and as a result, 

the response of the structure could be distorted (Luco and Bazzurro, 2007). Therefore, generating 

realistic synthetic time histories that have similar features of actual recorded time histories can be 

considered as an alternative approach of great need. Moreover, simulated time histories for 

regions of low seismicity with sparse large magnitude-close distance recordings are essential to 

develop ground motion prediction equations (GMPEs) (e.g., Tavakoli and Pezeshk, 2005; 

Pezeshk et al., 2011, Pezeshk, et al., 2015, Shahjouei and Pezeshk, 2016; Pezeshk et al. 2018a). 

GMPEs have relatively simple functional forms to predict median ground motion intensity 

measures (GMIMs) using input parameters such as magnitude, distance, and local site 

conditions. This can happen for tectonically active areas such as California, Japan, Turkey, or 

Iran (e.g., Boore et al., 2014; Campbell and Bozorgnia, 2014; Sedaghati and Pezeshk, 2016a; 

Sedaghati and Pezeshk, 2016b; Sedaghati and Pezeshk, 2017) where there are plenty of strong 

ground motion data. However, empirical methods alone cannot be used to develop GMPEs that 

are valid for moderate-to-large magnitudes for regions with limited strong ground-motion data. 

An example of such regions is central and eastern North America (CENA), which is a stable 
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continental regime with abundant recordings of ground motions from mainly distant small- and 

moderate-magnitude events, but with limited ground-motion recordings from large-magnitude 

earthquakes.  

In this study, we develop improved procedures that can use either observed small to 

moderate earthquakes considered as empirical Green’s functions (EGFs) or synthetic weak 

motions to synthesize large-magnitude earthquakes. As an application of these procedures, we 

apply them to simulate strong ground motion time histories within CENA. To this end, the 

stochastic summation of Green’s function method (SSGFM) is implemented. This report 

provides improvements over existing methodologies, which will be explained later in detail. In 

the SSGFM, a specific number of small earthquakes are scaled, shifted, and then added together 

to construct three-component broadband time histories for a large target earthquake. The scaling 

factor normalizes the input motion to the unit excitation. Then, the number of required input 

motions to add and the delay times are defined to satisfy the scaling law of the source spectra. 

This summation scheme is called stochastic summation since no detailed information about the 

fault such as the geometry, location of the hypocenter, slip distribution, or rise time is required. 

The required input parameters for this approach are only values of the stress drop and the 

moment magnitude of both target and small events.   

The uncertainty of modeling path and site effects can be removed by using observed 

small earthquakes acting as EGFs. In seismology and earthquake engineering, ground motion 

recordings carry the information and details about the source, path, and site. If an earthquake is 

small in magnitude, the source approximately acts as an impulsive force; and therefore, the 

observed recording is called an EGF. In fact, EGFs contain the impacts of the propagation path 

(including geometrical spreading and attenuation) as well as the local site (amplification and 

near-site distance independent) on radiated seismic waves (Hartzell, 1978; Wu, 1978). Green’s 

functions describe the response of the Earth as the displacement (velocity, or acceleration) 

observed at the site of interest because of a point force applying at the source. Having the source 

time function, the displacement at the site of interest can be obtained by convolving the source 

time function with the Green’s function (Aki and Richards, 2002; Frankel, 2017). The elastic 

displacement at an observation point, time t, and distance x, u(x, t), due to a displacement 

discontinuity, u(ξ, τ), over a surface Σ where ξ is a point on the fault and τ is the rupture time, can 

be expressed as (Aki and Richard, 2002) 
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 ( )( , ) ( , ) ( , ; , )U x t c u GF x t vd dξ τ ξ τ τ
∞

−∞ Σ

= Σ∫ ∫   (1-1) 

where c is the elastic constants, GF is the Green’s function, and v is the unit normal to the fault 

surface. In the far-field, this integral then can be expressed as 

 
0

0

( , ) ( ; , )* ( , ; , )
W

L
U x t D t y z GF x t y z d ydz= ∫ ∫    (1-2) 

in which (y, z) are a point on the fault plane, L is the length of the fault, and W is the width of the 

fault. D is the slip time function, dot represents its differentiation with time, and * represents the 

convolution operator. Therefore, the total displacement can be obtained from the convolution of 

the slip velocity time function with the Green’s function in the time domain. If the earthquake 

dimension is much smaller than the wavelength of interest, or the source-to-site distance is much 

longer than the wavelength of interest, then fault is considered as a point and thus the above-

mentioned integral can be rewritten as 

 ( , ) ( )* ( , )U x t D t GF x t=    (1-3) 

The large earthquake with a huge rupture area can be broken into small subfaults (m elements 

along the length and n elements along the width) considered as point sources, and the ground 

motion can be obtained from (Frankel, 2017) 

 
1 1

( , ) ( )* ( , )
m n

ij ij
i j

U x t D t T GF x t T
= =

= − −∑∑    (1-4) 

in which Tij accounts for the delay between different subfaults because of the rupture propagation 

and different distance of site to subfaults. 

 Background 

There are several approaches that aim to generate accurate and realistic large magnitude 

ground motions at a given site. These approaches are generally classified as deterministic or 

physics-based, stochastic, and hybrid (Ólafsson et al., 2001; Douglas and Aochi, 2008) which are 

explained in more detail in the following pages. It should be emphasized that the intent of these 

methods is not to generate synthetic time histories to fit recorded time histories in every detail 
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and wiggle for wiggle, but to capture realistic features and characteristics of the observed time 

histories.   

Two source models are defined in synthesizing ground motions: the point-source model 

and the finite-fault source model. In the point-source model, the distance between the site and 

source is sufficiently long, compared to the size of the fault, to consider the fault as a point 

source. Thus, seismic waves are effectively radiated from a single point in which the source-to-

site distance and radiation angle are clearly defined. In this case, the form of the ωn spectrum 

(e.g., ω-square or ω-cube models) can accurately mimic the slip velocity function. The seismic 

moment and corner frequency (or stress drop) are the only two parameters required to have the 

shape of source spectrum. However, in the near-field region particularly for large magnitude 

earthquakes, the single point-source turns into a finite-fault rupture in which the effects of 

rupture propagation, asperities, directivity, source-to-site geometry, saturation (source-to-site 

distance), hanging wall, and fling step should be considered. In the finite-fault model, the slip 

initiates due to a shear dislocation at a specific point, called the hypocenter, and spreads out 

within the fault at a particular rate, called rupture velocity. Thus, the rupture time is the time 

needed for the rupture to propagate across the entire fault. Each point on the fault begins to slip 

once the rupture front arrives at that point, and the time required for that point to obtain the 

complete slip is called the rise time. Asperity means roughness and indicates a region (patch) on 

a fault that is locked or stuck and resists against breaking (Aki, 1984). In fact, the friction 

between the two sides of the fault is highest on asperities (slip heterogeneities). During an 

earthquake, rupture usually begins from an asperity and the most released energy of the 

earthquake comes from the asperities that become unlocked or unstuck. Saturation is a result of 

the effect of the propagation path on seismic waves coming from different parts of the finite-

fault. In fact, the parts of the fault that are closer to the site have higher influence on the total 

energy captured at the site, since longer parts of the fault are highly attenuated because of the 

geometrical spreading and attenuation functions (Yenier and Atkinson, 2014; Tavakoli et al., 

2018). The fling step is the permanent ground displacement caused by the relative movement of 

the two sides of the fault. The permanent ground displacement is gradually decreased with 

increasing the distance from the fault. The details associated with the fling step can be evaluated 

from geodetic surveys using GPS measurements. It should be mentioned that the fling step effect 

is removed by doing baseline correction and filtering; hence, a particular data processing 
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approach is required to obtain this information (Dabaghi, 2014). The hanging wall (HW) effect is 

a result of the geometry of the ruptured fault and shortcomings of the source-to-site distances 

such as the Joyner-Boore distance or rupture distance. Regarding this effect for two sites having 

identical rupture distances, the site located on the HW region experiences larger ground motions 

compared to the second site located on the footwall (FW) region (Abrahamson and Somerville, 

1996; Donahue and Abrahamson, 2014). This happens because the effective distance of the site 

on the HW region is less than the effective distance of the site on the FW region. The directivity 

effect is caused by the direction of rupture propagation and location of the site. If the rupture 

propagation moves towards the site, forward directivity case, we will have a time series with a 

larger amplitude which is compressed in time. On the other hand, if the rupture propagates away 

from the site, backward directivity case, we will have a time series with shorter amplitude, but 

longer duration compared to the forward directivity case. 

 Deterministic Approach 

The first approach to generate synthetic ground motion time histories is to theoretically 

model the accurate realistic source time function, the path effect, and the local site condition, and 

then incorporate the effects of each term on seismic waves. Methods using this approach are 

known as “theoretical methods” and the function containing the path effect and local site 

condition terms are called “Green’s function,” “synthetic Green’s function,” or “Impulse 

Response” (Aki, 1968; Haskell, 1969; Wu, 1981). To explain it simply in the elasto-dynamic 

wave theory, the term “Green’s function” is defined as the displacement (or velocity or 

acceleration) at a specific point due to application of a point-force load at another point (see 

Figure 1-1). The propagation term can be modeled using various methods such as finite element 

methods (FEM; e.g., Moczo et al., 2007) or finite difference methods (FDM; e.g., Boore, 1973). 

One of the main difficulties in modeling Green’s function is accounting for scattering effects 

(Zeng, 1991; Zeng et al., 1993). In methods using the deterministic approach, dynamic or 

kinematic source models are convolved with the deterministic Green’s function obtained from 

1D or 3D velocity-density structure of the crust. These methods are often very computationally 

expensive. 
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 Stochastic Approach 

The simple and computationally efficient second approach which is very popular, known 

as “stochastic ground motion simulation,” assumes that the simulated ground motion is a zero-

mean Gaussian process (Yamamoto and Baker, 2011). This approach uses a Gaussian white 

noise which is a stationary random process and has a zero mean and a relatively constant spectral 

density over all frequencies. The most famous technique to simulate ground motions using the 

stochastic assumption is to combine a windowed Gaussian signal (white noise) with the duration 

of a desired earthquake at a given site, Tgm, (that is, the sum of the rupture duration, Tc, which is 

related to the inverse of the corner frequency and the path-dependent duration, Tp) transformed 

into the frequency domain and multiplied with the ground motion Fourier amplitude spectrum 

(FAS) obtained from appropriate seismological parameters; and then, transformed back into the 

time domain, which is known as “the stochastic method” (Boore, 1983; Boore, 2003). In the 

stochastic method, the obtained result is not necessarily required to transform back into the time 

domain, and GMIMs can be directly determined using the random vibration theory (RVT) from 

the Fourier amplitude spectrum (FAS) of seismic waves. Although it is difficult to account for 

physical definitions such as directivity, 3-D crustal structure, and surface waves, this approach is 

very popular since it requires fewer input parameters and fewer details about the source, path, 

and site functions, as well as it is computationally very fast compared to either physics-based or 

hybrid approaches. The main issue of this approach is that it is very difficult to account for the 

time and frequency domain nonstationary features of time series. The temporal nonstationary, 

caused by the transient nature of the earthquake phenomenon, indicates that the amplitude or 

intensity of seismic ground motions incrementally grows to reach the strong shake phase and 

then progressively is attenuated to zero. The spectral nonstationary, arising from the attenuation 

and evolving nature of seismic waves during propagation through the path and site, implies that 

frequency contents of earthquake ground motions vary with time and each part or phase of time 

series have different frequency amplitudes and frequency phases. The temporal and spectral 

nonstationary features are of great importance in the nonlinear dynamic response of structures, 

since the behavior of structures is also nonstationary (Papadimitrios, 1990; Conte, 1992). 

The main assumption about the stochastic point-source model is that the source is 

focused at a point and the acceleration time series constructed at a given site includes both 
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random and deterministic aspects of ground motion shaking. By deterministic aspects, the 

average FAS which is a function of magnitude and distance is defined. From stochastic aspects, 

motions are treated as noise with the given deterministic spectrum. Note that the point source 

model is reasonable, once the distance between the source and site is much larger than the 

dimensions of the source (Boore, 1983, 2003; Boore and Atkinson, 1987; Atkinson and Boore, 

1995; Atkinson and Boore, 1997; Atkinson and Silva, 2000). The steps to synthesize ground 

motions by the stochastic point source model are (Boore, 2003; Atkinson et al., 2009): 

1. Constructe a normally distributed random Gaussian signal (white noise) with zero 

mean and unit variance. 

2.  Multiply the signal from step (1) by a window function with a given time equal to the 

total ground motion duration at the site of interest. 

3.  Calculating the Fourier transform of the windowed signal from step (2). 

4. Normalize the result from step (3) so that the RMS amplitude spectrum of the 

windowed Gaussian signal equals unity. 

5. Calculate the theoretical or deterministic point-source FAS using equation (1-10), 

employing the seismological characteristics of the region of interest. 

6. Multiply the result from step (5) by the normalized windowed Gaussian spectrum 

estimated from step (4) to obtain the FAS of the motion at the given site. 

7. Calculate the inverse Fourier transform (IFT) of the spectrum from step (6) to acquire 

the simulated accelerogram or seismogram (time histories) or use the RVT to estimate GMIMs 

of interest such as peak ground acceleration (PGA), 5% pseudo-spectral acceleration (PSA), and 

peak ground velocity (PGV). 

The main deficiency of the stochastic point-source model is near source simulations for 

large earthquakes in which the impacts of finite-fault rupture containing directivity, rupture 

propagation, asperities, and source-receiver geometry are significant on the amplitudes, duration, 

and frequency content of strong ground motions (Beresnev and Atkinson, 1997). One important 

issue of point-source ground motion simulations is that they monotonically grow with reducing 

distance. Thus, the concept of the stochastic point-source was improved by using the effective 

distance instead of the hypocentral distance and using more complex source models such as 
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double-corner frequencies (Boore, 2009; Boore et al., 2014). An equivalent point-source model 

is like the point-source model, but it uses the effective distance instead of other definitions of 

source-to-site distance such as the Joyner-Boore or rupture distances. The effective distance is an 

imaginary distance between the station and a virtual point, such that the energy captured by the 

station from that virtual point is equal to the energy captured by the station from an actual 

extended-fault rupture. We will comprehensively go through the details of this concept in 

Chapter 4. Simulated ground motions from equivalent point-source model saturate at very close 

distance because the effective distance increases with increasing magnitude resulting in 

counterbalancing the effect of very large magnitude. In fact, the effect of a very large earthquake 

is counterbalanced with the effect of its associated large effective distance. Yenier and Atkinson 

(2014) showed that an equivalent point-source model, in which the concept of effective distance 

is used through a point-source model analysis, can precisely predict the mean ground motions 

even for very large earthquakes (> 6) at very short distances (< 20 km).  

The stochastic finite-fault method (Beresnev and Atkinson, 1997; Beresnev and 

Atkinson, 1998) is another method based on the stochastic approach to capture the effects of 

finite-fault ruptures by summation of delayed weak ground motions in the time domain. One 

technique to model the rupture propagation effect of finite-fault is to partition the fault into 

smaller parts, called subfaults, and then scale, shift with appropriate delay times mimicking the 

rupture propagation, and linearly add the contribution of all subfaults on the site of interest to 

construct the strong ground motion time history at that site (Hartzell, 1978; Wu, 1978; 

Kanamori, 1979; Irikura, 1983; Joyner and Boore, 1986). In the stochastic finite-fault 

framework, weak ground motions are obtained employing the stochastic point source method, 

and the delay times are defined based on the source information and source-site location. 

The SMSIM (Boore, 2003; Boore, 2005) and the EXSIM (Motazedian and Atkinson, 

2005; Atkinson et al., 2009) algorithms simulate strong ground motions based on the stochastic 

point-source and stochastic finite-fault approaches, respectively. The input parameters required 

to describe the source term in the stochastic finite-fault method are magnitude, stress drop, length 

and width of the fault, strike, dip, depth, and slip function, which can be distributed randomly or 

by a given pattern. For the stochastic point source model only two parameters out of seismic 

moment, stress drop, and corner frequency are required to define the source. It should be noted 

that time domain calculations are 10 times faster in SMSIM than EXSIM and frequency domain 
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calculations using the RVT for a large magnitude event can be 1,000 times faster with SMSIM 

compared with EXSIM. 

The stochastic approach is most applicable at high frequencies (HFs) since ground 

motions show stochastic features at short periods (short wavelengths); whereas low frequencies 

(LFs) have a deterministic nature and their behavior cannot be accurately modeled with the 

stochastic approach. For instance, the coherent features of the source such as radiation pattern at 

LFs cannot be captured with the stochastic method. Thus, the stochastic approach is often used to 

simulate the HF portion of ground motions in the broadband ground motion simulation 

procedure. 

 Hybrid Approach 

The third approach is the hybrid approach which combines the deterministic LF part with 

the stochastic HF part to simulate broadband time histories (Graves and Pitarka, 2010). At LFs, 

the nature of ground motions is deterministic, and simulation process matches both waveform 

and spectral amplitude of the simulated with observed recording. Deterministic simulations can 

be obtained by having the rupture model and seismic velocity structure of the region of interest. 

However, at HFs, the nature of ground motions is stochastic and only the spectral amplitude of 

the simulated ground motion and the observed recording can be matched, not their waveforms. 

The reason why this transition from deterministic to stochastic behavior around 1 Hz is observed 

is that the source radiation and wave propagation are coherent at LFs (very long wavelengths), 

but they are incoherent at HFs (very short wavelengths) (Sato and Fehler, 1998; Graves et al., 

1999). With increasing frequency (decreasing wave lengths), the impact of small scale 

heterogeneities in the earthquake rupture and crustal propagation path on seismic wave makes 

the high frequency portion of ground motions behave stochastically (Sato and Fehler, 1998; 

Hutching and Viegas, 2012). Thus, the deterministic LF synthetics are combined with the 

stochastic HF synthetics in the frequency domain around a matching frequency of 1 Hz to 

produce realistic broadband ground motions (Graves and Pitarka, 2010; Frankel, 2017). 
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 Stochastic Summation of Green’s Function Method (SSGFM) 

Observed small earthquakes (sub-events, sub-sources, sub-faults, or element 

earthquakes), in which the source acts like an impulse (point dislocation source), can capture the 

realistic effects of velocity structure, propagation path (both attenuation and geometrical 

spreading), and local site (both amplification and near site diminution). Of course, there is no 

earthquake to possess an exact impulsive point source; however, if the earthquake is small; and 

consequently, the fault is small, the rupture time is very short and cannot affect time histories 

(Hutchings, 1992). For instance, Aki (1982) demonstrated that the displacement seismogram 

recorded for the Parkfield earthquake of 1966 at a station located at 80 m from the fault break 

followed a simple impulsive shape and Hutchings (1987) showed that the San Fernando 

earthquake’s aftershocks of 1971 which were recorded at the near source stations approxinately 

have an impulsive point source shape. If the source is impulsive, the response of the medium 

captured at the observation point associated with the impulsive force at the source is called 

Green’s function. Thus, small-event recordings are called “empirical Green’s function (EGF)” 

(Hartzell, 1978; Wu, 1978). Using equation (1-2), if the earthquake dimension is much smaller 

than the wavelength of interest or the source-to-site distance is much longer than the wavelength 

of interest, then fault displacement at the observation point, x, and time, t, can be obtained as 

 ( , ) ( )( ) * ( , )p p q q
A

u x t S t s n s n dA GF x tµ= +∫   (1-5) 

in which the term spnp + sqnq is the focal mechanism, μ is the rigidity, and S(t) represents the slip 

function. When the periods of observed waves are much longer than the duration of the fault, the 

source acts like a time-independent impulse function. Thus, the slip function can be replaced 

with a unit Heaviside step function. Substituting integral with total area A and displacement with 

e, equation of EGF can be expressed as 

 0 0 0( , ) ( ) ( )* ( , ) ( ) ( )* ( , )e
p p q q p p q qe x t H t t sA s n s n GF x t M s n s n H t t GF x tµ= − + = + −   (1-6) 

where �̅�𝑠 is the average slip on the fault, t0 represents the origin time, and M0 denotes the seismic 

moment of the EGF. The Heaviside function is zero before the origin time, thus 

 0 0

0

( )* ( , )
( , )

0

e
p p q qM s n s n GF x t t t

e x t
t t

 + >= 
≤

         
                                                

  (1-7) 



11 

 

Now, we can explain why EGFs are used to solve the representation of ground motions. To this 

end, we divide the fault area into a discrete summation of subsources. Therefore, equation (1-5) 

can be substituted by a discrete sum over N subsources with area Ai so that the summation of all 

subsource areas is equal to total area A as 

 
1

( , ) ( )( )* ( , ; , )
N

i i p p q q i
i

U x t A S t s n s n GF x t y zµ
=

= +∑   (1-8) 

Using equation (1-7), we can replace the focal mechanism (since both small and large 

earthquakes should have similar focal mechanism) and the elastodynamic Green’s function for 

each subsource as 

 
1 10

( )( , ) ( , ) ( , )
N N

i i
in i ine

i ii

A S tU x t e x t e x t
M

µ ξ
= =

= =∑ ∑   (1-9) 

where ξi is the scaling factor for subsource i. 

The impacts of the propagation path are very sophisticated and cannot be modeled with 

simple layered crustal models, particularly at HFs (>1 Hz) where seismic waves are very 

sensitive to small-scale heterogeneities within the crust and upper mantle due to having short 

wavelengths. Seismic waves captured at an observation point contain direct, reflected, refracted, 

scattered, and surface waves attenuated through the path by scattering and anelastic attenuation, 

exposed to energy focusing and defocusing because of lateral change of path properties, 

amplified within the path and particularly near the site, and highly attenuated close to the 

observation point. Employing EGFs instead of mathematical determinations can precisely and 

simply account for all these effects. Note that essentially EGFs describe the combined effects of 

the source and propagation path since no earthquake has true impulsive source function. EGFs 

are important tools to study earthquake source, to study crustal attenuation, to model finite 

rupture, to analyze site response, and to generate future great earthquakes (Hutchings and 

Viegas, 2012). For instance, EGFs are used to investigate the earthquake source process, having 

one recorded small earthquake and one recorded larger earthquake from a particular fault at a 

specific station, by de-convolving the small earthquake from the large event. 

Simulation of large earthquakes using EGFs is an appealing approach since deploying 

EGFs removes the uncertainty of the propagation path and local site effects (Hartzell, 1978; Wu, 
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1978; Heaton and Hartzell, 1988; Hutchings and Wu, 1990). These EGFs inherently include the 

impacts of the propagation path and site on all kind of body waves (such as direct, reflected, 

refracted, and converted body waves), scattered waves, and surface waves. Another advantage of 

this approach is that it is not computationally expensive. Most importantly, EGFs intuitively 

account for the temporal and spectral nonstationary characteristics of seismic ground motions. 

Thus, through using EGFs it is not required to define any window functions to consider the 

temporal nonstationary effects or to define any filters to account for the spectral nonstationary 

effects like the other methods. In addition, the effects of fling step and HW, inherently included 

in the EGFs, accumulate in the final simulation due to the summation. 

There are several different techniques to use a recording of a small earthquake and 

generate a recording of a large earthquake in which the primary idea is to account for the realistic 

propagation effects on seismic waves. Some techniques employ just one EGF for simulations, 

but others use a number of EGFs with similar focal mechanisms like the target focal mechanism 

to capture the effects of path on seismic waves coming from different parts of the fault. Another 

primary difference among these techniques is the procedure to model the source. The earthquake 

source can be defined as a point source model, kinematic model, quasi-dynamic model, and 

dynamic model (Hutching and Viegas, 2012). After assigning the source model, simulation can 

be performed using only one large event or as a combination of smaller earthquakes (composite 

source model or multiple-event source model). Most EGFs methods use a composite source 

model which is defined as a linear combination of EGFs. Different investigators combine these 

different classifications to obtain their simulations. For instance, Boore (1999) used the point 

source model with only one event. He modified and scaled the spectrum of the small earthquake 

to match the spectrum of the target event and then incorporated the phase information of the 

target event to simulate the ground motion of the target event. He mentioned that the scaling 

approach should account for the difference between source spectra and the difference between 

the duration of shakings. The main deficiency of this case is that the effect of rupture 

propagation cannot be taken into account. Joyner and Boore (1986), Wennerberg (1990), 

Tumarkin and Archuleta (1994), Ordaz et al. (1995), and Boore (2009) (to improve EXSIM) 

used the point source model combined with the composite source model. In fact, a number of 

small earthquakes are stochastically added to one another somehow to match the spectrum of the 

target event. One advantage of the first two methods is that it is not necessary to have a small 
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earthquake as an input motion. Therefore, signal to noise ratio (SNR) is not influential since the 

SNR of larger earthquakes is often acceptable. Another important advantage of these approaches 

is that there is no need to have detailed information about the fault and rupture process. Irikura 

(1986), Somerville et al. (1991), Hartzell, (1992), and Frankel (1995) employed the kinematic 

source model combined with the composite source model. To this end, the spectrum of the target 

event is constructed by summation of the contributions from all parts of the fault rupture. 

Therefore, a large earthquake can be defined as a space-time convolution of the impulse response 

or Green’s function with a relevant slip velocity function (Burridge and Knopoff, 1964; Wu, 

1978; Wu, 1981; Aki, 1982). The slip function which is a function of time and location on the 

fault plane explains how the fault displacement occurs during an earthquake (see equations (1-1) 

through (1-4)). This method requires general knowledge about the actual rupture process such as 

the rupture velocity, slip distribution, slip velocity, and initiation point of the rupture. In addition, 

small earthquakes used as input motions should be small enough to be considered as EGFs. 

Thus, one disadvantage of this method is to deal with poor quality data due to low SNR at LFs 

since the SNR of small earthquakes is often below the noise level. Quasi-dynamic and dynamic 

source models are more complicated and are involved with the physics of the rupture process. 

Boatwright (1981), Hutching (1992), and Hutching (1994) combined the quasi-dynamic source 

model with the composite source to simulate strong ground motions from EGFs. The low SNR of 

EGFs is also an issue while using these source models. In essence, the background noise energy 

is much higher than LF energy for small earthquakes; therefore, methods which require using 

small earthquakes as EGFs are restricted to frequencies approximately greater than 0.5 Hz (Jarpe 

and Kasameyer, 1996). Deterministic approaches can accurately simulate the LF portion of 

seismic waves. Thus, in several studies, the deterministic (physics-based) LF synthetics merged 

with HF portions of EGFs are utilized to generate broadband Green’s functions having high 

quality LF and HF portions (Hutchings and Viegas, 2012). 

The stochastic summation of Green's functions method (SSGFM), which is a simple and 

straightforward method, is a combination of point source model and composite source model. 

Thus, it does not require detailed information about the rupture process. In this regard, small 

earthquakes are stochastically added to reach the target event spectrum. Note that this method 

employs only one small earthquake as input. The SSGFM just relies on seismic scaling relations 

to randomly mimic the rupture propagation. For large earthquakes, considering the effect of 
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finite fault rupture such as rupture propagation, asperities, and saturation effect are necessary to 

produce realistic synthetics. However, for a future large earthquake, the details of rupture process 

are unknown. In this approach, the target fault is divided into many identical sub-faults having 

the same characteristic of the small event fault to stochastically and randomly produce the effect 

of rupture propagation. Compared to the stochastic finite fault approach, the SSGFM only 

requires magnitude and stress drop. 

There are several limitations of using the SSGFM, such as: 

1. EGFs cannot capture variations in focal mechanism; thus, the mechanism of the 

EGFs and target event should be the same. 

2. The effects of basins and/or nonlinear site responses cannot be taken into account. 

Therefore, this method, like many other simulation methods, is used to synthesize 

ground motions for the generic rock site and then using appropriate transfer 

function, the motions can be brought up to the surface. Basins result in reflecting 

and focusing of seismic waves at the edges and then these trapped waves turn into 

surface waves and cause elongation of the duration of ground motions (Sedaghati 

et al., 2018). Thus, 2D or 3D models are required to account for the effects of the 

sedimentary basins on ground motions. 

3. The assumption of point source may break down in particular cases such as the 

near-field region of large earthquakes. Several studies showed that the source 

spectrum may need to have two corner frequencies to be realistic (Boatwright, 

1994; Atkinson and Boore, 1995; Atkinson and Sonley, 2003; Boatwright and 

Seekins, 2011; Archuleta and Ji, 2016). Thus, we propose an improvement to 

partially account for the finiteness of the fault dimension using double corner 

frequency source models in case that the source spectrum cannot be modeled with 

a single corner frequency model. 

4. The SSGFM assumes that the Green’s functions from different parts of the faults 

are identical (see Figure 1-2). However, the effect of geometrical spreading and 

attenuation function on different distances between the source and subfaults 

results in different Green’s functions from different parts of the fault. We will 

address this issue and develop conversion equations between the effective 

distance and the Joyner-Boore distance to correct for this effect. 
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5. The main difficulty to deal with small earthquakes is the signal to noise ratio 

(SNR) issue since the LF part of small magnitude earthquakes are heavily 

contaminated by noise (Sedaghati and Pezeshk, 2016c; Nazemi et al., 2017; 

Pezeshk et al., 2018a). Moreover, there are many sites in which no recordings of 

even small earthquakes exist. To overcome this difficulty, we will extend the 

SSGFM to sites for which no small earthquake recordings are available by using 

synthetic Green’s functions (Somerville et al., 1991; Kamae et al., 1998). In this 

regard, we use synthetic weak ground motions using the stochastic method of 

Hanks and McGuire (1981) and Boore (1983) implemented in SMSIM by Boore 

(2003) and Boore (2005). Then, the simulated weak motions are used within the 

SSGFM in place of EGFs as seed motions to produce strong ground-motion time 

histories. Synthetic weak motions are produced for a point-source model, and then 

the effects of finite fault for large earthquakes are incorporated using the SSGFM. 

It should be mentioned that is preferred to use EGFs instead of synthetic weak 

motions as seed motions, since they do not require any detailed descriptions of the 

propagation path and site such as geometrical spreading and attenuation functions, 

amplification factor, or velocity structure. However, the advantage of using the 

simulated seed motions is that the resultant strong ground motions are region-

specific and can be used in developing GMPEs. 

The SSGFM can be employed along other approaches such as hybrid methods, stochastic 

finite-fault method, or even stochastic point-source methods to simulate ground-motion time 

histories. The choice of which approach to employ depends on the user and applications. The 

equivalent point-source approach is very simple and fast and by using the effective distance can 

fairly account for the effects of the finite-fault source model. On the other hand, the finite-fault 

approach is more sophisticated and can capture many effects of finite-fault source model such as 

rupture inhomogeneity. The stochastic point-source method is 10 times and 1,000 times faster 

than the stochastic finite-fault method in the time and frequency domains, respectively. The 

SSGFM is easier since it does not need any information about the source, but it accounts for the 

most finite-fault effects. The stochastic methods are very useful in simulating path-specific 

ground motions for use in developing GMPEs; whereas the hybrid and deterministic approaches 

are often used for event-path-specific or path-specific simulations. 
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It should be emphasized that the most powerful approach to simulate strong ground-

motion time histories is to use the physic-based and hybrid broadband methods (Graves and 

Pitarka, 2010; Frankel, 2017). However, methods based on the physic-based and hybrid 

approaches require many input parameters associated with the source of future earthquakes for 

which detailed information about the rupture process is unknown. Further, these methods are still 

computationally expensive. The SSGFM resolves these issues. Moreover, the physic-based and 

hybrid broadband methods generate event-path-specific or path-specific events. On the other 

hand, the stochastic point-source or stochastic finite-fault models are used for generic or region-

specific applications. One advantage of the SSGFM is to be employed for both region-specific 

applications and path-specific applications. The main application of region-specific ground 

motions is for use in developing GMPEs. 

 Formulation 

The FAS which is the Fourier transform of a seismic wave radiated from a point source 

and recorded by an instrument at a given site can be obtained as (Boore, 1983; Boore, 2003) 

 0 0( , , ) ( , ) ( , ) ( ) ( )Y M f R S M f P f R G f I f= × × ×   (1-10) 

where S (M0 , f ), P ( f , R ), G ( f ), and I ( f ) denote the source function, path term, site effect, and 

instrument response, respectively. M0 is the seismic moment, R is the source-to-site distance 

(km) and f represents frequency (Hz). 

The FAS of a target event (large magnitude) and the FAS of a subfault (small event) 

having the same focal mechanism and propagation path and recorded at a particular site can be 

written as 

 target target

small small

( , ) ( ) ( , ) ( ) ( )
( , ) ( ) ( , ) ( ) ( )

Y f R S f P f R G f I f
Y f R S f P f R G f I f

= × × ×

= × × ×
  (1-11) 

and by dividing the FAS of the target by the FAS of the sub-event, we get 

 target target

small small

( , ) ( )
Transfer function: ( )

( , ) ( )
Y f R S f

H f
Y f R S f

= =   (1-12) 
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Therefore, for co-located events the ratio of record spectra can reasonably approximate with the 

ratio of source spectra. According to this equation, the transfer function is a filter in the 

frequency domain, and by getting the inverse Fourier transform (IFT), we have 

 target small target small( , ) ( ) ( , ) ( , ) ( )* ( , )Y f R H f Y f R IFT Y t R H t Y t R= × → → =   (1-13) 

The convolution of two discrete finite functions can be written as a summation as 

 target small small small
1 1

( , ) ( , )* ( ) ( , )* ( ) ( , )
N N

i i
i i

Y t R Y t R H t Y t R t Y t Rδ θ θ
= =

= = − = −∑ ∑   (1-14) 

in which N is the total number of small events, θi represents the time shift, and i denotes the 

counter over the number of the small events. Therefore, in the SSGFM, the target fault area is 

divided into small identical sub-faults (see Figure 1-3). Then, ground motions generated by these 

sub-faults are scaled and shifted and finally are summed together to produce a ground motion for 

the target event (Hartzell, 1978; Irikura, 1983; Irikura, 1986; Joyner and Boore, 1986; 

Wennerberg, 1990; Tumarkin and Archuleta, 1994; Ordaz et al., 1995; Kohrs et al., 2005). The 

summation can be written as 

 
1

( ) ( )
N

t s i
i

Y t Y tξ τ
=

= −∑   (1-15) 

where Yt ( t ) gives the amplitude of the postulated earthquake, ξ represents the scaling factor to 

normalize the small earthquake to the unit excitation, N denotes the number of sub-events, τi is 

the rupture time (delay time) for event ith (rupture j starts radiating at τi), and Ys ( t )  gives the 

amplitude of the observed small earthquake. The abovementioned equation can be written in the 

frequency domain as 

 
1

( ) ( ) exp( )
N

t s i
i

Y Y iω ξ ω ωτ
=

= −∑   (1-16) 

Therefore, this method requires three steps. First, the scaling factor should be obtained. Then, the 

number of sub-events required should be determined. Finally, a probability distribution function 

(pdf) should be defined to generate rupture times (delays). There are several schemes for 

performing the SSGFM according to different definitions for these three steps. Note that 

although this method is a composite source model for simulating a large earthquake, it looks at 

the source as a single point. In this regard, the summation parameters are obtained using the 
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scaling relations of the source spectrum. Therefore, the only parameters needed from the small 

and target events are the stress drop and seismic moment values (see Figure 1-4).  

Different single-stage summation schemes are proposed for the SSGFM. Joyner and 

Boore (1986) proposed a summation scheme corresponding to a uniform distribution for delay 

times. The problem with the Joyner and Boore scheme was that it creates holes in the spectrum. 

Then, Wennerberg (1990) improved the transfer function; however, it overestimated the 

spectrum at HFs. Tumarkin and Archuleta (1994) improved the transfer function by choosing a 

complex transfer function to incorporate the phase difference between the small event and the 

target event. This transfer function again overestimated the HF spectrum. Ordaz et al. (1995) 

suggested a transfer function in which its spectrum matches the target spectrum in the whole 

frequency range. We will explain and compare these methods in Chapter 2. 

Time histories of simulated events using the single-stage scheme have a simple form with 

a single peak in which most of the energy is concentrated. For large earthquakes such as the 2011 

M9.0 Tohoku, Japan earthquake (Ghofrani et al., 2013) and the 2010 M8.8 Maule, Chile 

earthquake (Frankel, 2017), the rupture propagation is often very complex and heterogeneous. 

There are some parts of the fault that radiate seismic waves stronger than other parts, which are 

known as asperities (Boatwright, 1988). To take into account the effect of asperities on simulated 

strong ground-motion time histories, a two-stage summation scheme has been introduced 

(Wennerberg, 1990; Kohrs et al., 2005). We will implement a two-stage summation scheme as 

well as a single-stage summation scheme to generate different time histories with random source 

characteristics. 

 Improvement 1 – Extension of the Source Function 

To explain how to extend the source model in the SSGFM, we shall begin to describe the 

source model from scratch. In this regard, we require defining the rupture time and the rise time 

to obtain the source time function for a linear fault with a length of L. The rupture time, TR, is the 

time required for the rupture propagation along the fault. The rise time, TD, is the time required 

for any dislocation points on the fault to reach its maximum amount. These times can be 

approximately estimated by 
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= =
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  (1-17) 

where VR is the rupture velocity assuming to be about 0.6 to 1.0 (= y) times the shear wave 

velocity, μ is the rigidity of the material in the vicinity of the source, β is the shear wave velocity, 

and Δσ is the stress drop parameter. D0 is the average slip (dislocation) on the fault. The source 

time function is then defined as the convolution of two boxcar functions associated with the 

velocities finite rupture time and the finite rise time. The velocity functions have a boxcar shape 

since the displacement functions have a ramp shape. Thus, the source time function generally is a 

trapezoid. The Fourier transform of a boxcar function is a sinc function as follows 

 ( )
/2

/2 /2

/2

1 1 sin( / 2)( ) sinc( / 2)
/ 2

T
i t i T i T

T

TF e dt e e T
T i T T

ω ω ω ωω ω
ω ω

−

−

= = − = =∫   (1-18) 

Therefore, the FAS of the source time function can be written as the multiplication of two sinc 

functions as follows 

 0( ) sinc( / 2) sinc( / 2)R DS M T Tω ω ω=   (1-19) 

in which M0 is the seismic moment to scale the low-frequency level and can be obtained from 

(Burridge and Knopoff, 1964; Madariaga, 1977) 

 0 0( , )
S

M D x y dS c D Aµ µ= =∫   (1-20) 

where A is the fault area and c is a constant related to the fault shape factor. Then, getting the 

natural logarithm from both sides, we have 

 [ ] [ ]0log ( ) log log sinc( / 2) log sinc( / 2)R DS M T Tω ω ω= + +   (1-21) 

The sinc(x) function can be approximated by 

 
1             1

sinc( )
1/         1

x
x

x x
≤

=  >
  (1-22) 

The logarithm of the FAS of the source time function is shown in Figure 1-5. Schematic plot for 

the approximation of theoretical source time function can be written as 
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  (1-23) 

Note that with increasing the fault dimension, the rupture time, the rise time, and the 

seismic moment grows; thereby, the corner frequencies decrease (Aki, 1967; Brune, 1970; 

Brune, 1971). This model is called a double corner frequency (DCF) model. For far-field 

stations, since the path-dependent duration increases, and the fault length is very small to the 

source to site distance, the rise time and the rupture time are supposed to be identical; and thus, 

the source function is like a triangle. This source time function yields a single corner frequency 

(SCF) model with corner frequency of 2/TR.  

It should be mentioned that the impact of the width can be taken into account by adding 

another boxcar function for the rupture time along the width for large magnitude earthquakes and 

near-field stations. This assumption leads to a new source time function with three corner 

frequencies having another segment with spectral falloff (decay rate) of ω-3 at high frequencies 

after the segment with spectral falloff of ω-2. This was a simplistic source model. Next, we will 

discuss a realistic model. 

By years passing, the stress strain is accumulated on the fault, and it releases in a sudden 

failure of the fault, which decreases the stress compared to the initial condition and radiating 

seismic waves. Regarding the stress formula and stress-strain relation, we have 

 0 0D Du
u L L
δε σ µ= ≈ → ∆ =   (1-24) 

and using equation (1-20), the stress can be written as 

 0Mc
LA

σ∆ =   (1-25) 

in which u and δu are initial length and the deformation after slip, respectively. Based on the 

fault shape and rupture dip, the scaling relationship is obtained as (Eshelby, 1957; Keilis-Borok, 

1959) 
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The idea of the convolution of the rise time and rupture time functions was first proposed 

by Aki (1967). Aki (1967) used the far-field displacement components of P and S waves at long 

distances associated with a shear-fault source obtained by Haskell (1964) and Haskell (1966) as 

the solution of the elastic wave equations in an infinite, isotropic, and homogenous medium (a 

medium with a constant stiffness). The elastodynamic wave equation (combining the Newton’s 

second law, the Hooke’s law for the relationship between stress and strain components, and 

strain equations) in time, t, and space, x in 3D, in the Cartesian coordinates, (x1, x2, x3), is written 

as follows (Madariaga, 1976) 

 
2

2
2

( , )( , ) ( ) ( . ( , )) ( , ) u x tu x t u x t f x t
t

µ µ λ ρ ∂
∇ + + ∇ ∇ + =

∂
  (1-27) 

where u(x,t) notes the particle displacement due to the wave propagation, μ is the shear modulus 

(rigidity), λ indicates the elastic constant, and ρ is the mass density. f(x,t) is the force, a function 

of location and time, expressed as follows 

 0( , ) ( ) ( )f x t D t x x fδ= −


  (1-28) 

in which S(t) is the source time function, δ is the Dirac delta function, and 𝑓𝑓 is the unit vector 

representing the direction of the applied force. ∇ is the gradient operator or a first order partial 

differential operator, ∇ denotes the divergence operator which maps a vector function to a scalar 

function, and ∇2 represents the Laplace operator or Laplacian which is a second order partial 

differential equation considering all dimensions of space. In this medium with explained 

characteristics, the velocity of P-wave (α) and S-wave (β) can be defined as 𝛼𝛼 = �(𝜆𝜆 + 2𝜇𝜇)/𝜌𝜌 

and 𝛽𝛽 = �𝜆𝜆/𝜌𝜌, respectively. Further, the wavelength for the P-wave (λP) and S-wave (λS) is 

given by 𝜆𝜆𝑃𝑃 = 2𝜋𝜋𝛼𝛼/𝜔𝜔 and 𝜆𝜆𝑆𝑆 = 2𝜋𝜋𝛽𝛽/𝜔𝜔, respectively.  

The general solution to this equation with homogenous initial conditions, zero initial 

displacement and velocity, in the time-space domain but in the spherical coordinates, (R, θ, φ), is 

given by (Madariaga, 1997; Aki and Richards, 2002; Madariaga, 2007) 
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in which R is distance from the point source and �̇�𝐷 is the derivative of the source function 

describing the energy pulse radiated from the point source. In this equation, the first term on the 

right-hand side is the near-field displacement, the second term is the far-field displacement for P-

waves, and the third term is the far-field displacement for S-waves. Thus, the near-filed solution 

for the elastodynamic Green’s function in a homogenous, isotropic, and unbounded medium is 

expressed as 

 
min( , / )

3
/

1 1( , ) (3 ) ( )
4

t R
N

i j ij
R

u x t M t d
R

β

α

γ γ δ τ τ τ
πρ

= − −∫    (1-30) 

in which �̇�𝑀 is the moment rate function (MRF) obtained from the derivative of the seismic 

moment function as follows 

 ( ) ( )M t D t Sµ=   (1-31) 

where S is the fault area, but for the point source is supposed to be 1. γi is defined as xi/R. 

Regarding this equation, the near field is composed of both P-waves and S-waves. Thus, it 

includes both radial and transverse motions. The total duration of this term is (R/β - R/α) + T in 

which T is the duration of the nonzero source term. 

The far-field situation occurs when the distance from the point source is more than 

several wavelengths. Then, the far-field displacement for P-waves is radial and can be written as 

(Haskell, 1964; Randall, 1973) 

 3

1 1( , ) ( / )sin(2 )sin( )
4Pu R t M t R

R
α θ ϕ

πρα
= −   (1-32) 

where θ is the polar angle and φ is the azimuthal angle in the spherical coordinates. In this 

equation, sin(2𝜃𝜃) cos (𝜑𝜑) expresses the radiation pattern for P-waves. As can be seen from the 

abovementioned equation, P-waves are attenuated as R-1. They propagate with the speed of α. 
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These waves move radially (longitudinally) indicating that the direction of the waves and particle 

motions are the same. Furthermore, the term inside the moment rate function indicates that if the 

source starts radiating at zero, P-waves arrive to the observation point at time R/α. 

The far-field displacement for S-waves, which is transverse and has two components 

known as SH and SV (see Figure 1-6), is given by (Haskell, 1964; Randall, 1973) 
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  (1-33) 

According to this equation, S-waves are attenuated with a rate of R-1. They propagate with the 

speed of β. These waves move perpendicular to the direction of particle motions; and therefore, 

they are called transverse waves. Furthermore, the term inside the moment rate function indicates 

that if the source starts radiating at zero, S-waves arrive at the observation point at time R/β. In 

fact, they reach the observation point after P-waves, since α > β. 

It is interesting to note that regarding equations (1-32) and (1-33), the far-field 

displacement caused by S-waves is higher than P-waves because α > β. In general, the far-field 

displacement can be given by (Aki and Richards, 2002; Madariaga, 2007)  

 3

1( , ) ( / )
4C C

C

R
U R t M t R V

V R
θϕ

πρ
= −   (1-34) 

in which c can be P (radial component) or S (transverse component), R is the distance between 

the point source and observer, and Rθφ is the radiation pattern. Boore and Boatwright (1984) 

estimated radiation of 0.52 and 0.63 for P- and S-waves, respectively. Having the far-field 

displacement function in the time-space domain, the Fourier transform of the response of the 

source in the frequency-space can be obtained by 

 /
3

1( , ) ( )
4

Ci R V
C

C

R
U R M e

V R
θϕ ωω ω

πρ
−= 

    (1-35) 

where �̇�𝑀�  is the Fourier transform of the MRF. 

Aki (1967) isolated and removed the path propagation term (geometrical spreading term, 

1/R) from the total far-field displacement. Therefore, what remains shows the spectral response 
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of the source. Using the scaling of seismic moments with earthquake sizes (seismic moment 

increases with increasing the earthquake dimensions), he observed that the low frequency level 

of the source time function equals the total moment of the source. He also found that the 

autocorrelation function of dislocation velocity can express the spectrum of the MRF. He 

assumed that the displacement source time function linearly increases up to the maximum 

dislocation (ramp shape); and thus, its derivative giving the velocity source time function is like 

a boxcar function. The autocorrelation function has a triangular shape and its Fourier transform 

match the source spectrum obtained from the solution of the elastic wave equations. He called 

this spectrum the “ω-square model” due to the decay rate of ω-2 at high frequencies. Figure 1-7 

demonstrates the schematic plot of the dislocation and velocity functions as well as the 

autocorrelation function for a shear-fault source. 

The above discussion regards a simplified source model. However, it is somewhat 

different in reality. Brune (1970) suggested using the effective stress that results in accelerating 

the two sides of the fault to the time function to obtain source time function. In fact, he assumed 

that the earthquake dislocation is a tangential stress pulse, and the stress pulse that sends out 

shear waves can be modeled with a function similar to the boxcar function. Then, the tangential 

displacement can be obtained by integrating the stress pulse function which is associated with the 

velocity function. To this end, he accounted for the edge effects of dislocation surface (effects of 

finite-fault source) on the velocity function. Therefore, he proposed an exponential function 

instead of a boxcar, known as Brune’s pulse, as follows 

 /( ) ( / ) Dt TD t eσ µ β −=   (1-36) 

and the displacement can be obtained by integration as follows 

 /( ) ( / ) (1 )DTt
DTD t eσ µ β −= −   (1-37) 

in which D is the displacement (slip) source time function, �̇�𝐷 is its derivative representing the 

slip velocity source time function, σ is the effective shear wave stress, t is time, and TD is the rise 

time defined above. Figure 1-8 depicts displacement and velocity source time functions proposed 

by Brune (1970). 

Boore (1983) then organized the process to obtain the source term based on the work of 

Aki (1967) and Brune (1970). In the point-source approach of simulating ground motions, the 
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shape of the displacement, velocity, and source acceleration spectra is scaled with the seismic 

moment (or magnitude) using the single corner frequency (SCF) model given by 
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  (1-38) 

where M0 is the seismic moment (dyne-cm), related to the moment magnitude, M, and can be 

obtained by (Hanks and Kanamori, 1979) 

 0
2 log( ) 10.7
3

M= −M   (1-39) 

and fC is the source corner frequency (Hz) related to the stress drop (bar), Δσ, by (Brune, 1970; 

Brune, 1971) 

 ( )1/36
04.9 10 /Cf Mβ σ= × ∆   (1-40) 

in which β is the shear-wave velocity (km/s) in the source area. The corner frequency is related 

to the rise time as fc = 1/TD (Hanks and McGuire, 1981). Δσ in the literature is referred to as 

stress drop, effective stress, dynamic stress drop, Brune stress drop, or rms stress drop and 

controls the strength of the HF radiation (Boore, 1983). C is a constant accounting for the effects 

of the radiation pattern as follows 

 3
04 s

R FV
C

R
ϕθ

πρβ
=   (1-41) 

in which Rφθ is the radiation pattern depending on the fault orientation, slip direction, and 

direction to the receiver (average value of 0.63 for S-waves based on Boore and Boatwright, 

1984), F denotes the free surface effect (considered as 2 which is correct only for SH waves), V 

denotes a coefficient for partitioning the total shear-wave energy into horizontal component 
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(1/√2), ρ represents the density near the source, and R0 is a reference distance (assumed to be 1). 

Regarding the equation of source spectrum, at LFs the seismic moment controls the spectral 

amplitude, while the stress drop and the seismic moment control the spectral amplitude at HFs. 

This is the simplest and most widely used source model known as the Aki-Brune omega-square 

model (Aki, 1967; Brune, 1970; Brune, 1971). 

To find the source time function, Brune (1970) came up with equation (1-37) by solving 

equation (1-34). However, this is one of the solutions for the far-field displacement. There are 

infinite ad hoc source time functions which can satisfy equation (1-34) (Beresnev and Atkinson, 

1997). Three of these functions are 
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in which D0 is the maximum total slip of the fault. Then, the derivative of the displacement 

source time function can be expressed as 
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Figure 1-8 illustrates the displacement source time function and the slip velocity time function. 

As can be seen, n = 0 has a discontinuity at t = 0 in the velocity source time function; thus, it is 

physically unrealistic. Substituting equation (1-43) into (1-34), we obtain the general form of the 

far-field displacement in the time domain as 
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(1-44) 

and by getting a Fourier Transform the general form of the far-field displacement in the 

frequency domain can be expressed as (Tumarkin and Archuleta, 1994; Beresnev and Atkinson, 

1997) 
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where ωc is the corner frequency defined as 2π/Tr. If n = 1 the source spectrum is called the ω-

square model, and if n = 2, the source spectrum is called the ω-cube model. 

The general form of scaling relationship, equation (1-26), can also be expressed as 

(Tumarkin et al., 1994) 

 0 MM C Rδ σ= ∆   (1-46) 

where CM is a constant of proportionality and δ is the seismic moment scaling exponent. Since 

the corner frequency is inversely proportional to the earthquake dimension as fc = Cf R-1 (Brune, 

1970; Madariaga, 1976), the above-mentioned equation can be rewritten as (Kanamori and 

Rivera, 2004) 
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in which C is a constant. Assuming δ = 3 results in equation (1-40) of Brune (1970) and, δ = 4 

was used by Nuttli (1983). 

As mentioned earlier, the near-field point-source model may need to have more than one 

corner frequency to account for the effect of dimensions, rise time, and rupture time to match 

apparent MRFs (observed source spectra) (Archuleta and Ji, 2016). Some researchers observed 

that the source spectrum of large earthquakes is better defined with a double corner frequency 

(DCF) point-source model which has a sag between two corner frequencies (Joyner, 1984; 

Boore, 1986; Atkinson and Boore, 1995; Atkinson and Sonley, 2003; Yenier and Atkinson, 

2014). Even for small to moderate earthquakes, the source spectrum may need two corner 

frequencies to match the apparent MRFs. For instance, several investigators observed that the 

MRF of moderate earthquakes occurring in northeastern North America show a double corner 

frequency model (e.g., Boatwright, 1994; Atkinson and Boore, 1995; Atkinson and Sonley, 

2003; Boatwright and Seekins, 2011). Moreover, Archuleta and Ji (2016) concluded that the 

attenuation-corrected apparent MRF for earthquakes with 3.3 < M < 5.3 that occurred in 

California (from the NGA-West2 database) has two corner frequencies, between which the 
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spectrum decays as ω-1 and the effect of ignoring attenuation results in incorrectly obtaining a 

single corner frequency MRF. 

Boore et al. (2014) generalized double corner frequency (DCF) source models into 

multiplicative and additive models. The basic assumptions about these generalized models are 

that the acceleration spectrum decay rate is proportional to f 2 at LF; whereas, it has a constant 

level at HF equal to the HF level of SCF with a particular stress drop. 

The multiplicative double corner frequency (MDCF) model for acceleration is obtained 

by multiplication of two spectra as (Boore et al., 2014) 
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where pf and pd represent the power of frequency and the power of denominator, respectively. 

The subscripts a and b are related to the first (lower) and second (higher) corner frequencies, 

respectively. Since the HF level of the acceleration spectrum of DCF and SCD models are equal, 

it requires the following constraints 
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fc is known using equation (1-40). The additive double corner frequency (ADCF) model for 

acceleration is constructed by summation of two spectra as (Boore et al., 2014) 
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where ε is a weighting factor in the range of 0 to 1 for assigning the contribution of each SCF 

spectrum. The HF level of the acceleration spectrum of DCF and SCD models should be equal; 

thus, it imposes the following constraints 
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Therefore, if one of the corner frequencies is specified, the other one can be obtained from 

equations (1-49) and (1-51) for a given fc. One significant difference between the SCF and DCF 

models is the difference between their source durations. In the SCF the source duration is defined 

as 1/fc; while in the DCF models the duration is defined as 0.5/fa+0.5/fb. Longer duration of DCF 

models results in decreasing the amplitude and consequently in decreasing the response spectra 

obtained from these models. 

 Improvement 2 – Incorporating the Effective Distance 

One important effect of finite-fault rupture is distance-magnitude saturation caused by the 

fault-site geometry and effect of propagation path. The saturation effect indicates the reduction 

of ground motion amplitude because of motions coming from different parts of the fault with 

different distances which are larger than the closest distance to the site such as the rupture or 

Joyner-Boore distances. To account for the effect of saturation, we will introduce a new effective 

distance. In this regard, the finite-fault source is partitioned into small elements in which each 

element is a point source and summation of radiated energy from all these small elements 

produce the final ground motion shaking generated by the finite-fault source (homogenous 

energy radiation from the fault). In fact, all points of the finite source model radiate uniform 

energy with equal intensity. We are looking for an effective point that if the whole finite fault is 

modeled in that point gives the same results and identical total energy as the finite source model 

(Yenier and Atkinson, 2014). Note that elements that are located with shorter distances have a 

higher contribution to the total energy captured at the station compared to elements with longer 

distance, due to the presence of the geometrical spreading and anelastic attenuation. 

The path function in the frequency domain, which intuitively accounts for the 

geometrical spreading and attenuation terms, is used for estimating the effective distance. In this 

regard, distances from site to sub-faults take appropriate weights based on geometrical spreading 

and attenuation functions. Short period (high frequency) seismic waves have random phases; 

therefore, they are considered as incoherent waves and to obtain the total energy for the entire 

extended-fault we should sum the energy spectrum (squared amplitude spectrum) of each 
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segment. This approach is similar to what Boore (2009) has done to modify the SMSIM 

software. 

We first derive general distance conversion equations to convert the Joyner-Boore 

distance to the effective distance and vice versa. Then, using seismological and geological 

characteristics of CENA such as geometrical spreading and attenuation functions, fault 

dimensions, and fault location, converted effective distances are obtained for different 

magnitude-JB distance bins. These effective distances will be incorporated in the SSGFM to 

capture the effect of saturation resulted from the fault-site geometry in Chapter 6. 

 Objectives and Scope of the Study 

The main objective of this study is to develop an improved method to simulate broadband 

synthetic strong ground motion time histories using small magnitude events. The new improved 

method is used to generate realistic and appropriate time series in CENA having the key features 

of ground motions expected in this region for generic hard rock sites. In CENA where no 

detailed information about the faults such as slip distribution, geometry of the fault, and asperity 

location can predict for future earthquakes, the SSGFM is a simple, convenient, and fast 

technique to simulate strong ground motion time histories because it stochastically captures the 

effect of rupture propagation for large earthquakes. We propose two important modifications to 

improve the SSGFM. First, we introduce a new distance metric “effective distance,” to capture 

the effect of propagation path on seismic waves coming from different parts of the fault resulting 

in saturation. Special attention is focused on reducing uncertainties.  Moreover, we propose a 

new summation scheme to incorporate DCF source models, which is important for large 

earthquakes. We will combine the new proposed improvement for the SSGFM in a MATLAB 

code to generate synthesized waveforms. The MATLAB code will be verified using synthetics 

and real observed recordings including mainshock and foreshock/aftershock data. As an 

application to our code, we will use it to simulate synthetic broadband strong ground motions 

within CENA. In this regard, we employ synthetic weak ground motions as input motions to the 

code. The advantage of using these synthetic weak motions instead of EGFs is that the resultant 

strong ground motion time histories are region-specific, constructed based on the seismological 

characteristics of CENA. Thus, they can be used in development of GMPEs for this region. To 
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this end, we simulate weak motions using SMSIM for small earthquakes with M3.5, M4.0, and 

M4.5 which can be effectively considered as a point source. The SSGFM is implemented to 

simulate synthetic time histories for moment magnitudes of M5.0 to M8.0 in 0.5 increments 

using the generated weak motions at the JB distance range of 1 to 1000 km. Synthesized large 

magnitude time histories generated based on this proposal will be validated against existing 

GMPEs developed for CENA. The simulated ground motions are then employed for GMPE 

development. Furthermore, the simulated ground motions can be use in linear/nonlinear 

structural dynamic analysis/design, performance-based design, and seismic hazard analysis.  

 Organization of the Report 

This report has 7 chapters. This chapter includes the background and general explanation 

and framework about the report. The remaining chapters are organized as follows: 

In Chapter 2, distinct techniques proposed for producing synthetic time series using the 

SSGFM are described, and a comparison between advantages and disadvantages of those 

methods is performed. Finally, an alternative new rupture time probability function will be 

developed and will be shown why it works better. Then, this chapter presents the two-stage 

SSGFM in which the future large earthquake is divided into a few patches and small earthquakes 

are triggered inside these patches to account for the effect of asperities. 

Chapter 3 discusses how to extend the SSGFM to DCF source model since this method is 

a scaling approach and it is not necessarily required to use small earthquakes. In fact, it is 

possible to generate synthetic time series for earthquakes with magnitudes of interest using any 

recorded earthquakes with different magnitudes which obey various source models such as DCF 

source models. 

Chapter 4 describes some adjustment factors to convert between point-source and 

extended-fault models. In this regard, an effective distance or center of released energy, in which 

we define a virtual point providing the same amount of energy at the station as a finite-fault 

would provide, is defined that can account for the effect of propagation path on seismic waves. 

The SSGFM simulates ground motions at the center of energy. Therefore, using the presented 

conversion equations between the effective distance and the Joyner-Boore distance, the effective 
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distance is converted to the JB distance which is one the most widely used distance metrics in 

earthquake engineering and seismology. 

In Chapter 5, multiple MATLAB functions are written to generate synthetic large 

earthquake time histories including different methods proposed and developed for producing 

synthetic time histories using input ground motion as seeds. Then, the written codes are validated 

using synthetic and real earthquake data. To this end, we use the shock and foreshock/aftershock 

data as large and small earthquakes and compare the simulated time histories with the observed 

data in terms of amplitude (PGA and PGV), frequency content, significant duration (Trifunac 

and Brady, 1976), and elastic response spectra, PSAs (Bozorgnia et al., 2010). 

Chapter 6 employs the written codes based on the explained approaches to simulate 

ground motions in CENA. One of the difficulties of using empirical Green’s functions is that 

recordings of small earthquakes should be available. So, what if there is no recording available at 

the site of interest? Furthermore, most recordings of small earthquakes are contaminated with 

noise. In this regard, we simulate region-specific synthetic weak motions to be used as seeds 

(input motions) within the framework of the SSGFM. The simulated time histories are then used 

to develop a suite of GMPEs for CENA. Derived GMPEs are validated against real observations 

and predicted mean values of PGA, PSA, and PGV from existing GMPEs developed for this 

region. 

Finally, Chapter 7 summarizes significant results and conclusions presented in this report. 

Recommendations for future studies are also presented. 
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 Figures 

 

 

 

 

Figure 1-1. Impulse response function (Definition of Green’s function). The triangle on the right 

of the medium is a sensor to capture the response such as a seismometer or accelerometer. 
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Figure 1-2. The difference between the effective distance with the other distances. 
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Figure 1-3. Schematic diagram of a predicted strong ground motion using the SSGFM. 
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Figure 1-4. Schematic illustration of different steps for simulation of large earthquakes (target) 

using the SSGFM. 
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Figure 1-5. Schematic plot for the approximation of theoretical source time function. 
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Figure 1-6. Radiation of P and S-waves from a double-couple point source (shear-dislocation). 
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Figure 1-7. Schematic plot of the displacement, velocity, and autocorrelation functions. D0 is the 

total final slip and T is the rise time. 
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Figure 1-8. Theoretical general form of displacement source time function and slip velocity 

source time function. 
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2. Generalization of the Stochastic Summation Schemes for 

the Single Corner Frequency Source Spectral Model 

 Introduction 

The stochastic summation of Green’s functions method (SSGFM) scheme is a simple and 

straightforward technique which requires a recorded small earthquake time history plus stress 

drop and moment magnitude values of both small and target events. In essence, the target fault 

area is partitioned into a large number of identical sub-faults representing the small earthquake 

fault area. The displacement pulse radiated from each sub-fault can be treated as Brune’s pulse in 

the far field. In other words, a hierarchical set of smaller earthquakes make a large earthquake. In 

fact, strong motion records for a high-magnitude earthquake can be defined as a summation 

(linear combination) of delayed (lagged or shifted) and scaled small-event time histories 

(Hartzell, 1978; Irikura, 1983; Irikura, 1986; Munguia and Brune, 1984; Joyner and Boore, 1986; 

Boatwright, 1988; Wennerberg, 1990; Tumarkin and Archuleta, 1994; Ordaz et al., 1995; Kohrs 

et al., 2005). Therefore, the process can be characterized in 3 steps. The first and second steps 

are to find the number of sub-events and the scaling factor, respectively. The scaling factor is a 

factor that scales the small earthquake to a unit excitation (Wu, 1978; Wu, 1981). The third and 

the most important step is to produce a probability distribution function to generate rupture times 

(delay times) for sub-events to account for rupture propagation. Thus, it is required to find the 

scaling factor, the number of cells, and the rupture times where the expected spectrum matches 

the spectrum of the target event, to attain realistic accurate synthetic time histories. 

In the SSGFM, three components of a large earthquake can be simultaneously simulated 

in the whole frequency range using a linear combination of a specific number of shifted and 

scaled small earthquakes’ time histories. Hence, the amplitude of the target event (total seismic 

signal at a particular site) in the time domain, Yt(t), can be written as 

 1 2
1

( ) [ ( ) ( ) ( )] ( ),
N

t s s s N s i
i

Y t Y t Y t Y t Y tξ τ τ τ ξ τ
=

= − + − + + − = −∑   (2-1) 

where Yt(t) gives the amplitude of the postulated earthquake (total seismic signal at a particular 

site), ξ represents the scaling factor, N denotes the number of sub-events, and Ys(t) gives the 
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amplitude of the observed small earthquake (the signal of sub-events at that site). τi is the rupture 

time for sub-event ith (rupture i starts radiating at τi). In fact, each subevent begins to radiate at 

rupture time τi. Delay times generally describe the effect of directivity and rupture velocity 

(Hartzell, 1978). Since there are no specific restrictions for the rupture times and no assumptions 

for the fault size and position of nucleation for a future earthquake, this summation called a 

stochastic (or random) summation scheme. The aforementioned equation can be written in the 

frequency domain as 

 
1

( ) ( ) exp( ).
N

t s i
i

Y Y iω ξ ω ωτ
=

= −∑   (2-2) 

Delay times in the time domain equation, implying the rupture propagation, are turned 

into phase shifts (exponential term) in the frequency domain equation. Regarding different 

source models like single and double corner frequencies, diverse rupture time probability 

functions will be introduced. In the following, we will explain how to define N, ξ, and τi to obey 

scaling relations corresponding to the widely used source models such as the ω-squared model 

(Aki, 1967; Brune, 1970). 

In this chapter, how one can obtain these three parameters (ξ, ,N  and ( )p t  to generate 

delay times) to simulate a postulated major earthquake are explained. In this regard, some 

mathematical definitions are reviewed first. Then, the procedures proposed by Joyner and Boore 

(1986), Wennerberg (1990), Tumarkin and Archuleta (1994), and Ordaz et al. (1995) are 

described. 

 Mathematical Definitions 

The expected value of a function, g(x), over a specific probability distribution function 

(pdf), fx(x), is defined as 

 [ ]( ) ( ) ( )xE g x g x f x dx
+∞

−∞

= ∫   (2-3) 

The Fourier transform of a function is defined as 
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0

( ) ( ) ( )
T i tFourier t f t e dtωϕ φ ϕ −= = ∫   (2-4) 
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The inverse Fourier of a function is defined as 
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2

T i tInverseFourier f t f e dωφ ϕ φ ω
π

= = ∫   (2-5) 

The energy (power spectrum) of a function in the time domain, using the convolution (*), is 

defined as 

 *( )* ( )Energy t tϕ ϕ=   (2-6) 

in which the superscript * indicates the complex conjugate function. The energy (power 

spectrum) of a function in the frequency domain is defined as 

 *( ) ( )Energy f fφ φ= ×   (2-7) 

Based on the aforementioned equations, the expected power spectrum for the simulated seismic 

wave in the frequency domain can be written as 
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and using equation (2-3) 
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Therefore, the expected energy of the simulated seismic wave is 
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we obtain 

 22 2 2( ) ( ) ( 1) ( )t sY Y N N N pω ξ ω ω = + −    (2-12) 

Finally, by taking a square root from both sides, we have 
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Thus, p(ω) is the spectrum (Fourier transform) of the probability distribution function (pdf) of 

rupture times. 

 One-stage Stochastic Summation Schemes for the Single Corner 

Frequency Source Spectral Model 

 Joyner and Boore (1986) Scheme 

First, it should be mentioned that Boore and Joyner did not introduce any particular 

procedure for the SSGFM, but they showed how to constrain the LF and HF predictions using 

the seismic scaling relations with a uniform distribution of random delay times over the rupture 

duration of the target event. In this scheme, N identical sub-events scaled by a factor, ξ, are 

added together using random rupture times with a uniform distribution over the source duration, 

Tc. Hence, the pdf can be written as 
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Next, taking a Fourier transform from the pdf of delay times, we get 
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Therefore, the spectrum of the simulated event is 
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Then, the low and high frequency limits are used to constrain the summation as follows 
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As expected, the aforementioned equation shows that the spectra of sub-events are added 

coherently at very low frequencies and are added incoherently at very high frequencies to 

construct the target spectrum. Since the path, the site, and the instrument effects are the same for 

both events, they can be removed. Of course, there are some discrepancies between path and site 

effects for both events due to directivity, geometrical spreading, and scattering and intrinsic 

attenuation. But these variations are assumed to be insignificant and ignorable. Thus, the ratio of 

the amplitude of the target event to the sub-event for a ω-square source spectrum can be written 

as 
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So, we have 
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  (2-19) 

Then, assuming both events have similar stress drop values (similarity assumption) with a 

scaling relation of Mfc
3 = constant, N and ξ can be obtained from equations (2-17) and (2-19) as 

follows 
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Now, we have N, ξ, and rupture times generating from a uniform distribution in the 

interval of 0 to the duration of the target event, Tct = 1/fct. This model is essentially a Haskell 

(1964) rupture where the slip velocity and rupture velocity are constant and the slip is the same 

all over the fault plane. To perform a numerical example for this scheme and the other schemes 

which are later explained in the remaining of this report, the following values to simulate a target 

event from a small event supposing both have identical stress drop values (assumption of 

similarity) is used 
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To do simulation, we use a sampling rate of 200 samples/sec (step size of 0.005 sec). 

Hence, the Nyquist frequency is 100 Hz (half of the sampling rate). Since the corner frequency 

of the target event is 1 Hz, the duration of the target event is 1 sec. Consequently, all the 

generated rupture times are placed between 0 to 1 sec. Figure 2-1 illustrates the distribution of 

the generated rupture times for one realization. To produce rupture times with a uniform 

distribution, first random numbers are generated over 0 to 1 and they are then scaled to the 

interval of 0 to Tct. Then, N and ξ are determined. Finally, using equation (2-1), the simulated 

event is produced. Figure 2-2 presents 10 specific runs (simulations or realizations) of the 

Joyner-Boore scheme using the numerical example as well as the root mean square (rms) average 

spectrum from 10 different simulations. It should be mentioned that different realizations are 

similar but not identical due to the random nature of the generated rupture times for each 

realization. Again, we emphasize that what is shown in the plots as simulation indicates only 10 

specific simulations and running another simulation would produce a slightly different spectrum. 

Although the Joyner-Boore scheme predicts LFs and HFs of the target spectrum very 

well, the main problem of this scheme is that there are no constraints at intermediate frequencies 
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particularly near the corner frequency; and consequently, in this frequency range the simulation 

differs from the target event. Moreover, the appearance of the sinc function in the simulation 

process creates several holes (a periodic set of zeroes) in the simulated spectrum, particularly at 

frequencies above the corner frequency of the target event. Another flaw in this scheme is that 

stress drop values are supposed to be equal for the sub-event and target event, but in reality, they 

can be different. 

 Wennerberg (1990) Scheme 

To find the pdf of rupture times covering the duration of the larger event, Wennerberg 

supposed that the density function has an amplitude spectrum equal to the ratio of the ω-square 

spectra of the target event to the sub-event and has a zero phase (non-causal). In fact, he assumed 

that the sub-event and target event have identical or very similar phases. In Wennerberg (1990), 

he assumes that the ratio of the spectra is 

 2( ) ( 1) ( ) ( )          when  is large
( )
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Y N N N P N p N
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ω ξ ω ξ ω
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 = + − ≈  
  (2-22) 

and then using equation (2-18), the following equations are obtained 
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As can be seen, there is no specific equation to obtain the number of summands and the 

scaling factor and these two parameters are dependent. Therefore, one can acquire the scaling 

factor supposing a large number for the number of summands. Also, getting inverse Fourier 

transform from the amplitude of the density function in the frequency domain gives the zero-

phase probability distribution (ZPD) for delay times as follows 
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in which ( )tδ  is the delta function. Since this function is ZPD, the shape of this function is 

symmetric around the y axis. 

For the numerical example, values already described in the Joyner and Boore section are 

used. Wennerberg suggested using a large number for the number of sub-events. Here, we use 

10,000 to be similar to other schemes. Then, the scaling factor can be obtained using the 

equation (2-23). To generate rupture times, the method proposed in the Appendix of Wennerberg 

(1990) is used. In this regard, first he calculated the cumulative distribution function (cdf) from 

the pdf using ( ) ( )
t

P t p t dt
−∞

= ∫ . Then, using differentiation he provided three equations to obtain 

rupture times. These equations are 
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  (2-25) 

Since the cdf is always less than or equal to 1, we generate 10,000 random numbers 

(seeds) in the interval of [0, 1] as representative values from the cdf. Afterwards, rupture times 

are derived using the abovementioned equations corresponding to the generated P values. Figure 

2-3 shows the distribution of the generated rupture times. 

This distribution has a single peak at 0 sec and the most energy is distributed here. It is 

also symmetric around the y axis. Since the generated rupture times are symmetric, they 

compensate the effect of delays and the phase effectively stays zero. In this approach, 

approximately half of the rupture times are negative, and it is unrealistic. Hence, all rupture times 

are shifted by a constant value equal to the rupture duration (Tct = 1/fct) to be properly treated and 

be appropriately applied for simulations. Another point is that there are rupture times which are 

larger than the total rupture duration, but those sub-events are rare. Note that p(t) should not be 
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truncated to remove those rupture times because this process introduces a boxcar window and 

yields in holes in synthetized spectra. 

Afterwards, the value of either N or ξ is assumed and the other value is determined. 

Finally, using equation (2-1), the simulated event is produced. Figure 2-4 presents 10 specific 

runs of the Wennerberg scheme using the numerical example. 

The most important part of a spectrum for engineers and engineering applications is the 

high frequency part, and since there is no constraint at HFs, the simulated spectrum would be 

overestimated. Thus, this scheme has a huge deficiency in the HF part of the simulated spectrum 

that cannot be matched with the target event. For instance, using the number of summands 

proposed by Joyner and Boore (1986) overestimated the spectrum by a factor of √2 at HFs. 

 Tumarkin and Archuleta (1994) Scheme 

To obtain values of scaling factor and number of sub-events, Tumarkin and Archuleta 

(1994) defines just one constraint and it is like the Wennerberg constraint. Hence, the number of 

sub-events is considered to be a large number and the scaling factor can be obtained by the 

following equation 

 t

s

MN
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ξ =   (2-26) 

As opposed to the Wennerberg (1990) scheme in which he supposed that the transfer 

function is non-causal (zero-phase), Tumarkin and Archuleta (1994) introduced a transfer 

function which is causal and considers the phase difference between the source spectra of small 

and target events. Using the complex form of the source spectrum, the transfer function is 

defined as the ratio of the complex source spectra of target event to sub-event as follows 
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  (2-27) 

The inverse Fourier transform of the above-mentioned equation is 
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The cumulative distribution function (cdf) from the pdf using ( ) ( )
t

P t p t dt
−∞

= ∫  can be written as 
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To generate rupture times, we first construct a t – P(t) table like normal distribution for 

various t values. The step size for t values in the table must be less than the step size of the small 

event. Then, like previous schemes, we generate N random numbers implying values of P. 

Finally, the corresponding t value can be reached from each P value (seed) using the constructed 

t – P(t) table. Figure 2-5 displays the distribution of 10000 generated rupture times based on the 

Tumarkin and Archuleta (1994) transfer function for one realization.  

The distribution starts from 0 and the transfer function, unlike other schemes, does not 

produce any negative rupture time. The shape of the distribution is very similar to a simple 

source time function for a large event (see Figure 1-5). Then, assuming 10000 sub-evens, we find 

the value of the scaling factor and using equation (2-26), the simulated event is produced. Figure 

2-6 depicts 10 simulated spectra compared with the target and sub-event spectra as well as rms 

average spectra. 

Even though the time domain distribution of the Tumarkin and Archuleta (1994) scheme 

is different than the Wennerberg (1990) scheme, they have similar spectra in the frequency 

domain due to the identical shape (amplitude) of their transfer functions in the frequency 

domain. Like the Wennerberg scheme, this scheme overestimates the spectrum at HFs. This 

overestimation of spectrum at HFs yields in higher maximum amplitude (such as PGA or PSA) 

in the time domain. 

 Ordaz et al. (1995) Scheme 

In this scheme, the authors define a transfer function in such a way that the obtained 

expected spectrum exactly matches the theoretical spectrum in the whole frequency band. To this 
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end, N and ξ can be computed using the LF and HF restrictions. In essence, the spectral ratio of 

the expected target event over the small event can be written as 
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Therefore, the spectral ratios at very LF and very HF range can be written as 
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This procedure is very similar to the Joyner and Boore procedure (see equation (2-17)) 

but Ordaz et al. (1995) calculate N and ξ in a general form with the possibility of having different 

stress drop values for the small and target events. Now, using the ratio of the amplitude of the 

target event to the sub-event, equations (2-18) and (2-19), we can get  
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Then, using the equation between seismic moment, stress drop, and corner frequency (see 

equation (1-40), the scaling law), N and ξ can be obtained by 
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At the intermediate frequency range, the spectral ratio can be written as 
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After simplifying the abovementioned equation, the Fourier transform of the pdf function of 

rupture times is derived as 

 

2

2 2

2

21
( )

1

cs ct

ct

p

ω
ω ω

ω
ω
ω

+
+

=
 

+  
 

  (2-36) 

Supposing that p(ω) is real, then the pdf function of rupture time can be obtained by getting the 

inverse Fourier transform as 
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∫   (2-37) 

The first step to use this scheme is to determine N and ξ that for the numerical example 

are 10,000 and 0.1. Then, we need rupture times to perform a summation. To generate rupture 

times, we use a procedure explained in Appendix A of Ordaz et al. (1995). They did not find any 

analytical solution for the inverse of the cdf of rupture time. However, they provide an equation 

to numerically find the cdf of rupture times as 
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Like the Tumarkin and Archuleta (1994) scheme, we construct a t – P(t) table for various 

t values. Afterwards, we generate 10000 random numbers in the interval of [0, 1] acting as P 

values. Then, rupture times are determined using the t – P(t) table for generated P values. Figure 
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2-7 shows the distribution of generated rupture times with the pdf proposed by Ordaz et al. 

(1995). As can be seen, it goes to infinity from both tails. Therefore, the generated rupture times 

are shifted by a constant value equal to the duration of the target event. There are a very small 

number of rupture times that are placed out of the total duration of the target event (less than 

5%). Note that the rupture times should not be truncated to consider only the rupture times 

within the duration, since it introduces a boxcar in the time domain and a sinc function in the 

frequency domain resulting in a periodic set of zeroes. Figure 2-8 demonstrates 10 simulated 

spectra compared with the target and sub-event spectra as well as the rms average spectra. As 

can be seen, the spectrum of simulation matches the expected spectrum of the target event at the 

whole frequency band. 

 TSP1 Scheme 

Coherent (smooth) portions of the source process generate LF waves, while incoherent 

(small scale heterogeneities) portions of the source process produce HF waves. In fact, a slip on a 

fault has two parts. The first part is a uniform slip (background slip) with a uniform stress drop 

over the entire fault. This part describes the LF seismic radiation. The second part is related to 

irregular slips over a heterogeneous fault to explain the HF radiation, particularly for large 

earthquakes (Aki, 1984). Thus, the overall fault rupture process is heterogeneous and it should be 

taken into account in the modeling of the source. These heterogeneities on the fault plane are 

called asperities, defined as strong patches resisting against breaking during a large earthquake. 

To construct the spectrum of a large earthquake, subevent spectra are coherently added at 

LFs while they are incoherently added at HFs. In the middle frequency range, the feature of 

incremental transition from complete coherence at LFs to complete incoherence at HF is called 

partial coherency (Haskell, 1964; Tumarkin and Archuleta, 1994). Thus, the target spectrum, 

St(ω), can be expressed by the summation of scaled source spectra as 

 ( ) ( ) ( ) ( )
1 1 2 2( ) ( ) ( ) ( )t N NS S S Sε ω ε ω ε ω ε ωω ξ ω ξ ω ξ ω= + + +   (2-39) 

and once all subevents have identical source spectra, Ss(ω), we have 

 ( ) ( )( ) ( )t sS N Sε ω ε ωω ξ ω=   (2-40) 
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where ε(ω) is the power for raising each subevent spectrum. Using the coherent summation at 

LFs and incoherent summation at HF, two constraints can be put on the power function as 
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Therefore, the ratio of source spectra can be written as 

 1 ( )( )
( )

t

s

S N
S

ε ωω ξ
ω

=   (2-42) 

To generalize the summation scheme, we suppose that the spectrum has the general form of 
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Hence, the source spectral ratio is given by 
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So, the limits for the LF and HF ranges can be obtained from 
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By equality of equations (2-42) and (2-45), we obtain 
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Thus, the scaling factor and the number of small events are generally determined from 
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If both events have similar stress drop values and the scaling of the source dimension and the 

seismic moment is as follows 

 0 constantCM f δ =   (2-48) 

Note that many studies concluded that the δ should be equal to 3 and the other values are 

artifacts caused by the limited frequency band of data (e.g., Abercrombie, 1995; Hiramatsu et al., 

2002).  Using this equation, we get 
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To evaluate the power function, we should use the equilibrium for the middle frequency 

range as 
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Substituting N and ξ in the abovementioned equation, the power function can be obtained from 
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It is interesting to note that the power function is independent of pd (the power of the 

denominator) and δ, but dependent on pf (the power of frequency). However, by changing δ, the 

corner frequencies vary. Figure 2-9 illustrates the variation of epsilon with frequency for 

different cases with different corner frequencies. 

It should be noted that Boore (2009) and Atkinson et al. (2009) used this approach to 

modify the EXSIM software to generate results matching the results of SMSIM. However, they 

used a transfer function in the middle frequency based on the ratio of the target to small event 

source spectrum. But here, we define N(1/ε) to automatically consider the effect of coherent, 

incoherent, and transition region at the same time. 

Thus, the spectral ratios can be defined as 
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Therefore, by equality of these ratios, we have 
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where the ε is determined using equation (2-51). To determine the rupture times using the TSP1 

method, we first construct a t – P(t) table. Then, we generate random numbers in the interval of 

[0, 1]. These random numbers are used as P(t) and using the constructed table, relevant rupture 

times, t, are picked. 

 Classic ω2 source spectrum with the scaling assumption of Mf 3=Cσ 

Briefly speaking, the steps required for the SSGFM employing the TSP1 scheme is as 

follows 

1. Select the seed input ground motion and its magnitude and stress drop. 

2. Choose the magnitude and stress drop of the large magnitude event. 
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3. Determine ξ: to scale (normalize) the input seed to a unit excitation 
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4. Calculate N: the number of required subfaults to reach the target spectrum 

 
4 44 3 3

cs t t

ct s s

MN
M

ω σ
ω σ

−
     ∆

= =     ∆     
  (2-55) 

5. Generate τ: delay times to simulate the rupture propagation 
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where 
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6. Finally, add scaled and delayed motions from subfaults to construct the ground 

motion of the target event. 

Figure 2-10 and Figure 2-11 depict the distribution of rupture times and 10 realizations 

using those generated rupture times using the TSP1 method, respectively, for the numerical 

example. It should be emphasized that this scheme is the same as the Ordaz et al. (1995) scheme 

and the only difference is the procedure to obtain the pdf for generating rupture times. This 

method has been tested with other examples provided in the Appendix A. 

 General Comparison between One-stage Schemes 

To generally compare these schemes, Figure 2-12 demonstrates the plots for the expected 

spectra of all schemes in addition to the spectra of the target event and small event. The Joyner 

and Boore (1986) method underestimates the expected spectrum in the intermediate frequency 

range and contains holes; however, it matches the target spectrum at LFs and HFs. The 
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Wennerberg (1990) and Tumarkin and Archuleta (1994) spectra are completely identical and 

they overestimate spectra at the HF range. Of course, the difference between these two schemes 

appears in the time domain, since the pdf function proposed by the Wennerberg (1990) scheme 

does not introduce any phase delay, but there a phase delay in the Tumarkin and Archuleta 

(1994) function. Although the Ordaz et al. (1995) and TSP1 spectra completely match the target 

spectrum, the shape of simulated time histories will be somehow unrealistic due to concentration 

of the energy at a single peak in the middle. 

 Two-stage Stochastic Summation Schemes for the Single Corner 

Frequency Source Spectral Model 

Generally, there are two different views to model an idealized heterogeneous composite 

fault plane which is a rectangular including small circles (Aki, 1982). In the first view, the 

“asperity model,” each circle is considered as a patch with very strong cohesion against the 

break. Then, each circular patch slips independently and generates HF waves (Wesson et al., 

1973; Kanamori and Stewart, 1978; Li and Dmowska, 1981). In the second view, circles indicate 

cracks which can break and a slip occurs on them; however, the remaining regions will be 

unbroken after the rupture (Das and Aki, 1977). This model is known as the “barrier model” (Aki 

et al., 1977). Barriers cause an irregular slip distribution, and thereby an irregular stress drop 

distribution (Irikura, 1983). Of course, a realistic fault plane may consist of a combination of 

patches and barriers (Aki, 1982). For large earthquakes such as the 2011 M9.0 Tohoku, Japan 

earthquake (Ghofrani et al., 2013) and the 2010 M8.8 Maule, Chile earthquake (Frankel, 2017), 

the rupture propagation is often very complex and heterogeneous. There are some parts on the 

fault that radiate seismic waves stronger than other parts which are known as asperities 

(Boatwright, 1988). During an earthquake, rupture usually begins from an asperity and the most 

released energy of the earthquake comes from the asperities that become unlocked or unstuck. 

By expanding the rupture area, more than one asperity would be required to mimic the realistic 

behavior of the earthquake (Archuleta and Ji, 2016). 

The obvious problem of all one-stage schemes is that they produce similar time histories 

with a concentrated energy in the half duration of the target event. In fact, generated rupture 

times for the target event are distributed very simply and predictably similar to the source 
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complexity of the sub-event in one-stage schemes. However, several observations indicate that 

the rupture times’ distribution for a major earthquake is quite complex. In other words, a single 

peak carries most of the energy of the earthquake in the one-stage method; however, the moment 

rate functions for large earthquakes are not this simple (Wennerberg, 1990). 

To take into account the effect of asperities on simulated strong ground-motion time 

histories, Wennerberg (1990) suggested using a two-stage summation to create more realistic 

source time functions. In this strategy, first a few random patches are introduced. Second, a large 

number of rupture times corresponding to small sub-events inside the initial patches is generated 

to cluster the energy around produced rupture times in the first stage. In other words, many 

scaled and shifted small sub-events are summed together to generate medium magnitude 

auxiliary events. Then, these medium magnitude auxiliary events are scaled, shifted, and added 

together to simulate the final large target event. By creating several intermediate-magnitude 

events (corresponding to patches inside the fault area), the complexity of the moment rate 

function of the source gets more realistic. 

The concept of the two-stage scheme is similar to the concept of the one-stage scheme. In 

fact, scaled and lagged identical small earthquakes (EGFs) are added together to construct the 

spectrum of the target event. The difference with the one-stage scheme is that a few rupture 

times are generated at the first step over the total duration of the target event. Then, many new 

rupture times are generated over the duration of smaller earthquakes between the target and small 

earthquakes. These generated delay times in the second stage are distributed around the rupture 

times produced in the first stage. Different simulations (or realizations) with various initial 

rupture times are not similar and can account for different rupture processes due to a large 

earthquake. In fact, the rupture times having energy concentrated around them are generated at 

the first stage. These delay times somehow act like asperities on the fault of the target event. 

According to the definition of the two-stage scheme the time histories of the target spectrum 

from equation (2-1) can be generalized as 
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where τ1i and τ2j are the rupture times generated within the first and second stage, respectively. 

N1 and N2 are the number of rupture times in the first and second stage, respectively. Note that 
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the total number of subevents is equal to the multiplication of the number of patches by the 

number of subevents within each patch. Thus 

 1 2N N N= ×   (2-59) 

 The Fourier transform of the aforementioned equation is expressed as 
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The expected power spectrum for the simulated seismic signal in the frequency domain can be 

written as 
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 (2-61) 

After calculations, we get 

 2 22 2 2
2 2 2 2 1 1 1 1( ) ( ) ( 1) ( ) ( 1) ( )t sY Y N N N p N N N pω ξ ω ω ω   = + − + −      (2-62) 

in which p1(ω) and p2(ω) are the spectrum (Fourier transform) of the pdf of rupture times for the 

first and second stages, respectively. Finally, the amplitude spectrum of the target event can be 

written as 

 
2 2

2 2 1 1

2 1
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ω ω
ω ξ ω

    + − + −    =  
  

  (2-63) 

Again, the problem of not accounting for the directivity effect and not accounting for the 

nonlinear soil response still exist in this approach; however, the distribution of the rupture times 

does not look simple like the one-stage method. 



61 

 

 Wennerberg (1990) Scheme 

The constraints for the LF and HF are similar to the Wennerberg (1990) one-stage. The 

difference is how to generate the rupture times. The pdf to produce rupture times is also similar 

similar to the Wennerberg (1990) one-stage, but it is used to generate rupture times in two 

different stages. First, using the ZPD, a few (N1) rupture times associated with the significant 

subevent ruptures are generated. Then, in the second stage, many (N2) new rupture times are 

produced using the ZPD and are distributed over intervals centered on each produced rupture 

time in the first stage. In this regard, we need to consider some auxiliary events (patches) with a 

magnitude between the small and target magnitudes. These patches can be defined with a 

specific corner frequency, ωd, as follows 

 
1

4
1d ctNω ω=   (2-64) 

where N1 is a random small value (like 10) selected by the user and ωt < ωd < ωs. Then, the ZPDs 

for stage one and two are defined as 
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  (2-65) 

For the numerical example, we employ values already described in the Joyner and Boore 

(1986) section. Figure 2-13 and Figure 2-14 illustrate the distribution of rupture times for one 

realization and 10 realizations using those generated rupture times using the Wennerberg two-

stage scheme, respectively. The distribution of delay times unlike the Wennerberg one-stage 

summation has more than one peak. In fact, the energy generated from the second stage is 

clustered around the rupture times generated in the first stage. However, as the one-stage scheme 

of Wennerberg (1990), this scheme also has a huge deficiency in the HF part of the simulated 

spectrum that cannot be matched with the target event. For instance, using the number of 

summands proposed by Joyner and Boore (1986) overestimated the spectrum by a factor of √2 ∙ 

√2 = 2 at HFs. It is interesting to note that the overestimation is multiplied since it occurs at both 

stages. Although, the generated rupture times seem more realistic, this procedure includes too 

much HF. Therefore, this scheme gets even worse than its original one-stage scheme.  
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 Kohrs et al. (2005) Scheme 

This scheme is the extension of the Ordaz et al. (1995) scheme from one-stage to two-

stage. The LF and HF constraints for the two-stage scheme are the same as the one-stage scheme, 

but rupture times are generated in two different stages to capture the variability of different 

rupture processes (different rupture scenarios). Within the framework of the two-stage scheme, 

the spectral ratio of the expected target event over the small event can be written as 
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Since 
0

( ) ( )
T i tp p t e dtωω −= ∫ , it can be shown that 
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Therefore, the spectral ratios at very LF and very HF range can be written as 
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Thus, for the scaling of the LF and HF range, we obtain the same results as the one-stage scheme 
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At the intermediate frequency range, the spectral ratio can be written as 
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Hence,  
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 (2-71) 

in which ωcd or fcd is an auxiliary variable to define the corner frequency of the virtual event 

between the small and target events defined as 
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  (2-72) 

Then, by assuming a reasonable number of N1 such as 10, the corner frequency of the virtual (or 

auxiliary) event can be determined. Note that in the first step a few rupture times are generated 

over the whole duration of the target event. Assuming the two pdfs are independent, one solution 

can be obtained from the equality of the first terms on both sides and from the equality of the 

second terms on both sides. Then, the pdfs can be expressed as 
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  (2-73) 

Figure 2-15 and Figure 2-16 show the distribution of rupture times and 10 realizations 

using those generated rupture times using the Kohrs et al. (2005) two-stage scheme, respectively. 

As can be seen, the simulated spectrum matches perfectly the target spectrum in the whole 

frequency range. 
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 TSP2 Scheme 

This method is similar to the TSP1 method (and so similar to Ordaz et al., 1995) and the 

only difference is to produce the rupture times in two steps. Therefore, the LF and HF constraints 

are the same as equation (2-47). Then, using the general equations of (2-42) and (2-63), the 

spectral ratios can be written as 
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in which 
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If the N1 value is supposed, then N2 and ξ can be obtained. Thus, using equation (2-62) 
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where 
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To determine the rupture times using the TSP2 method, we first construct a t – P(t) table. Then, 

we generate random numbers in the interval of [0, 1]. These random numbers are used as P(t) 

and using the constructed table, relevant rupture times, t, are picked. 

 Classic ω2 source spectrum with the scaling assumption of Mf 3=Cσ 

To determine equations for this case, we substitute pf and pd exponents with 2 and 1, 

respectively. Thus, the steps needed for the SSGFM employing the TSP2 scheme is as follows 

1. Select the seed input ground motion and its magnitude and stress drop. 

2. Choose the magnitude and stress drop of the large magnitude event. 

3. Determine ξ: to scale (normalize) the input seed to a unit excitation 
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  (2-78) 

4. Calculate N: the number of required subfaults to reach the target spectrum 
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5. Suppose a small value to represent the number of patches (N1). 10 is a good 

number to choose. Then, N2 can be found using N = N1 ∙ N2. Note that with 

increasing the value of N1, the distribution of rupture times generated using the 

two-stage scheme becomes more similar to the one-stage scheme. 

6. Compute the corner frequency of the auxiliary event using the following equation 
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7. Generate τ1i: delay times in the first stage to simulate the rupture propagation of 

patches using the following distribution 
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where 
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8. Generate τ2j: delay times in the second stage to simulate the rupture propagation 

of small events distributed around the patches using the following distribution 
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where 
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9. Finally, add scaled and delayed motions from subfaults to construct the ground 

motion of the target event as follows 
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Figure 2-17 and Figure 2-18 demonstrate the distribution of rupture times and 10 

realizations using those generated rupture times using the TSP2 scheme, respectively, for the 

numerical example. Again, we note that this scheme is the same as the Kohrs et al. (2005) 

scheme and the only difference is the procedure to obtain the pdfs for generating rupture times. 

This method has been tested with other examples provided in the Appendix A. 

 General Comparison between Two-stage Schemes and One-stage Schemes 

Figure 2-19 displays the difference between various two-stage schemes to obtain the 

expected target spectra. As previously explained, the TSP2 and Kohrs et al. (2005) schemes are 

exactly the same and both match the target spectrum in the whole frequency range and the only 
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difference between them is the procedure to construct the summation schemes. The Wennerberg 

(1990) two-stage scheme overestimates the HF portion by a factor of 2. 

Since the TSP1 and the Ordaz el al. (1995) schemes are the same and also the TSP2 and 

the Kohrs et al. (2005) schemes are the same, we selected the TSP1 and TSP2 schemes to 

compare the difference between these two approaches. Figure 2-20 presents the rupture times 

generated by TSP1 (the one-stage scheme) and TSP2 (the two-stage scheme) for three different 

realizations. Although both schemes match the target spectrum in the whole frequency range, the 

rupture times generated by them are completely different. For the one-stage scheme, all three 

different realizations have similar patterns with maximum energy concentrated in the middle. On 

the other hand, each realization of the two-stage scheme is different than the others describing 

the strength of this scheme to account for different rupture scenarios. 
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 Figures 

 

 

Figure 2-1. The distribution of the generated rupture times using the Joyner and Boore (1986) 

scheme 
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Figure 2-2. 10 different realizations using the Joyner and Boore (1986) scheme and rms average 

spectrum 
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Figure 2-3. The distribution of the generated rupture times using the Wennerberg (1990) scheme 
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Figure 2-4. 10 different realizations using the Wennerberg (1986) scheme and rms average 

spectrum 
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Figure 2-5. The distribution of the generated rupture times using the Tumarkin and Archuleta 

(1994) scheme 
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Figure 2-6. 10 different realizations using the Tumarkin and Archuleta (1994) scheme and rms 

average spectrum 
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Figure 2-7. The distribution of the generated rupture times using the Ordaz el al. (1995) scheme 
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Figure 2-8. 10 different realizations using the Ordaz et al. (1995) scheme and rms average 

spectrum 
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Figure 2-9. Variation of epsilon with frequency 
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Figure 2-10. The distribution of the generated rupture times using the TSP1 scheme 
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Figure 2-11. 10 different realizations using the TSP1 scheme and rms average spectrum 
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Figure 2-12. Comparison of expected Fourier amplitudes determined from different one-stage 

summation schemes  
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Figure 2-13. The distribution of the generated rupture times using the Wennerberg (1990) two-

stage scheme 
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Figure 2-14. 10 different realizations using the Wennerberg (1990) two-stage scheme and rms 

average spectrum  
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Figure 2-15. The distribution of the generated rupture times using the Kohrs et al. (2005) two-

stage scheme 
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Figure 2-16. 10 different realizations using the Kohrs et al. (2005) two-stage scheme and rms 

average spectrum 
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Figure 2-17. The distribution of the generated rupture times using the TSP2 scheme 
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Figure 2-18. 10 different realizations using the TSP2 scheme and rms average spectrum 
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Figure 2-19. Comparison of expected Fourier amplitudes determined from different two-stage 

summation schemes 
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Figure 2-20. Comparison of rupture times generated using TSP1 and TSP2 (one- and two-stage 

summation schemes, respectively) 
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3. Generalized Stochastic Summation Schemes Extended for 

the Double Corner Frequency Source Spectral Model 

 Introduction 

The single corner frequency (SCF) ω-square (Brune shape) source model is constructed 

based on a circular fault (Haskell, 1969; Savage, 1972; Haddon, 1992). In reality, a ruptured fault 

can be a rectangular or has a complex shape. In addition to the shape of the rupture, fault 

roughness (asperity) and inhomogeneities on the fault cause departure from the SCF ω-square 

model. Different models have been proposed to capture these effects on the source spectral shape 

(e.g., Hartzell and Brune, 1979; McGarr, 1981; Papageorgiou and Aki, 1983; Boatwright, 1988). 

Therefore, the near-field point-source model may need to have more than one corner frequency 

to account for the effect of dimensions, rise time, rupture time, and asperities to match observed 

source spectra (Archuleta and Ji, 2016). Some researchers observed that the source spectrum of 

large earthquakes is better characterized with a double corner frequency (DCF) point-source 

model which has a spectral sag between two corner frequencies (Joyner, 1984; Boore, 1986; 

Atkinson and Boore, 1995; Atkinson and Sonley, 2003; Yenier and Atkinson, 2014). Even for 

small to moderate earthquakes, the source spectrum may need two corner frequencies to match 

the apparent moment rate functions (MRFs). For instance, several investigators observed that the 

MRFs of moderate earthquakes that occurred in northeastern North America follow a DCF 

model (e.g. Boatwright, 1994; Atkinson and Boore, 1995; Atkinson and Sonley, 2003; 

Boatwright and Seekins, 2011). Furthermore, Archuleta and Ji (2016) concluded that even small 

to moderate earthquakes (having 3.3 < M < 5.3) are better described with DCF source models. 

In the SSGFM, the finite-fault source is divided into sub-events or sub-sources, 

representing small earthquakes which can be treated as point sources. Atkinson (1993), Atkinson 

and Boore (1995), and Boore et al. (2014) analyzed recordings from earthquakes recorded within 

eastern and North America (ENA) with magnitudes more than 4 and showed that there is a sag in 

the middle frequency range of the source spectrum. This source spectrum shape can be modeled 

with two different corner frequencies, and thus, the SCF is no longer valid. Yenier and Atkinson 

(2014) also observed that the Fourier amplitude spectrum (FAS) obtained from the Landers, CA 
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earthquake (1992/06/28) with a moment magnitude of 7.28 and the Northridge earthquake 

(1994/01/17) with a moment magnitude of 6.69 successfully match the DCF point-source model. 

In the SSGFM, we usually employ earthquakes with magnitude around 4.5 to 5.5 as the EGFs 

because for smaller magnitude earthquakes the signal to noise ratio (SNR) is very low. 

Therefore, the signal is lost in the noise particularly for the low frequency range since the 

frequency contents of small earthquakes have less contribution from the low frequency range 

(Sedaghati and Pezeshk, 2016c). For moderate-magnitude earthquakes, the assumption of having 

a SCF sub-source may be violated. Therefore, it is required to generalize and update the pdf for 

generating rupture times in order to be used once the selected EGF is defined with a DCF source 

model to match the target spectrum which has two corner frequencies as well. 

The question is why is this departure from SCF to DCF source models important and 

does it have a significant effect on simulations? Duration is an important feature of seismic 

waves which has significant impact on response spectral amplitudes. In essence, shorter 

durations lead to higher response spectral amplitudes, whereas longer durations yield smaller 

response spectral amplitudes (Atkinson et al., 2009). One important difference between the SCF 

and DCF models is the difference between their source durations. In the SCF the source duration 

is defined as 1/fc, while in the DCF models the duration is defined as 1/fa+1/fb. Since the energy 

should be constant, a longer duration of DCF models results in a lower spectral acceleration 

(response spectra) compared to SCF models (Boore, 2014). 

In this chapter, we will show that it is not necessary to have the SCF assumption for the 

source model. In this regard, we will describe how to extend the SSGFM to be employed for 

earthquakes with DCF source models. 

 Multiplicative Double Corner Frequency Source Models 

The Fourier acceleration spectrum for a multiplicative double corner frequency (MDCF) 

source model is obtained by multiplication of two spectra as (Boore et al., 2014) 

 2
0

1 1( ) (2 )

1 1
a b

a b
pd pdpf pf

a b

S f CM f
f f
f f

π=
      
   + +            

  (3-1) 
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where M0 and f are seismic moment and frequency, respectively, and C is a constant related to 

the radiation pattern. pf and pd represent the power of frequency and the power of denominator. 

The subscripts a and b are related to the first (lower) and second (higher) corner frequencies, 

respectively. Therefore, fa and fb are the first and second corner frequencies. Since the LF and HF 

level of the Fourier acceleration spectrum of the DCF source model should match the LF and HF 

level of the Fourier acceleration spectrum of the SCF ω-square source model, it imposes the 

following constraints to be satisfied 

 
2

2
a a b b

a a b b
pf pd pf pd

a b c

pf pd pf pd

f f f× ×

× + × =

× =
  (3-2) 

where fc is computed using equation (1-40). 

 One-stage Summation Scheme 

Based on the equation of the FAS of the MDCF source model, the small and target 

spectra can be written as 
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  (3-3) 

and by dividing the spectra, the spectral ratio of source functions can be obtained from 
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where G is 
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to avoid writing a complex expression in the following equations. Thus, we can find the limits of 

the spectral ratio when frequency goes to zero and infinity as 
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Also, using the expected target spectrum, as explained previously in Chapter 2 equation (2-13), 

the spectral ratio of the target event to the small event can be written as 
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  (3-7) 

Therefore, by equality of the limits of equations (3-6) and (3-7) for the very LF and very HF, the 

scaling factor and number of small events can be found as 
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  (3-8) 

As can be seen, since the LF and HF of the SCF and DCF source models match each 

other, the scaling factor and number of summands have not been changed and can be obtained 

like the SCF source model. Now, if the pdf to generate rupture times is obtained, we will have a 
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complete solution. In order to derive the pdf of rupture times, we use the equality of equations 

(3-4) and (3-7) in the middle frequency range as follows 

 2 0

0

( ) 1 1(1 ) ( )
( )

t t

s s

Y f MN p G
Y f N N M

ξ ω
 

= + − = 
 

  (3-9) 

After simplifying the above-mentioned equation, the Fourier transform of the pdf of rupture 

times is derived as 
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−

  (3-10) 

Supposing that p(ω) is real, then the pdf of rupture times can be obtained by getting the inverse 

Fourier transform as 
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π

∞
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−
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−∫   (3-11) 

in which G is the function defined in equation (3-5). 

To perform a numerical example for this scheme, we use the following values to simulate 

a target event from a small event, supposing both have identical stress drop values (assumption 

of similarity) 

 

1.0
0.001

2.0
0.5

1.0,  0.2 5.0
10.0,  4.0 25.0

t

s

a b

a b

ct at bt

cs as bs

M
M
pf pf
pd pd
f f f
f f f

=

=

= =

= =

= = → =

= = → =

  (3-12) 

To do simulation, we use a sampling rate of 200 samples/sec (step size of 0.005 sec). 

Hence, the Nyquist frequency is 100 Hz (half of the sampling rate). Since the corner frequencies 

of the target event are 0.2 and 5.0 Hz, the duration of the target event is 0.5/0.2 + 0.5/5.0 = 2.6 

sec. However, the SCF source model with similar characteristics has a source duration of 1.0 sec. 

This increase of duration causes the reduction of PGA and PSA values if the energy is constant. 

Figure 3-1 depicts the difference between the spectra of MDCF and SCF source models for both 
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small and target events. As can be seen, in the middle frequency range, there is a spectral sag for 

the MDCF source model; however, the MDCF source spectra match the SCF source spectra at 

very LFs and very HFs for both small and target events. 

Figure 3-2 demonstrates simulated spectra from 10 different realizations as well as 

spectra of small and target events following a MDCF source model. It is interesting to note that 

each simulation can be soemwhat distinct from the target spectrum, while simulations on average 

perfectly match the target spectrum in the whole frequency range of interest. The average 

simulation is the root mean square (rms) mean of all different realizations. Different numbers of 

simulations (e.g., 10, 40, and 640) are suggested for averaging and matching the target frequency 

with higher accuracy (Boore, 2003; Boore, 2009). This figure describes that the average 

spectrum from even a small number of simulations (10) can roughly match the target spectrum in 

the entire frequency range. Figure 3-3 illustrates the rupture times generated by the one-stage 

scheme of the MCDF source model for three different realizations. Since the scheme is 

performed in only one stage, the distributions of generated rupture times are pretty similar and 

the maximum energy is released in the half source duration for all realizations. Therefore, this 

scheme cannot appropriately account for the variability of different rupture propagation 

scenarios as well as asperities. Hence, we extend this method to the two-stage scheme in the next 

section. 

 Two-stage Summation Scheme 

The whole concept of the two-stage summation scheme has been comprehensively 

described in Chapter 2 Section 4. Therefore, here only important equations to implement this 

scheme are explained.  

The spectral ratio of the target event to the small event can be written as the ratio of the 

source spectra using equation (3-4). On the other hand, the expected spectral ratio of the target 

event to the small event can be written as (from equations (2-60) thorough (2-63)) 
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in which N1 and N2 are the number of main patches and the number of small events inside each 

patch, respectively, and N = N1 N2. p1(ω) and p2(ω) are pdfs to produce rupture times for the first 

and second stage over the total target source duration and over the auxiliary source duration, 

respectively. Similar to the two-stage scheme for the SCF source model, we assume a small 

number like 10 for the number of main patches. 

The LF and HF limits are the same as the one-stage scheme. Thus, equation (3-8) can be 

used to obtain the scaling factor and number of subevents. Then for the intermediate frequency 

range, by equality of equations (3-13) and (3-4), we get 
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in which fad and fbd are the corner frequencies of an auxiliary event with a MDCF source model, 

and pfad, pfbd, pdad, and pdbd are its exponents somehow, they satisfy 
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where fcd is a variable to characterize the main corner frequency of the virtual event between the 

small and target events, defined as 
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Assuming the two pdfs are independent, one solution can be obtained from the equality 

of the first term on both sides and from the equality of the second term on both sides of equation 

(3-14). Then, the pdfs can be expressed as 
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in which L1 and L2 are two functions defined as 
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To test the proposed two-stage scheme for the MDCF source model, we use the similar 

assumptions mentioned in equation (3-12). For the auxiliary event, we use the following 

assumptions 
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For the corner frequencies, we suppose the lower corner frequency and then obtain the upper one 

using equation (3-15) as 

 1.5058 2.1000ad bdf f= → =   (3-20) 

Figure 3-4 presents 10 different realizations generated using the two-stage summation 

scheme for the MDCF source model and the rms average simulation. As can be seen, the average 

simulation is in good agreement with the target spectrum in the entire frequency band of interest. 

However, the average spectrum from 10 realizations is not as smooth as the one-stage 

summation of the MDCF source model. Therefore, it is recommended to employ more 

realizations to obtain the average simulation in order to have a smoother result. Figure 3-5 

demonstrates three different distributions of generated rupture times for the two-stage summation 

scheme with the MDCF source model. It is obvious that the complexity of the source rupture can 

be modeled using this scheme and the energy is well distributed over the source duration without 

concentration of the energy in the half of the duration. Hence, each realization simulated using 

this scheme is completely different than the next realization; and as a result, the variability of the 

rupture process and effect of asperities can be included in this summation scheme. 

 Additive Double Corner Frequency Source Models 

The Fourier acceleration spectrum for an additive double corner frequency (ADCF) 

source model is obtained by summation of two spectra as (Boore et al., 2014) 
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where ε is a weighting factor in the range of 0 to 1 for assigning the contribution of each SCF 

spectrum. The LF and HF level of the Fourier acceleration spectrum of the ADCF source model 
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must match the LF and HF level of the Fourier acceleration spectrum of the SCF source model. 

Thus, it imposes the following constraints 
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in which fc is determined using equation (1-40); therefore, if one of the corner frequencies and 

epsilon are specified, the other corner frequency can be obtained from the aforementioned 

equation. 

 One-stage Summation Scheme 

Based on the equation of the FAS of the DCF source model, the small and target spectra 

can be written as 
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and by dividing the spectra, the spectral ratio of the target event to the small event can be written 

as 
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where G* is 
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to avoid writing a complex expression in the following equations. Thus, we can find the limits of 

the spectral ratio when frequency approaches to zero and infinity as 
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Moreover, using the expected target spectrum, as explained previously in equation (3-7), the 

spectral ratio of the target event to the small event can be written as 
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Hence, by equality of the limits of equations (3-26) and (3-27) for the very LF and very HF, the 

scaling factor and number of summands can be found as 
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Again, since the LF and HF spectrum of the SCF source model matches the LF and HF 

spectrum of the DCF source model, the scaling factor and number of small events are the same 

and can be obtained like the SCF source model. Thus, if the pdf to generate rupture times is 

determined, a complete solution is obtained. In order to compute the pdf of rupture times, we use 

the equality of equations (3-24) and (3-27) in the middle frequency range as follows 
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After simplifying the abovementioned equation, the Fourier transform of the pdf of rupture times 

is derived as 
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Supposing that p(ω) is real, the pdf of rupture times can be obtained by getting inverse Fourier 

transform as 
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in which G* is the function defined in equation (3-25). 

To perform a numerical example for this scheme, we use the following values to simulate 

a target event from a small event supposing both events have identical stress drop values 

(assumption of similarity) 
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In these equations, we used the approach suggested by Boore et al. (2014) to obtain epsilon and 

fa using the following equations derived by Atkinson and Silva (2000) for ENA 

 
log 2.181 0.496
log 0.605 0.255

af
ε

= −
= −

M
M

  (3-33) 

assuming that the target event has a magnitude of 6 and the small event has a magnitude of 4. 

To perform simulation, we employ a sampling rate of 200 samples/sec (step size of 0.005 

sec). Thus, the Nyquist frequency is 100 Hz (half of the sampling rate). Because the corner 

frequencies of the target event are 0.1603 and 2.8676 Hz, the duration of the target event is 

0.5/0.1603 + 0.5/2.8676 = 3.2930 sec. Note that the SCF source model with similar 

characteristics has a source duration of 1.0 sec. Duration increase causes the decease of PGA and 

PSA values assuming the energy is constant. Figure 3-6 compares the source spectra of the 

ADCF model with the SCF model for target and small events. The ADCF source model has a 

considerable spectral sag at the middle frequency range and this sag increases with increasing the 

magnitude of the event. Figure 3-7 shows the rms average of 10 different simulations compared 

with each other as well as the spectrum of the target event. It is clear that the average simulation 

is in good agreement with the target spectrum in the whole frequency range and can perfectly 

mimic the spectral sag between two corner frequencies. Figure 3-8 displays three different 

distributions of rupture times. Again, since this is a one-stage scheme the maximum energy is 
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focused in the middle; therefore, this summation scheme results in similar simulations. Thus, to 

capture the variability of the rupture process and the effect of asperities, this scheme is extended 

to a two-stage summation. 

 Two-stage Summation Scheme 

The spectral ratio of the target event to the small event can be written as the ratio of the 

source spectra using equation (3-24). The expected spectral ratio of the target event to the small 

event can be written the same as the two-stage summation scheme for the MDCF source model 

equation (3-13). 

The LF and HF limits are the same as the one-stage scheme of the ADCF source model. 

Therefore, equation (3-28) can be used to obtain the scaling factor and number of small events. 

Then for the intermediate frequency range, we have 
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 (3-34) 

where fad and fbd are the corner frequencies of an auxiliary event with a ADCF source model, and 

pfad, pfbd, pdad, and pdbd are its exponents satisfying the following constraints 

 
2 2 2
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d ad d bd cd
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× = × =

− + =
  (3-35) 

in which fcd is a variable to specify the main corner frequency of the virtual event between the 

small and target events defined as 
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Assuming these two pdfs are independent, one solution can be acquired from the equality 

of the first term on both sides and from the equality of the second term on both sides of equation 

(3-34). Then, the pdfs can be expressed as 
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in which L1 and L2 are two functions defined as 
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  (3-38) 

To numerically test the proposed two-stage scheme for the ADCF source model, we use 

the similar assumptions mentioned in equation (3-32). For the auxiliary event, we use the 

following assumptions 
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  (3-39) 

For the corner frequencies, we suppose the lower corner frequency and epsilon, and then obtain 

the upper one using equation (3-35) as 

 1.5058,  0.2138 2.1000ad d bdf eps f= = → =   (3-40) 

Figure 3-9 depicts 10 different realizations generated using the two-stage summation 

scheme for the ADCF source model as well as the rms average simulation. As can be seen, the 
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average simulation satisfactorily matches the target spectrum in the whole frequency range of 

interest. It should be noted that the average spectrum from 10 realizations is not as smooth as the 

one-stage summation of the ADCF source model. Thus, we suggest using more realizations to 

obtain the average simulation. Figure 3-10 illustrates distributions of generated rupture times for 

three different realizations using the two-stage summation scheme following the ADCF source 

model. As can be seen, the complexity of the source rupture can be captured using this scheme 

and the energy is distributed over the source duration without concentration of the energy in the 

middle. Thus, each simulation from this scheme is totally distinct from another simulation, 

resulting in capturing the variability of the rupture process and the effect of asperities in this 

scheme. 
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 Figures 

 

 

Figure 3-1. Comparison of the SCF source model ( fcs = 10 and fct = 1 Hz) with the MDCF source 

model ( fas = 4, fbs = 25, fat = 0.2, and fbt = 5 Hz) for the small and target spectra. 
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Figure 3-2. Spectra from 10 different realizations generated using the proposed one-stage 

summation scheme for the MDCF source model and rms average spectrum from 10 realizations 

compared to the target spectrum. 

  

10 -2 10 -1 10 0 10 1 10 2

Frequency (Hz)

10 -4

10 -3

10 -2

10 -1

10 0

Ex
pe

ct
ed

 D
is

pl
ac

em
en

t S
pe

ct
ru

m

10 -2 10 -1 10 0 10 1 10 2

Frequency (Hz)

10 -4

10 -3

10 -2

10 -1

10 0

10 1

10 2

Ex
pe

ct
ed

 A
cc

el
er

at
io

n 
Sp

ec
tru

m

Small Event-MDCF

Small Event-SCF

Target Event-MDCF

Target Event-SCF

Average of Realizations

One Realization



108 

 

 

 

Figure 3-3. Three different distributions for rupture times generated using the proposed one-stage 

summation scheme for the MDCF source model. 
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Figure 3-4. Spectra from 10 different realizations generated using the proposed two-stage 

summation scheme for the MDCF source model and rms average spectrum from 10 realizations 

compared to the target spectrum. 
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Figure 3-5. Three different distributions for rupture times generated using the proposed two-

stage summation scheme for the MDCF source model.  
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Figure 3-6. Comparison of the SCF source model ( fcs = 10 and fcs = 1 Hz) with the ADCF source 

model ( fas = 1.5740, fbs = 16.0016, fat = 0.1603, fbt = 2.8676 Hz, εs = 0.3846, and εt = 0.1189) for 

the small and target spectra. 
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Figure 3-7. Spectra from 10 different realizations generated using the proposed one-stage 

summation scheme for the ADCF source model and rms average spectrum from realizations 

compared to the target spectrum. 
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Figure 3-8. Three different distributions for rupture times generated using the proposed one-stage 

summation scheme for the ADCF source model. 
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Figure 3-9. Spectra from 10 different realizations generated using the proposed two-stage 

summation scheme for the ADCF source model and rms average spectrum from realizations 

compared to the target spectrum. 
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Figure 3-10. Three different distributions for rupture times generated using the proposed two-

stage summation scheme for the ADCF source model. 
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4. An Improvement for Considering the Effects of Finite-

Fault Sources on the Source-to-site Distance 

 Introduction 

The Joyner-Boore distance (the closest distance to the surface projection of an extended 

fault, RJB) or rupture distance (the closest distance to an extended fault, RRUP) are commonly 

used in ground-motion prediction equations (GMPEs) to capture the effect of finite-fault 

ruptures, particularly for near-source recordings. In probabilistic seismic hazard analysis 

(PSHA), the spatial distribution of earthquakes within a large areal seismic source, where the 

traces of faults are unknown, is described by associating them with point-source models. 

Therefore, it is necessary to convert the extended fault-based distance metrics defined in GMPEs 

into the point source-based distance measures such as epicentral (REPI) or hypocentral (RHYP) 

distances for use in PSHA. In other words, in the PSHA integrals, each potential event has a 

distance REPI from the site, but to get the ground motions for that event, the REPI must be 

converted into a RJB for the magnitude of the event, and that RJB is then used in the GMPE to get 

the ground motions.  Various methods have been proposed to convert extended-fault source 

distance metrics into point-source distance metrics and vice versa. 

Scherbaum et al. (2004) have developed the empirical distance conversion relations for 

three types of generic, strike-slip, and all dipping fault scenarios using simulated fault ruptures 

and observation points around the faults. In the Scherbaum et al. (2004) approach, the extended-

fault rupture scenarios are generated based on the magnitude, the selected dip angle, and the 

hypocenter locations on the fault rupture, which are randomly chosen from a truncated normal 

distribution. Then, the observation points for each of the simulated extended-faults are randomly 

and uniformly chosen between 0 and 360 degrees about the fault rupture to calculate various 

distance measures [e.g., REPI from the site] with respect to RJB distance and earthquake 

magnitude. Since the RJB distance is always smaller than or equal to other distance measures, the 

positive residuals between various measures of distance and RJB distance are used to determine 

the distance conversion relations. To this end, polynomial functional forms are provided to 

estimate the mean converted distance metrics as well as their standard errors by fitting a gamma 
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probability distribution function to residuals, which are defined as the difference between the RJB 

distance and REPI or RHYP distances.  

This simulation-based approach calculates the converted REPI or RHYP distances for a 

specific RJB distance by ignoring the effect of wave propagation path from each portion of the 

entire fault to the site.  The wave propagation path affects the mean converted distance, 

particularly for large fault ruptures by assigning non-uniform weighting factors (e.g., R-γ 

propagation decay where γ is the geometrical spreading exponent) to source-to-site distances. 

The Scherbaum et al. (2004) approach predicts large values of other distance measures near the 

fault ruptures, such as epicentral distance (REPI), for an initial-fixed value of RJB, compared to 

those approaches that involve GMPEs in the process of averaging possible epicenters or 

hypocenters (e.g., EPRI, 2004).  The direct use of these distance conversion relations may not be 

considered suitable for evaluating ground motions, particularly for the areal seismic source 

models used in PSHA studies.  

EPRI (2004) used GMPEs developed for central and eastern United States (CEUS) to 

provide the empirical point-source distance conversion equations for various measures of 

distance defined in the CEUS GMPEs. These distance conversion equations are used to adjust 

various source-to-site distances in areal seismic sources with unknown traces of faulting for 

PSHA studies in the CEUS.  In EPRI (2004) approach, unknown extended-fault ruptures within a 

given areal seismic source are modeled to be an equal combination of 90˚-dip strike-slip faults 

and 40˚-dip reverse faults with uniform random orientations distributed in azimuth from 0 to 360 

degrees about the earthquake epicenter and with uniform random depth constrained to a 

maximum depth of 25 km. Then, two most widely used distances, the RJB distance and the RRUP 

distance are calculated using an appropriate geometry for each randomly simulated fault rupture 

about the earthquake with moment magnitude of M and epicentral distance of REPI from the site.  

Since seismic energy is released from the entire extended-fault rupture during a large 

earthquake, RJB or RRUP distances are used in appropriate RJB- or RRUP-based GMPEs to compute 

the geometric-mean ground motion intensity measure (GMIM) of interest such as peak ground 

acceleration as a measure of energy density of shaking for both strike-slip or reverse fault rupture 

models. The expected geometric-mean GMIM is used in those corresponding GMPEs to back-

calculate the appropriate average RJB or RRUP distance and associated uncertainties with respect 
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to GMIM of interest. The EPRI (2004) distance conversion relations may be sensitive to the 

selection of GMPEs and the frequency of ground motions. These GMPE-based conversion 

equations need to be modified for areal seismic sources that a preferred fault orientation or 

explicit modeling of finite ruptures is warranted.  

The USGS distance conversion approach used in the USGS hazard maps for the CEUS 

(Petersen et al., 2008) assumes that energy is released from the earthquake epicenter rather than 

the crust around the entire fault rupture during a large earthquake. In the USGS hazard maps, 

areal seismic source models are defined to account for future random earthquakes in areas with 

little or no historical seismicity for the PSHA study. Within areal source zones, a finite-fault 

vertical strike-slip fault is defined for each grid cell of source zones, and the fault rupture is 

located on the center of each grid cell. The virtual fault strike is randomly oriented in azimuth 

from 0 to 360 degrees about the earthquake epicenter, and the mean RJB distance is calculated for 

a fixed REPI distance using the laws of sine and cosine. The dimension of a fault rupture varies 

for each magnitude increment and is obtained from the Wells and Coppersmith (1994) empirical 

relationships. Note that the USGS distance conversion relationships are applicable for the 

vertical fault ruptures, and may not be used for dipping fault ruptures and the regions with 

various geologic structures. 

Bommer and Akkar (2012) have suggested directly developing pairs of GMPEs for both 

point and extended-source distance measures from the same ground-motion dataset. They 

performed a simple PSHA study and demonstrated that GMIMs obtained from the RJB-based 

ground-motion models relative to REPI-based ground-motion models underestimate the hazard for 

areal seismic sources.  The current GMPEs developed in the United States region have often 

used the RJB or RRUP distances from extended-fault sources of moderate-to-large magnitude 

earthquakes. In order to use these extended fault-based GMPEs for the case of areal seismic 

sources within the low-to-moderate seismicity, which tend to dominate hazard models in a PSHA 

study, the extended-fault distances should be converted into the point-source distances (REPI or 

RHYP) if the point source-based GMPE models are not available.  

The objective of this study is to develop an analytical approach to convert the distance 

measures defined for the extended-fault source-based GMPEs into various point source-based 

distance metrics for use in the PSHA study. The USGS and EPRI approaches use the REPI 
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distance as a reference distance metric and the RJB distance as a target distance metric to link for 

two distance metrics between a point source and an extended fault source. In contrast with the 

EPRI and USGS approaches, we define Joyner-Boore (JB) surfaces containing virtual sites on a 

bathtub shape with identical RJB distances around an extended-fault source as a reference 

distance, and then, analytically derive the average REPI and RHYP using the laws of sines and 

cosines.   

In this study, instead of using virtual faults, which are randomly oriented about a fixed 

earthquake epicenter (e.g., USGS and EPRI approaches), the virtual sites with a constant RJB 

distance are taken around a fixed fault to improve the computational efficiency in the hazard 

models. The averaging distance conversion process are combined with region-specific 

geometrical spreading and anelastic attenuation functions following the Boore (2009) approach 

to assign a suitable weighting factor for distance conversion and to adjust the resultant point-

source distance metrics into new effective REPI or RHYP distance metrics that may be entered in 

current extended-fault source-based GMPEs for use in the PSHA studies as well as stochastic 

ground-motion simulations. The proposed region-specific distance conversion approach is able 

to model the effects of the seismic propagation path along the desired range of strikes and dip 

angles from available information about the tectonic region, which are not accounted in the other 

available methods. 

As an implementation in the seismic hazard assessment, a simple PSHA study is 

performed within a simple circular areal source zone associated with both low and high-

seismicity scenarios using a suite of published RRUP-based GMPEs to demonstrate the effect of 

using inconsistent source-to-site distance metrics on hazard curves at a given site. 

 General Distance Conversion Equations 

The RJB distance is chosen as the primary reference metric in this study and the other 

distance matrices are converted as target distance metrics using the law of sines and cosines. The 

general distance conversion equations are analytically derived for both vertical and dipping fault 

rupture scenarios. The analytical distance conversion approach developed in this study has two 

different aspects compared to the USGS approach.  
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First, the proposed analytical approach is obtained based on positioning virtual sites 

around an arbitrary fault rupture, while the USGS approach simulates random-oriented vertical 

fault ruptures for a given site to obtain distance conversion equations. In essence, the distance 

conversion results should be insensitive either if the site is constant and the fault rotates around 

the center of the fault (virtual faults model) or if the fault is constant and the site rotates around 

the fault (virtual sites model).  However, using the virtual sites model would improve the 

computational efficiency in the hazard models.  

Second, the USGS approach fixes the epicentral distance on the center of fault, and then derives 

the distance conversion equations to obtain the average RJB distance. On the other hand, in the 

proposed analytical approach the RJB distance is fixed, and then the distance conversion 

equations are derived for various distance metrics. The advantage of using a fixed RJB distance 

for a known fault and a given azimuth is that there is only one station for a RJB distance, but the 

station for a fixed epicentral distance can be moved based on the location of epicenter. Due to 

this difficulty, the USGS approach limits itself by assuming that the epicenter is always in the 

center of the fault.  

Figure 4-1 shows the Joyner-Boore (JB) surface about a vertical strike-slip fault and 

earthquake hypocenter locations, which are dependent to the moment magnitude and are defined 

by a truncated normal distribution. The location of possible observation points (virtual sites) 

having the same RJB distances from an extended fault with a vertical dip angle are modeled with 

two semi-circles with radius of RJB at the end points of the fault, and two straight lines parallel to 

fault.  All the virtual sites on this bathtub-shaped JB surface have an identical RJB distance to the 

fault. In this figure, θ0 is the angle between the fault line and the line connecting the middle of 

the fault length and the point located on the boundaries between the semi-circles and parallel 

lines to the center of the fault length. 

The JB surface becomes more complicated for dipping faults since there is a surface 

projection for the width of the fault. Figure 4-2 shows the JB surface around a dipping fault. For 

an extended fault with a width of W and a dip angle of δ, the surface projection of the fault has a 

width of Wcos(δ). In this case, the location of possible observation points having the same RJB 

distances are modeled with four quarter-circles with radius RJB and two parallel lines to the fault 
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length and two parallel lines to the width projection on the ground surface. All the observation 

points on this JB surface have an identical RJB distance to the fault surface projection.  

In this figure, the parameter of θ0 is the angle between the line passing the center of the 

width projection and parallel to the fault length and the lines connecting the boundaries between 

the quarter-circles and parallel lines with the fault length to the center of the fault surface 

projection. The parameter of θ1 is the angle between the line passing the center of the fault width 

projection and parallel with the fault length and the lines connecting the boundaries between the 

quarter-circles and parallel lines with the fault width projection to the center of the fault surface 

projection.  

The JB surface has significant advantage that allows us to choose directly the RJB 

distance defined in the RJB-based GMPEs as the primary reference metric to convert to all other 

distance metrics. 

 Vertical Strike-slip Faults 

Suppose that we have an arbitrary extended-fault rupture produced by a given 

earthquake, and observation points (virtual sites) with a constant RJB distance of interest (see  

Figure 4-1) on the JB surface. We begin with a relationship between RJB and RHYP, which 

is controlled by the depth of earthquake as a function of moment magnitude, and the influence of 

the depth is decreased with increasing distance. 

For each observation point with a particular azimuth (θ), the geometry relation between 

RJB distance and RHYP distance using the law of sines and cosines is expressed by the following 

equation 

 ( )
/2

2 2 2

/2

2 cos( ) ( ) ( )
TOR

TOR

Z W L

HY P C C
Z L

R R x xR z p x p z dxdzθ θ
+

−

 < > = + − + ∫ ∫   (4-1) 

where < RHYP >θ is the mean hypocentral distance for a particular θ, and RC is an auxiliary 

distance between the center of the fault and the observation point, which is defined as 
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,  x is a variable on the fault length, and z is a variable on the fault 

depth with probability distribution functions of p(x) and p(z), respectively. These probability 

distribution functions can be defined somehow to mimic the characteristics of the fault rupture. 

The term ZTOR is the depth to the top of the fault rupture. If the azimuth angle of the site is 

unknown, the average distance over all virtual sites is estimated by integrating over all possible 

azimuth angles, which is defined as the following expression 
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π
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where < RHYP > is the mean hypocentral distance over all azimuth angles, and 1( )
2

p θ
π

=

is the probability distribution of azimuth θ in degree. Since the JB surface for vertical strike-slip 

faults has four identical quarters (see Figure 4-1), the integration over θ may be performed for a 

range of 0 to π/2 with p(θ) = 2/π. 

The mean hypocentral distance, equation (4-1), can be modified to derive the mean 

epicentral distance by removing the first integral and z and p(z) terms as follows 

 ( )
/2

2 2

/2

2 cos( ) ( )
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EPI C C
L

R R x xR p x dxθ θ
−

 < > = + − ∫   (4-4) 

 Dipping Faults 

For a dipping fault with a dip angle of δ, the position of the observation points are located 

in three different portions of the JB surface including the lines parallel to the fault length, the 

quarter circles, and the lines parallel to the width projection (see Figure 4-2). As can be seen in 

Figure 4-2, virtual sites around the JB surface of dipping faults can be located on either hanging 

wall (HW) side or footwall (FW). The mean hypocentral distance for a particular azimuth angle 
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of θ, < RHYP >θ, is obtained by averaging over all hypocentral distances. Thus, the mean 

hypocentral distance is expressed by the following equation 

( )
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in which x, y, and z are respectively variables on the length, width of the fault surface projection, 

and the depth of the possible hypocenters, and p(x), p(y), and p(z) are their probability 

distribution functions, respectively. The probability distribution functions are defined regarding 

the characteristics of the given fault rupture. Note that the boundary conditions for the integrals 

can be changed based on these characteristics. For instance, if there is any prior information or 

assumption about the focal depth location, the boundary condition of integral can take into 

account those assumptions. In equation (4-5), RC is an auxiliary distance between the observation 

point and the middle of the fault length within the width of the fault surface projection, which 

has the possible epicentral point on it, and is defined as 
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in which 
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and θ' is defined as the angle between a line parallel to the fault length and the line connecting 

the virtual site and the middle of the fault line within the width of the fault surface projection, 

which has the possible epicentral point on it (see Figure 4-2), and is obtained from 

  

 

( )
1

0

cos( ) tan( ) / 2
2arctan            if  0

/ 2

'

arctan tan( )                               if 90cos( )
2

JB

JB

JB

JB

Wy R L

R L

y R
W R

δ θ
θ θ

θ

θ θ θδ

   − − +       ≤ <
+  

    = 
   
   +

< <   
   +
    

  (4-9) 

For virtual sites in which θ1 ≤ θ ≤ θ0, θ' can be obtained from a system of equations with three 

equations and three unknowns (ox, oy, and θ', see Figure 4-2) as 
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Finally, if the azimuth of the site is unknown, we make an average over all possible azimuths as 

follows 
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Since the JB surface is symmetric along a perpendicular line on the center of fault length, the 

integration over θ can be done for a range of -π/2 to π/2 with p(θ) = 1/π.  

Similar to the vertical strike-slip fault case, the mean epicentral distance can be derived 

by removing the first integral and the z and p(z) terms from equation (4-5). To determine the 

rupture distance RRUP for a fault with a dip angle of δ and an azimuth angle of θ, the relationships 
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between the RRUP distance and the RJB distance provided by Kaklamanos et al. (2011) can be 

used in equation (4-5) for conversion distance process. 

Equations to obtain the uncertainties for distance conversion equations and how to 

propagate these uncertainties to calculate the total standard deviation of GMPEs can be found in 

Tavakoli et al. (2018). 

 A General Effective Distance Conversion Equations 

The general distance conversion equations developed in previous section are independent 

of region-specific material properties. The problem of employing RJB and RRUP in point-source 

ground-motion simulations to develop a GMPE is that they can only account for the geometry of 

the extended-fault rupture model instead of capturing any detailed geological and seismological 

features (Goda and Atkinson, 2014; Yenier and Atkinson, 2014). Yenier and Atkinson (2014) 

have analyzed earthquake data with moderate to large magnitudes from different regions and 

concluded that if the equivalent point-source model, in which the effective distance is considered 

as the primary distance metric, is employed, the apparent source response spectra of those 

earthquakes can be modeled with a simple far-field Brune point-source model. Thus, the average 

ground motions for large earthquakes can be acceptably simulated using the equivalent point-

source model based on the effective distance even for the sites located at very close distances to 

the fault rupture. 

The effective distance is the distance between a given site and a virtual point which 

substitutes the whole fault and can mimic extended-fault rupture effects. The extended-fault 

rupture can be subdivided into small elements (subfaults) considered as point sources and the 

radiated energy from all subfaults are incoherently added up to produce the total energy of the 

shaking at each virtual site. In fact, all subfaults of the extended-fault rupture radiate uniform 

energy with equal intensity (assuming homogenous energy radiation from the fault). This energy 

is theoretically proportional to the amplitude of the ground-motion captured at the site of interest 

and decreases with increasing distance due to spreading over an increasing either spherical area 

in a homogeneous whole space or cylindrical surface in a homogenous half space, scattering, and 

intrinsic absorption (Boore, 2003; Chapman and Godbee, 2012). 
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Different schemes have been introduced to capture the effects of extended-fault ruptures 

on distance metrics, GMPEs, or ground-motion simulation approaches (e.g., Singh et al., 1989; 

Kanamori et al., 1993; Ohno et al. 1993; Andrew, 2001; Boore, 2009).  Following the Boore 

(2009) approach, we use the propagation path function in the frequency domain, which 

intuitively accounts for the geometrical spreading and anelastic attenuation terms, to construct 

the effective point-source distance conversion equation.  

The general distance conversion equations, which are calculated based on the uniform 

weighted average of distances from virtual sites, should be modified to include the effect of 

geometrical spreading decay and attenuation as suitable weighting factors for the process of 

averaging.  In fact, an effective point on an extended-fault rupture should be chosen to give an 

identical total energy at a given site if this point compared to an extended-fault rupture. In this 

regard, the distances from virtual sites to subfaults take appropriate non-uniform weights 

associated with geometrical spreading and attenuation functions. The following general region-

specific distance conversion equation is developed to estimate effective point source-based 

distance metrics (e.g., effective RHYP and REPI instead of RHYP and REPI), in place of the 

extended-fault distance metrics (e.g., RJB and RRUP), which not only accounts for the geometry of 

the given fault but also considers the effects of the propagation path on radiated seismic waves 
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where G is the geometrical spreading function, Q, Vs, and f are quality factor, shear-wave 

velocity, and reference frequency in the attenuation function, respectively. The term γ is the 

distance between the observation point and possible epicenter or hypocenter locations on the 

fault, which is defined as 

 ( )2 2 22 cos( )C CR x xR zγ θ = + − +    (4-13) 

The RC is the auxiliary distance and p(x), p(y), p(z), and p(θ) are the probability 

distribution functions as defined in previous equations.  Equation (4-12) can be simply turned 



127 

 

into a summation over the length and width of the fault and the azimuth of the observation 

points. This equation should be solved with a trial and error approach.  

To determine the effective distance for a given reference frequency, a general table for 

the attenuation term is developed based on the geometrical spreading and quality factor functions 

in the region of under study, and discretized effective distances within the range of interest using 

the left hand-side of equation (4-12). Then, for a given RJB distance, all distances from the 

observation point to each subfault, obtained from equation (4-13), are substituted into the right 

hand-side of equation (4-12). Simplified value of the right hand-side of equation (4-12) gives the 

resultant effect of anelastic attenuation and geometrical spreading decay terms for a virtual point 

on the fault that produces the same level of energy intensity as the combination of all subfaults 

generate at the observation point. Finally, using the developed attenuation table for the left hand-

side, the effective distance corresponding to the simplified value of the right hand-side is found. 

For a given moment magnitude and RJB distance, there is only one point that can be 

considered as an equivalent point source at a specified source-to-site azimuth. Therefore, the 

effective distance conversion approach has no uncertainty for a given azimuth unlike the general 

distance conversion approach according to averaging with uniform weights in which all points 

on the fault potentially can be a hypocenter. However, the uncertainty is brought into play for the 

effective distance conversion approach through averaging over all azimuth angles around the 

fault. Of course, this uncertainty is considerably smaller than the uncertainty of the general 

distance conversion averaging over all azimuths around the fault. 

 An Example of Point Source-Based Distance Conversions 

The distance conversion equations that have already explained are generic and can be 

used for both shallow and deep earthquakes, small and very large earthquakes, and even for 

induced earthquakes. Therefore, conversion results depend on the input parameters and their 

assumptions such as the geometry of the fault, location of the fault, pattern of possible 

hypocenters or epicenters on the fault, and quality factor and geometrical spreading functions of 

the region of interest.  To investigate the effects of using point source-based distance conversions 

on ground motions, we select prevalent assumptions about the fault and region and employ them 

as input parameters in the general distance conversion equations. These results are based on the 
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assumed input parameters describing in the following and the analyst should modify these 

parameters according to the characteristics of the fault and the region of under study. 

The geometry of extended-fault sources is often modeled by a rectangular shape with a 

width, W, a length, L, and a dip angle of δ. The rupture width and length of a fault plane are 

determined based on empirical relationships (Wells and Coppersmith, 1994; Mai and Beroza, 

2000; Somerville et al., 2001), which are scaled by earthquake magnitude. In this example, we 

use the global empirical relationships obtained by Wells and Coppersmith (1994). It should be 

mentioned that the dimensions of simulated faults are much smaller for a given large magnitude 

if the Somerville et al. (2001) relationships, which are derived based on the data from the CEUS, 

are used.  

The next step is to place the fault rupture in a specific location. Earthquake focal depths 

are assumed to have a non-uniform distribution such as truncated normal distribution or Weibull 

distribution (Scherbaum et al., 2004; Mai et al., 2005; Ma and Atkinson, 2006). In this example, 

we used the results from Scherbaum et al. (2004) in which earthquake hypocenter locations are 

dependent to the moment magnitude and are defined by a truncated normal distribution with a 

mean hypocentral depth of havg = a + bM in km and a standard deviation of σ, where the constant 

values of a, b, and σ are obtained from Table I of the Scherbaum et al. (2004) study.  

Note that this depth distribution and the empirical relationships of Wells and 

Coppersmith (1994) are consistent since both have been obtained from the same dataset. The 

estimated hypocentral depth is used to set the center of the fault plane in the simulations. 

Therefore, the depth to the top of the fault rupture, ZTOR, can be determined by ZTOR = hcenter – 

W/2 where hcenter is the distance from the ground surface to the center of fault plane. Then, 

possible hypocenters within the simulated fault ruptures are randomly distributed with a uniform 

distribution along the fault length and width. Those fault ruptures whose upper edges are 

extended above the ground surface, are shifted down to lie on the surface with ZTOR of zero. 

For the vertical strike-slip fault case in this example, it is assumed that the probability 

distribution of earthquake hypocenter locations on the fault length and width is uniform; thus, 

p(x) = 1/L and p(z) = 1/W.  Similar to the vertical strike-slip fault case, it is assumed that the 

probability distribution of earthquake hypocenter locations is uniform on the length, depth, and 

surface projection of the width. Now, the general distance conversion for the case of uniform-
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weighted average can be used to obtain the converted distance. In this regard, the integration is 

transferred to summation by discretizing the fault plane. We used 20 subfaults along the length 

and 20 subfaults along the width of each fault. Thus, there is a total of 400 subfaults for each 

simulated fault. The center of each subfault is considered as a possible hypocenter. If the azimuth 

of the site is unknown, equations (4-3) and (4-11) are used to average over all virtual sites around 

the simulated fault. In this regard, virtual sites are located at every two degrees. 

Figure 4-3 and Figure 4-4 demonstrate the mean converted hypocentral and epicentral 

distances with respect to RJB distances up to 1000 km for a vertical strike-slip fault model and a 

50˚-dip normal fault, respectively, for the selected magnitudes of M5.5, M6.5, and M7.5. The 

comparison between the mean converted hypocentral and epicentral distances for different dip 

angles demonstrates that the depth distribution of the events and the dip angle of faults control 

the distance saturation for earthquakes and close site distances.  

Since the RJB distance metric is smaller than the RHYP and REPI distance metrics, the mean 

residuals of εHYP and εEPI are always positive. εHYP and εEPI are the residuals for the converted 

hypocentral and epicentral distances given by 
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Figure 4-5 and Figure 4-6 show the histogram (frequency) distributions of residuals and the fitted 

gamma probability distributions for earthquakes with magnitudes of M5.5, M6.5, and M7.5, and 

a RJB distance of 20 km for vertical and normal faults, respectively. The gamma distribution 

provides the best fit to the distance residuals since the distribution of the residuals for the virtual 

site when the azimuth is 0° is uniform while the distribution of the residuals once the azimuth is 

90° (the virtual site is perpendicular to the fault line) is exponential. Thus, the combination of 

these two probability distributions is better captured by a gamma-distributed random variable. 

The frequency of residual values shows that the mean and variance of gamma distributions, 

which are related to the shaping parameters of gamma distribution, are function of magnitude 

and distance. These observations are in good agreement with Scherbaum et al. (2004), in which 

the distance conversion relationships and residuals are numerically determined using regression 

analysis on Monte-Carlo simulated data. These distance conversions are based on the uniform-

weighted average of distances from parts of fault to each observation point. 
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In order to estimate the non-uniform-weighted average of distances and to capture the 

effect of propagation path on the range of distances, an effective point should be chosen on an 

extended-fault rupture. To achieve this objective, the point source-based distance conversions 

explained previously are modified to incorporate the effect of geometrical spreading and 

attenuation functions as weighting factors into the mean distance metrics. To obtain the 

converted effective distances, geometrical spreading and attenuation functions as well as the 

shear-wave velocity and the reference frequency are required to define the seismological 

parameters of the region of interest in addition to previous assumptions about the fault plane. 

Far-field body-wave and surface-wave geometrical spreading functions are ideally 

modeled by G(R) = R-1, and G(R) = R-0.5 for a whole-space and half-space, respectively (Ou and 

Herrmann, 1990; Chapman and Godbee, 2012). Some researchers (e.g., Atkinson, 2004; 

Atkinson and Boore, 2006; Atkinson and Boore, 2014) have shown that the geometrical 

spreading exponent decay for body-wave should be higher than R-1 due to the effects of crustal 

layering and heterogeneities. They have indicated that the rate of R-1.3 describes better the decay 

of ground-motion amplitudes with distance. There are some other studies that show the 

geometric spreading function may be frequency dependent (Frankel, 2015; Sedaghati and 

Pezeshk, 2016c). Attenuation function which is the inverse of the quality factor, Q, is a 

combined effect of scattering and intrinsic attenuation (Wennerberg, 1993; Boore, 2003). The 

scattering attenuation, caused by heterogeneities within the Earth such as irregular topography, 

cracks, and faults, redistributes the wave energy. The intrinsic or absorption caused by friction 

and viscosity through the propagation path dissipates the energy of seismic waves and converts it 

into heat. Q is an important parameter describing the characteristics of the medium through 

which seismic waves propagate (Sato and Fehler, 1998).  

The quality factor of Q = max (1000, 893 f 0.32) and the geometrical spreading function of 

G(R) = R-1.3 for R < 70; R+0.2 for 70 < R < 140; and R-0.5 for R > 140 estimated by Atkinson 

(2004) are employed in this example to demonstrate the effect of energy decay in the effective 

distance conversion equations. These models are consistent with the Pezeshk et al. (2011) GMPE 

since we use this GMPE to show the effect of using effective distance on hazard curves. Further, 

the crustal shear-wave velocity of Vs = 3.7 km/sec is used in this example case. The reference 

frequency of 10 Hz is chosen; however, the distance conversion results are fairly insensitive to 

the choice of frequency, which is in good agreement with Boore (2009). The combined effect of 



131 

 

geometrical spreading and attenuation functions indicates that the subfaults with shorter 

distances from the virtual site have higher contribution to the total energy captured at the site 

than the subfaults with longer distances. 

After selecting the appropriate seismological parameters for the region where the site is 

located, the effective distances are obtained using equation (4-12) for moment magnitudes of 4.5, 

5.0, 5.5, 6.0, 6.5, 7.0, 7.5, and 8.0 and RJB distances of 1, 2, 3, 5, 7, 10, 12, 15, 20, 30, 40, 50, 60, 

70, 80, 100, 120, 150, 200, 250, 300, 400, 500, 600, 700, 800, and 1000 km. Again, we use 

summation instead of integration by discretizing the fault into 20 subfaults along the length and 

20 subfaults along the width (400 subfaults in total). Figure 4-7 and Figure 4-8 illustrate the 

effective hypocentral and epicentral distance averaged over all virtual sites with respect to RJB 

distances up to 1000 km for a vertical strike-slip fault model and a 40˚-dip reverse fault, 

respectively. The three selected magnitudes of M5.5, M6.5, and M7.5 are used to model the 

dimension of fault rupture. In Figure 4-7 and Figure 4-8, a direct comparison between the 

converted effective distances for M5.5, M6.5, and M7.5 is unreasonable since ZTOR for each 

magnitude is different and is dependent on both the fault center location and the width of the 

fault. For instance, in Figure 4-8, the converted effective distances for M5.5, M6.5, and M7.5 are 

very similar. In fact, this similarity does not mean that the effective distance for different 

magnitude should be in the same range; because the depths to the top of the rupture for these 

magnitudes are approximately 6.71, 5.11, and 1.53 km, respectively. 

The plots of distance conversion in Figure 4-7 and Figure 4-8 also show a bump around 

RJB of 50 km particularly for large magnitudes. This bump is caused by the assumed trilinear 

geometrical spreading function in which the middle part is R+0.2. For a given fault with M7.5 and 

RJB of 50 km, the distance from the site to each grid center varies from 50 km to a few hundred 

kilometers. Thus, incorporating the middle part of the geometrical spreading function into the 

averaging process leads to estimating higher effective distance.  

Comparison of the uniform and non-uniform-weighted average of distances in conversion 

process indicates that the distance conversions are dependent upon not only the geometry of 

fault, and the earthquake size, but also the geometric spreading of a given region. The non-

uniform-weighted averaging on distances lead to increase the ground motions at near distances 

compared with uniform mean distance conversion approaches.  
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Table 4-1, Table 4-2, and Table 4-3 tabulate the average effective hypocentral distance 

for vertical strike-slip faults, 50˚-dip normal faults, and 40˚-dip reverse faults, respectively for 

this example case. Table 4-4, Table 4-5, and Table 4-6 list the average effective epicentral 

distance for vertical strike-slip faults, 50˚-dip normal faults, and 40˚-dip reverse faults, 

respectively. These magnitude-effective distance conversion tables are used to convert the fault-

based GMPEs into the point source-based GMPEs, which can be applied for areal seismic 

sources defined in a PSHA study. 

 Comparison with Previous Studies 

The effective distances derived from the example for the vertical case are compared with 

the vertical-fault USGS distance conversion approach (Peterson et al., 2008) shown in Figure 

4-9. The USGS distance conversion approach used in the U. S. seismic hazard maps, which only 

consider the random-ordinated geometry of a vertical fault, is not saturated at close distance; and 

therefore, ground-motion amplitudes monotonically increase with decreasing the RJB distance. 

The USGS approach is also insensitive to the magnitude of earthquakes at close distances. For 

instance, at a RJB distance of 1 km, the USGS approach results in an REPI distance of 1.6 km for 

the three selected magnitudes of M5.5, M6.5, and M7.5, that is inconsistent with the magnitude 

and distance-saturation of ground motions for a large earthquake.  

The magnitude and distance-saturation of ground motion for a large earthquake indicate 

that an observation point (or a virtual site) close to a fault can effectively see the closest portions 

of the extended fault, and most of the fault rupture further away from the site are not involved in 

the effective distance conversion, particularly by increasing magnitude and decreasing the 

source-to-site distance. Therefore, the effective epicentral distance developed in this study, 

which is a function of dip angle of fault and the distance ranges, gives the smaller RJB distance 

values (higher ground-motion amplitudes) than the vertical-fault USGS distance conversion and 

the larger RJB distance values (lower ground-motion amplitudes) than the mean epicentral 

distance (Scherbaum et al., 2004) at short distances for the RJB-based GMPEs. 

The effective distances derived from the example are also compared with the EPRI 

distance conversion (EPRI, 2004) for the CEUS as shown in Figure 4-10. The EPRI (2004) 

distance conversion equations are constructed based on the GMPEs developed for the CEUS to 
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partially capture the effect of total energy release from a large fault rupture, the random-oriented 

geometry of fault to include the effect of unknown fault rupture models in a specific area, and the 

Somerville et al. (2001) empirical relationship to define the earthquake rupture area. Since the 

EPRI (2004) distance conversions are developed for given a set of GMPEs developed for the 

CEUS, it may not be appropriate for areas in which regional GMPEs are not available or 

different GMPEs and source scaling are assigned to perform PSHA.   

The EPRI (2004) approach is also developed for areas that the orientations of faults are 

unknown. Thus, there is no specific solution when a specific fault orientation is desired and the 

analyst should use the average distance conversion as the final result. Comparison of the vertical 

and reverse-combined effective distance conversion derived from the example with the EPRI 

(2004) approach (see Figure 4-10) shows that the converted distances for the RJB distances of 

about 10 km and larger are in good agreement. However, for the near-fault observation points, 

the magnitude and distance-saturation of ground motions for a given large earthquake are not 

satisfactorily presented in the EPRI (2004) approach, because the earthquake epicenter is 

assumed to be located at the center of fault (centered epicenters) or the epicenter of an 

earthquake is uniformly distributed along the length of the rupture (random epicenters). 

It is anticipated that the effective distance is saturated at very small distances because 

seismic waves radiated from the small portions of the entire rupture dominate recorded ground 

motions at the site. Thus, to account for the effects of the magnitude and distance-saturation, the 

impact of propagation path on seismic waves should be incorporated into the development of 

distance conversions to obtain the effective points referred as Effective Epicenters or Effective 

Hypocenters for extended fault ruptures. These effective points can be used for modeling 

earthquakes as point sources in PSHA. 

 Applications for GMPEs 

The effective distance can be used for the development of stochastic GMPEs, which are 

obtained directly from the point-source spectrum modeling through the stochastic method 

(Boore, 1983; Boore, 2003). The point-source stochastic method is based on an important 

assumption that the total energy of earthquakes is released from the center point of a postulated 

fault rupture, and thus, the magnitude-distance saturation of ground motions at close distances 
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for large earthquakes are mostly ignored. Ignoring these saturation effects on ground motions 

from the point source models may lead us to estimate unrealistically high ground motions at the 

near source-to-site distances compared to the actual extended-fault source models (Boore, 2009; 

Yenier and Atkinson, 2014).   

One way to overcome this problem is to find the effective hypocenters on the fault for 

each RJB distance using the observation points (virtual sites) around a postulated fault rupture, 

and then using the effective distance in the stochastic point-source ground-motion simulation 

methods to develop GMPEs. Boore (2009) has used this approach for a specific simple case 

study, when the location of a fixed vertical fault and a fixed site are known, and earthquakes are 

uniformly distributed within the fault rupture, to modify the distances used in the point source-

based simulation program and to capture the effect of extended-fault source for simulation of 

ground-motions. Yenier and Atkinson (2014) have also shown that the far-field Brune point-

source spectrum can be used within the equivalent point-source approach with effective distance 

to simulate observed spectra of large (M > 6) earthquakes.  

The advantage of the general effective distance conversion (equation (4-12)) developed 

in this study is that ground motions for large earthquakes generated by extended-source models 

can be modeled by the equivalent point-source model that incorporates the extended-fault 

saturation term into the ground-motion simulations for any arbitrary input parameters and 

functions such as fault dimensions, location of the fault with respect to virtual sites, probability 

distribution of focal depths, and geometrical spreading and anelastic attenuation functions 

corresponding to the study region. 

Figure 4-11 illustrates the effective RHYP distance conversion for a given suit of RRUP-

based GMPE (Pezeshk, et. al., 2011), which has developed from a point-source stochastic model 

(Boore, 2003) for two selected magnitudes of M5.5 and M7.5 and two spectral periods of 0.2 sec 

and 1.0 sec. The discrepancy of ground motions between the RRUP-based GMPE and the 

effective region-specific distance conversion at close distances and large earthquakes is 

described by the fact that the total energy of ground motions is released within a large fault 

rupture area compared to a finite-fault depth point defined on fault. The discrepancy between the 

effective RHYP and RRUP-based models increases for a magnitude scenario of M7.5. Figure 4-11 

also explains that the finite-fault factor, h, is magnitude and distance dependent.  For example, 
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the corrected distance-scaling curve of the GMPE with the effective distance for a magnitude of 

M5.5 is placed above the uncorrected distance-scaling curve; while, it comes below the 

uncorrected distance-scaling curve of the GMPE for a magnitude of M7.5. This implies that the 

finite-fault factor is lower for lower magnitude and it increases with increasing magnitude and 

distance. 

 Analytical Equations for Finite-fault Factor 

To account for the effects of magnitude and distance saturation at close distances in 

stochastic point-source simulations or GMPE functional forms, the effective hypocentral 

distance is often connected to the closest distance from the rupture surface as follows 

 2 2
eff RUPR R h= +   (4-15) 

where h is known as the finite-fault factor (Boore et al., 2014), equivalent point-source depth, 

pseudo-depth, or fictitious depth (Atkinson and Silva, 2000; Yenier and Atkinson, 2014). For a 

vertical fault, the rupture distance, RRUP, is simply expressed as a function of the RJB distance, 

which is given by 

 2 2
RUP JB TORR R Z= +   (4-16) 

For a given magnitude and RJB distance, ZTOR can be estimated from the dimensions of the fault 

and the location of the fault center. For a vertical strike-slip fault, the effective distance (Reff) in 

equation (4-15) can be obtained from Table 4-1 for a given magnitude and RJB distance. We 

developed an analytical equation to obtain finite-fault factor for all magnitude ranging from 

M4.5 to M8 in 0.5 magnitude unit increments at RJB and the effective RHYP distances tabulated in 

Table 4-1.  

Different models have been proposed to obtain the finite-fault depth at close distances 

(Atkinson and Silva, 2000; Halldorsson and Papageorgiou, 2005; Yenier and Atkinson, 2014) 

from ground-motion databases. These empirical-based models are used to validate the analytical-

based model developed in this study.  The finite-fault depth is logarithmically modeled as a 

function of magnitude at a given RJB distance. For example, using equations (4-15) and (4-16), 

the finite-fault factor, h, for a specified RJB distance is given by the following equation 
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 log( )h a b= + M   (4-17) 

with a standard deviation of σ in log 10 units. Table 4-7 lists all regression coefficients for 

different RJB distances up to 50 km. However, the model can be prolonged for any arbitrary input 

parameters and functions corresponding to the region of under study. The finite-fault factor 

indicates that the Reff distance from a site can never physically be a value less than h. 

Figure 4-12 is a comparison between the analytical-based finite-fault factor obtained in 

this study versus magnitudes obtained at different Joyner-Boore distances with the empirical-

based equations proposed by other researchers. The analytical-based finite-fault factor model at a 

RJB distance of 1 km is in good agreement with models of Atkinson and Silva (2000) and 

Halldorsson and Papageorgiou (2005), which are developed based on ground-motion recordings 

with distances less than 30 km. As shown in this figure, the finite-fault depth model developed in 

this study not only is magnitude dependent, but also is distance dependent. However, at long 

distances, non-uniform weighting factors approaches uniform weighting factors since the effect 

of grid centers location on the fault becomes insignificant.  Yenier and Atkinson (2014) used 

data with distances up to 500 km, and thus, their proposed model is regressed for all distances 

particularly for long distances for which the finite-fault depth is larger. We preferred to model 

the finite-fault factor versus magnitude at each RJB distance instead of generally regress at all RJB 

distances. Note that the proposed analytical-based model is derived for a vertical fault with 

dimensions and seismological parameters explained in the example case. For other dip angles 

and different tectonic regions this equation may be varied and can be re-evaluated using equation 

(4-12). It should be also mentioned that the finite fault factor is significantly affected by the 

azimuth. For instance, for a vertical strike-slip fault, the site located on the middle of the fault 

has the lowest finite fault factor for a given RJB, while the site located at the ends of the fault has 

the highest finite fault factor for the considered RJB. In fact, our model is an average on all over 

azimuth angles around the fault. 

 Applications for PSHA 

The impact of using the effective distance on RJB-based or RRUP-based GMPEs is 

illustrated through a simple PSHA study for a given large areal source. In general, PSHAs are 

performed using integration over areal sources in which sources are subdivided into small cells 
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as point sources.  Delineation of areal seismic sources is often used for the regions with the low 

to moderate seismicity such as CENA, where the lack of information on the geometry of active 

faults is anticipated.  

In the PSHA process, the distance between each cell and the site is defined as epicentral 

or hypocentral distances.  As stated previously, GMPEs are often developed based on distance 

metrics such as RJB and RRUP to account for the effects of extended ruptures rather than distance 

metrics such as REPI and RHYP that represent point-source models.   

One way to have consistency between distance metrics used in GMPEs and distance 

metrics used in the PSHA process for areal seismic sources is to develop a table of effective 

distance for the pairs of magnitude-JB distance bins using the distance-conversion equation 

(4-12).  For example, Table 4-1 lists the magnitude-effective distance pairs for a random-

ordinated vertical-fault source of earthquakes at different Joyner-Boore distances with 

assumptions and seismological parameters mentioned previously.  

In order to demonstrate the influence of using an effective distance on the PSHA results 

at a given site, a circular areal seismic source with a radius of 100 km is considered in which a 

rock site is located at the center of areal source similar to Bommer and Akkar (2012). The 

seismicity of areal source is assumed to follow a truncated exponential recurrence. For two low 

and high-seismicity scenarios, the seismic activity rates are set to 0.5 and 5 events/year, and b-

values are set to 1 and 0.85, respectively. The maximum and minimum moment magnitudes are 

truncated between M5.0 and M8.0, respectively. The RRUP-based GMPEs developed by Pezeshk 

et al. (2011) for the CENA are applied for these two simple PSHA study scenarios to 

demonstrate the effects of using inconsistent source-to-site distance metrics on the seismic 

hazard curves. 

Figure 4-13 and Figure 4-14 depict the effect of using various source-to-site distance 

metrics on seismic hazard curves at two spectral periods of 0.2 sec and 1.0 sec for the low and 

high-seismicity scenarios, respectively. The comparison between seismic hazard curves displays 

that the effective REPI distance metric conversion in GMPEs that are developed based on the RJB 

or RRUP-based distance metrics results in significantly higher ground-motion hazards in PSHA 

calculations, particularly at the lower probability of exceedance that are often used for the design 

of significant facilities such as nuclear power plants. 
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The following example shows the reason of higher ground-motion hazards for modeling 

earthquakes as hypocenters or epicenters in a PSHA study.  As listed in Table 4-1 and Table 4-4 

for a vertical strike-slip earthquake of magnitude M7.0, the effective RHYP and REPI distance 

conversion values for a sample RJB distance of 15 km are about RHYP = 24.83 km and REPI = 

21.67 km, respectively. In the PSHA study of areal seismic sources, the distance value of 15 km 

should be considered as an effective hypocentral or epicentral distances. The effective RHYP and 

REPI distances of 15 km are equivalent to the RJB distance of about 5.5 km and 9.5 km, 

respectively (see Table 4-1 and Table 4-4). Therefore, for example, if the REPI distance is used in 

PSHA, a distance of about 9 km should be entered into the fault source-based GMPE to obtain 

the adjusted value of RJB distance, which is consistent with the total energy of earthquake on 

extended-fault sources distributed uniformly within the areal source. The equivalent smaller RJB 

distances for the epicentral distances in the areal seismic source lead to increasing the seismic 

hazard results in a PSHA study, particularly at low probability of exceedance and long spectral 

periods of motions. 

The effective distance concept explains that it is never possible to place the site on the 

equivalent point source and this is exactly what distance saturation means. For instance, if the 

site is located on the center of the fault, the site sees the effect of many subfaults around itself. 

Therefore, in areal source hazard calculations, the minimum effective distance does not approach 

zero but it saturates with magnitude and distance to capture the effects of radiated seismic waves 

from different parts of the fault as well as the propagation path. 
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 Tables 

Table 4-1. The effective RHYP distance for vertical strike-slip faults. 

 
Magnitude 

JB 
Distance 4.5 5 5.5 6 6.5 7 7.5 8 

1 8.84 9.10 9.21 9.32 10.07 11.48 11.88 13.04 
2 8.98 9.52 9.77 10.24 10.86 12.39 13.75 17.37 
3 9.67 9.68 9.98 10.46 11.43 12.89 15.47 20.07 
5 10.36 10.38 11.15 11.73 12.88 14.68 17.73 23.97 
7 11.58 11.64 12.45 13.04 14.32 16.51 19.94 27.01 
10 13.51 13.93 14.55 15.55 17.27 19.56 23.86 31.14 
12 14.94 15.47 16.09 17.26 18.86 21.62 25.69 33.79 
15 17.68 18.05 18.59 19.73 21.72 24.83 29.07 37.32 
20 22.19 22.48 23.08 24.27 26.55 29.82 34.72 42.90 
30 31.52 31.85 32.51 33.78 36.17 40.51 45.33 53.28 
40 41.25 41.53 42.17 43.50 46.16 50.69 55.21 70.65 
50 51.08 51.35 52.01 53.31 56.04 59.97 63.40 87.43 
60 60.97 61.17 61.86 63.19 65.42 67.35 81.65 107.46 
70 70.80 71.11 71.70 73.15 76.43 83.66 100.39 129.72 
80 80.70 81.05 81.61 83.07 86.28 93.51 111.63 138.22 
100 100.61 100.91 101.53 102.95 106.19 113.43 130.98 155.21 
120 120.58 120.87 121.46 122.89 126.10 134.89 148.33 171.09 
150 150.52 150.78 151.38 152.79 155.92 162.74 176.32 198.88 
200 200.46 200.73 201.31 202.71 205.87 212.83 227.04 251.48 
250 250.41 250.66 251.28 252.67 255.84 262.89 277.52 303.32 
300 300.38 300.64 301.23 302.62 305.81 312.93 327.82 354.65 
400 400.34 400.61 401.21 402.60 405.79 412.99 428.27 456.50 
500 500.32 500.57 501.18 502.58 505.79 513.00 528.51 557.71 
600 600.30 600.56 601.18 602.56 605.76 613.03 628.68 658.54 
700 700.30 700.56 701.16 702.55 705.76 713.03 728.81 759.16 
800 800.29 800.55 801.15 802.53 805.76 813.04 828.89 859.63 
1000 1000.28 1000.54 1001.13 1002.52 1005.76 1013.05 1029.03 1060.31 
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Table 4-2. The effective RHYP distance for normal 50°-dip faults. 

 
Magnitude 

JB 
Distance 4.5 5 5.5 6 6.5 7 7.5 8 

1 10.44 10.49 10.58 10.72 11.02 11.40 12.80 16.59 
2 10.63 11.02 11.11 11.28 11.69 12.62 15.54 22.45 
3 11.38 11.54 11.60 11.94 12.39 13.95 17.24 25.56 
5 11.91 12.07 12.71 13.05 14.01 15.75 20.01 29.48 
7 13.21 13.39 14.02 14.62 15.74 18.02 22.44 32.45 
10 15.21 15.64 16.44 17.04 18.55 20.87 25.86 36.27 
12 16.71 17.06 18.14 18.77 20.59 23.18 28.05 38.61 
15 19.06 19.88 20.56 21.81 23.34 26.31 31.30 41.97 
20 23.57 24.02 24.74 26.19 28.24 31.29 36.61 47.19 
30 32.82 33.35 34.31 35.90 38.15 41.51 46.99 56.64 
40 42.43 43.08 44.06 45.62 48.00 51.74 56.75 64.60 
50 52.18 52.86 53.88 55.43 57.86 61.35 65.00 80.97 
60 62.07 62.61 63.62 65.29 67.06 68.59 74.34 106.13 
70 71.88 72.53 73.62 75.45 78.50 83.56 92.16 120.32 
80 81.87 82.50 83.56 85.39 88.32 93.35 101.87 130.10 
100 101.67 102.35 103.44 105.22 108.18 113.14 122.73 144.77 
120 121.58 122.26 123.31 125.12 128.09 134.49 142.95 159.48 
150 151.48 152.14 153.20 154.93 157.85 162.57 170.17 187.89 
200 201.39 202.07 203.14 204.88 207.80 212.57 220.27 238.71 
250 251.37 252.02 253.07 254.88 257.78 262.56 270.32 289.30 
300 301.29 301.96 303.05 304.81 307.75 312.56 320.38 339.74 
400 401.27 401.92 402.98 404.78 407.72 412.53 420.41 440.35 
500 501.25 501.90 502.96 504.75 507.69 512.54 520.45 540.75 
600 601.23 601.89 602.96 604.74 607.68 612.52 620.48 641.03 
700 701.19 701.86 702.96 704.72 707.66 712.52 720.49 741.24 
800 801.18 801.85 802.95 804.72 807.65 812.52 820.49 841.41 
1000 1001.18 1001.83 1002.92 1004.71 1007.65 1012.51 1020.50 1041.64 

 

 

  



141 

 

Table 4-3. The effective RHYP distance for reverse 40°-dip faults. 

 
Magnitude 

JB 
Distance 4.5 5 5.5 6 6.5 7 7.5 8 

1 10.60 10.61 10.69 11.05 12.12 13.61 14.34 18.60 
2 11.09 11.10 11.30 11.39 12.50 14.39 17.39 26.79 
3 11.20 11.26 11.28 11.97 13.24 15.45 19.21 31.29 
5 12.11 12.17 12.48 13.35 14.34 17.28 22.12 36.64 
7 12.69 13.30 13.59 14.76 16.29 19.11 24.47 40.23 
10 15.00 15.41 15.99 16.78 18.64 22.03 27.98 44.44 
12 16.60 16.77 17.13 18.28 20.74 24.04 30.35 46.92 
15 19.20 19.47 19.95 21.28 23.35 27.11 33.41 50.33 
20 23.38 23.78 24.49 25.78 28.32 32.18 38.93 55.40 
30 32.53 32.88 33.89 35.31 38.09 42.59 49.19 63.97 
40 42.04 42.54 43.59 45.14 48.00 52.63 58.64 83.29 
50 51.82 52.38 53.24 54.94 57.88 62.04 66.29 113.96 
60 61.66 62.20 63.19 64.85 67.05 68.87 80.61 130.78 
70 71.52 72.07 73.05 74.91 78.42 84.89 97.21 138.73 
80 81.43 81.95 82.92 84.84 88.24 94.74 107.43 145.48 
100 101.30 101.85 102.83 104.64 108.08 114.48 130.14 158.54 
120 121.22 121.78 122.74 124.54 127.99 136.67 146.99 173.30 
150 151.13 151.68 152.66 154.45 157.78 163.82 174.51 202.67 
200 201.03 201.58 202.60 204.37 207.74 213.86 224.81 253.89 
250 251.00 251.53 252.50 254.34 257.68 263.88 274.96 304.88 
300 300.95 301.49 302.48 304.30 307.66 313.88 325.09 355.68 
400 400.90 401.46 402.42 404.25 407.63 413.89 425.23 456.87 
500 500.89 501.41 502.40 504.24 507.62 513.89 525.35 557.70 
600 600.87 601.40 602.40 604.21 607.60 613.89 625.41 658.32 
700 700.85 701.38 702.38 704.20 707.59 713.89 725.46 758.78 
800 800.83 801.38 802.38 804.19 807.57 813.89 825.49 859.15 
1000 1000.82 1001.38 1002.36 1004.18 1007.57 1013.89 1025.53 1059.70 
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Table 4-4. The effective REPI distance for vertical strike-dip faults. 

 
Magnitude 

JB 
Distance 4.5 5 5.5 6 6.5 7 7.5 8 

1 1.21 1.35 1.54 1.85 2.39 3.19 4.34 5.61 
2 2.22 2.39 2.70 3.12 3.79 4.97 6.64 8.85 
3 3.22 3.43 3.78 4.33 5.12 6.49 8.54 11.49 
5 5.23 5.46 5.88 6.61 7.61 9.23 12.02 15.89 
7 7.23 7.47 7.92 8.78 10.01 11.84 14.95 19.60 
10 10.23 10.47 10.97 11.95 13.48 15.62 19.14 24.65 
12 12.23 12.47 13.00 14.02 15.70 18.05 21.74 27.82 
15 15.23 15.47 16.01 17.10 18.97 21.67 25.62 32.08 
20 20.23 20.47 21.03 22.19 24.29 27.48 31.81 38.68 
30 30.23 30.48 31.05 32.27 34.67 38.69 43.43 50.48 
40 40.23 40.48 41.07 42.32 44.92 49.32 53.82 66.38 
50 50.24 50.48 51.08 52.35 55.04 59.01 62.53 84.98 
60 60.24 60.49 61.08 62.38 64.70 66.77 79.93 103.18 
70 70.24 70.49 71.09 72.47 75.72 82.92 99.59 128.89 
80 80.24 80.49 81.09 82.47 85.67 92.86 110.87 137.46 
100 100.24 100.49 101.08 102.47 105.67 112.85 130.48 154.54 
120 120.24 120.49 121.08 122.47 125.67 134.46 147.90 170.61 
150 150.24 150.49 151.08 152.47 155.57 162.36 175.89 198.27 
200 200.24 200.49 201.08 202.47 205.59 212.55 226.73 251.00 
250 250.24 250.49 251.08 252.48 255.61 262.66 277.26 302.93 
300 300.24 300.49 301.08 302.48 305.64 312.74 327.61 354.33 
400 400.24 400.49 401.08 402.48 405.66 412.83 428.08 456.26 
500 500.24 500.49 501.08 502.48 505.67 512.89 528.37 557.51 
600 600.24 600.49 601.08 602.48 605.69 612.93 628.56 658.37 
700 700.24 700.49 701.08 702.48 705.69 712.95 728.72 759.01 
800 800.24 800.49 801.08 802.48 805.69 812.97 828.81 859.50 
1000 1000.24 1000.49 1001.08 1002.48 1005.69 1013.01 1028.95 1060.21 
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Table 4-5. The effective REPI distance for normal 50°-dip faults. 

 
Magnitude 

JB 
Distance 4.5 5 5.5 6 6.5 7 7.5 8 

1 1.87 2.30 2.93 3.93 5.39 7.49 10.16 12.65 
2 2.97 3.42 4.12 5.19 6.84 9.31 12.87 18.26 
3 3.98 4.49 5.24 6.36 8.11 10.73 14.64 21.52 
5 6.05 6.58 7.39 8.58 10.42 13.25 17.51 25.71 
7 8.07 8.63 9.49 10.75 12.66 15.59 20.06 28.86 
10 11.07 11.67 12.58 13.91 15.94 18.96 23.63 32.95 
12 13.08 13.69 14.61 16.00 18.07 21.18 25.92 35.45 
15 16.08 16.71 17.66 19.09 21.24 24.45 29.29 39.03 
20 21.09 21.73 22.69 24.21 26.48 29.81 34.81 44.60 
30 31.10 31.73 32.76 34.34 36.75 40.35 45.52 54.72 
40 41.12 41.75 42.78 44.41 46.93 50.72 55.60 63.32 
50 51.12 51.76 52.79 54.45 57.05 60.58 64.32 76.42 
60 61.13 61.76 62.81 64.49 66.52 68.29 72.31 103.99 
70 71.15 71.81 72.88 74.72 77.75 82.81 91.14 118.81 
80 81.14 81.80 82.88 84.70 87.71 92.71 100.95 129.02 
100 101.14 101.80 102.88 104.69 107.67 112.61 121.85 143.93 
120 121.14 121.80 122.87 124.68 127.65 133.86 142.36 158.65 
150 151.14 151.79 152.86 154.62 157.52 162.19 169.65 187.09 
200 201.14 201.79 202.86 204.62 207.54 212.27 219.86 238.08 
250 251.14 251.79 252.86 254.63 257.55 262.32 270.00 288.78 
300 301.14 301.79 302.86 304.64 307.55 312.36 320.10 339.29 
400 401.14 401.79 402.86 404.65 407.56 412.38 420.21 440.00 
500 501.14 501.79 502.86 504.65 507.59 512.41 520.29 540.48 
600 601.14 601.79 602.86 604.65 607.59 612.42 620.32 640.79 
700 701.14 701.79 702.87 704.65 707.59 712.44 720.36 741.04 
800 801.14 801.79 802.87 804.65 807.59 812.45 820.38 841.22 
1000 1001.14 1001.79 1002.87 1004.65 1007.60 1012.46 1020.41 1041.50 
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Table 4-6. The effective REPI distance for reverse 40°-dip faults. 

 
Magnitude 

JB 
Distance 4.5 5 5.5 6 6.5 7 7.5 8 

1 1.62 1.98 2.60 3.65 5.35 7.99 11.27 14.05 
2 2.69 3.08 3.76 4.89 6.80 9.93 14.73 21.76 
3 3.69 4.15 4.86 6.05 8.05 11.40 16.76 26.65 
5 5.72 6.19 6.98 8.25 10.39 13.97 19.88 32.72 
7 7.73 8.23 9.05 10.41 12.62 16.34 22.56 36.74 
10 10.74 11.25 12.11 13.54 15.88 19.75 26.25 41.40 
12 12.74 13.27 14.13 15.62 18.02 21.97 28.61 44.10 
15 15.75 16.28 17.17 18.69 21.21 25.26 32.03 47.81 
20 20.76 21.28 22.21 23.78 26.42 30.66 37.56 53.29 
30 30.76 31.29 32.23 33.89 36.71 41.26 48.18 62.55 
40 40.77 41.29 42.25 43.95 46.87 51.63 57.91 77.25 
50 50.77 51.30 52.26 53.98 56.99 61.30 65.91 110.85 
60 60.77 61.30 62.27 64.01 66.48 68.61 79.35 129.70 
70 70.78 71.32 72.32 74.18 77.68 84.26 96.51 137.81 
80 80.78 81.31 82.32 84.17 87.64 94.13 106.76 144.62 
100 100.78 101.31 102.30 104.15 107.59 114.03 129.51 157.88 
120 120.77 121.30 122.30 124.14 127.57 136.15 146.58 172.47 
150 150.77 151.30 152.30 154.11 157.44 163.50 174.16 201.92 
200 200.77 201.30 202.30 204.11 207.46 213.60 224.51 253.30 
250 250.77 251.30 252.30 254.12 257.48 263.67 274.74 304.38 
300 300.77 301.30 302.30 304.12 307.48 313.70 324.89 355.26 
400 400.77 401.30 402.30 404.12 407.50 413.75 425.09 456.55 
500 500.77 501.30 502.30 504.13 507.51 513.78 525.22 557.45 
600 600.77 601.30 602.30 604.13 607.51 613.80 625.31 658.08 
700 700.77 701.30 702.30 704.13 707.52 713.81 725.36 758.59 
800 800.77 801.30 802.30 804.13 807.52 813.83 825.40 858.99 
1000 1000.77 1001.30 1002.30 1004.13 1007.52 1013.85 1025.47 1059.55 
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Table 4-7. The coefficients of the finite-fault depth versus magnitude and its uncertainty  

RJB a b σ 
1 0.1075 0.1275 0.0210 
2 0.0062 0.1513 0.0149 
3 -0.0255 0.1600 0.0357 
5 -0.1342 0.1825 0.0320 
7 -0.1513 0.1901 0.0343 
10 -0.2206 0.2076 0.0189 
12 -0.2828 0.2198 0.0135 
15 -0.2475 0.2197 0.0198 
20 -0.2638 0.2287 0.0191 
30 -0.3195 0.2468 0.0143 
40 -0.3730 0.2643 0.0223 
50 -0.3730 0.2706 0.0405 
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  Figures 

 

 

 

 

 

 

 

 

 

Figure 4-1. JB surface for a vertical strike-slip fault. The line in the middle of JB surface is the 

fault length of L. The triangle is the locations of possible observation points (sites or stations) 

having the same RJB distances from the extended fault. The earthquake hypocenter locations are 

defined by a truncated normal distribution; however, any probability density function of the 

hypocenter (e.g., Weibull distribution), which the hypocenter is weighted toward the bottom of 

the fault, not centered can be used in the distance conversion approach 
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Figure 4-2. JB surface for a dipping fault. The rectangular inside is the fault projection on the 

surface. The triangle is the locations of possible observation points (sites or stations) having the 

same RJB distances from the extended fault 
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Figure 4-3. Distance adjustments along a vertical strike-slip fault as a function of Joyner-Boore 

distance for three selected magnitudes of M 5.5, M 6.5, and M 7.5; a) Hypocentral, b) Epicentral 
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Figure 4-4. Distance adjustments along a 50˚-dip normal fault as a function of Joyner-Boore for 

three selected magnitudes of M 5.5, M 6.5, and M 7.5; a) Hypocentral, b) Epicentral 
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Figure 4-5. The frequency distribution of residuals fitted by a gamma distribution for a vertical 

strike-slip fault and a RJB distance of 20 km; a) hypocentral and M 5.5, b) hypocentral and M 6.5, 

c) hypocentral and M 7.5, d) epicentral and M 5.5, e) epicentral and M 6.5, f) epicentral and M 

7.5 
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Figure 4-6. The frequency distribution of residuals fitted by a gamma distribution for a normal 

50°-dip fault and a RJB distance of 20 km; a) hypocentral and M 5.5, b) hypocentral and M 6.5, 

c) hypocentral and M 7.5, d) epicentral and M 5.5, e) epicentral and M 6.5, f) epicentral and M 

7.5 
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Figure 4-7. Effective distance adjustments along a vertical strike-slip fault as a function of 

Joyner-Boore distance for three selected magnitudes of M 5.5, M 6.5, and M 7.5; a) 

Hypocentral, b) Epicentral 
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Figure 4-8. Effective distance adjustments along a 40˚-dip reverse fault as a function of Joyner-

Boore distance for three selected magnitudes of M 5.5, M 6.5, and M 7.5; a) Hypocentral, b) 

Epicentral  
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Figure 4-9. Epicentral distance adjustments along a vertical strike-slip fault and a 40˚-dip reverse 

fault as a function of Joyner-Boore distance in kilometer for a magnitude of M 7.5 
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Figure 4-10. Epicentral distance adjustments along an equally combination of a vertical strike-

slip fault and a 40˚-dip reverse fault as a function of Joyner-Boore distance in kilometer for a 

magnitude of M 7.5 
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Figure 4-11. Influence of the effective RHYP distance conversion on a given RJB-based GMPE at a 

period of: a) 0.2 sec, b) 1.0 sec 

0.0001

0.001

0.01

0.1

1

10

1 10 100 1000

Sp
ec

tra
l A

cc
el

er
at

io
n 

(g
)

Joyner-Boore Distance (km)

M 5.5 - Rupture Distance

M  5.5 - Effective Distance

M 7.5 - Rupture Distance

M 7.5 - Effective Distance

0.0001

0.001

0.01

0.1

1

10

1 10 100 1000

Sp
ec

tra
l A

cc
el

er
at

io
n 

(g
)

Joyner-Boore Distance (km)

M 5.5 - Rupture Distance
M  5.5 - Effective Distance
M 7.5 - Rupture Distance
M 7.5 - Effective Distance

a 

b 



157 

 

 

 

Figure 4-12. Different models proposed to obtain the finite-fault pseudo-depth at a reference 

distance of 1 km such as log (h) = -0.05 + 0.15 M by Atkinson and Silva (2000), log (h) = -1.72 

+ 0.43 M by Yenier and Atkinson (2014), and ln (h) = -0.515 + 0.259 M by Halldorsson and 

Papageorgiou (2005) as well as the analytical-based finite-fault depth values for different 

magnitudes at different RJB distances 
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Figure 4-13. Seismic hazard curves for a rock site at the center of a circular high-seismicity 

source with a radius of 100 km and for a period of 0.2 sec (a) and a period of 1.0 sec (b) using an 

RJB-based GMPE 
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Figure 4-14. Seismic hazard curves for a rock site at the center of a circular low-seismicity 

source with a radius of 100 km and for a period of 0.2 sec (a) and a period of 1.0 sec (b) using an 

RJB-based GMPE 
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5. SSGFM: A Software to Generate Time Histories Using 

the Stochastic Summation of Green’s Function Method 

and Its Verification 

Time histories are generally characterized by their amplitudes, durations, and frequency 

contents. In the stochastic summation of Green’s function method (SSGFM) code, the 

summation scheme is defined such that the frequency content of the target event matches the 

frequency content of the expected large event. Thus, PGVs, PGAs, response spectra, durations 

(Trifunac and Brady, 1976), and Arias intensities (Arias, 1970) of the simulated time histories 

are generally good metrics to compare with the observed ones to validate the SSGFM. 

It should be noted that the main goal of using different simulation techniques is not to 

produce synthetic time histories that match observed time histories wiggle for wiggle, but is to 

model realistic synthetic time histories with similar key features and properties of observed 

ground motion waveforms originated from amplitude, frequency content, and duration 

(Anderson, 2004; Olsen and Mayhew, 2010; Dreger et al., 2015; Goulet et al., 2015). The 

combined effect of all these characteristics can be captured with the elastic response spectra of a 

5% damped single-degree-of-freedom system with different periods, called the pseudo-spectral 

acceleration (5% damped PSA). In this study, a similar procedure such as the one proposed by 

the Southern California Earthquake Center (SCEC) platform validation group (Goulet et al., 

2015) is used. The current validation process by the SCEC group concentrates only on median 

PSA values. In this regard, to quantify the validation results, the goodness of fit (GOF) of 

simulations with observed ground motions are employed. A set of criteria are defined to 

accept/reject (pass/fail) simulations. In fact, the performance of the simulation approach is 

evaluated by investigating the ability of matching PSAs from the simulations with the PSAs 

estimated from recorded ground motions (part A) and predicted median PSAs from GMPEs (part 

B). In summary, to assess the performance of the presented technique compared to the other 

ground motion simulation techniques, we need to evaluate the capability of the SSGFM to 

simulate strong ground motions using smaller ground motions as input (EGF).  
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In this chapter, various approaches proposed to measure the goodness of simulations are 

discussed. Then, synthetic and real ground motions data are used to verify the accuracy of 

SSGFM using the TSP1 and TSP2. Since the Ordaz et al. (1995) and Kohrs et al. (2005) models 

are similar to TSP1 and TSP2, respectively, they are not included in the comparisons. Key 

features of ground motions are compared to determine whether the SSGFM code can be used to 

simulate realistic ground motions. 

 Validation Procedure 

 SCEC Validation Exercise Part A – Against Observed Ground Motions 

In the civil engineering design process, single-degree-of-freedom structural response 

spectra or earthquake time histories are employed as inputs to analyze structures. The SCEC 

broadband platform validation committee has developed a procedure to compare response 

spectra of the simulated ground motions with the observed data. The main goal of this exercise is 

to assess the ability of various ground motion simulation methods to generate reasonable average 

PSAs. This validation exercise was presented as a collaboration of SCEC with the Pacific 

Earthquake Engineering Research (PEER) center.   

The current validation exercise only employs median PSA values, not their aleatory 

uncertainty. The first step to evaluate simulations via part A of the SCEC validation exercise is 

to define residuals (the difference between the natural logarithm of the observed PSA values and 

the PSA values from simulations) 

 obs
obs sim

sim

PSARes ln(PSA ) ln(PSA ) ln( )
PSA

= − =   (5-1) 

where a positive residual represents underprediction of PSA and a negative residual denotes 

overprediction of PSA. This metric is called GOF. The SCEC-part A validation results in a GOF 

versus spectral period plot. Due to a large number of simulations at each spectral period, the 

difference between the average residual and zero indicates the bias at that period. The term bias 

is defined as 

 
1

1bias Res
N

j
jN =

= ∑   (5-2) 
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in which N is the number of simulations at a specified spectral period. The SCEC validation 

exercise part A suggests using 50 realizations for simulating each case at a given location to 

capture the variability of the source process (Goulet et al., 2015). A lower bias indicates a better 

set of simulations at a particular spectral period and the optimal bias is zero. The 

acceptance/rejection criterion is defined as (Dreger et al., 2015):  

• Failure threshold is defined once the GOF value from simulations is more than twice or 

less than the half of the observed values. Thus, failure threshold is ln (2) = 0.69 ≈ 0.70. A 

GOF less than a factor of 0.35 (ln (1.4)) is given a “pass” condition. A GOF with a factor 

between 0.35 and 0.70 is considered as a “potential issue” condition.  

 Duration 

The total duration of the event not only affects the feature of the ground motion in the 

time domain, but also significantly affects the response spectrum. Between two records having 

the same amount of energy, the one with longer duration has lower GMIMs and a lower 

response. Thus in addition to comparing response spectra, the duration is compared. The 

effective 95%-5% significant duration is defined by (Boore and Thompson, 2014) 

 ( )'
95 5 80 202D D D− = −   (5-3) 

where D20 and D80 are the times at which 20% and 80% of the total cumulative squared 

acceleration (normalized Arias intensity) are reached, respectively. D20 and D80 are used instead 

of D5 and D95 to pass the instability within the beginning and end of seismograms (Boore and 

Thompson, 2014). 

Arias intensity is defined by 

 2 ( )AI a t dt= ∫   (5-4) 

in which a(t) is the acceleration time history. Then, the normalized Arias intensity is given by 
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t
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a t dt
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∫

∫
  (5-5) 
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where t is the desired time to calculate the Arias intensity and the end represents the entire 

seismogram. 

 Verification Using Synthetic Motions 

 Using SMSIM to Simulate Synthetic Weak Motions 

To generate synthetic weak motions for a small earthquake which is effectively a point 

source (Boore, 1983; Boore, 2003), the Stochastic-Method SIMulation (SMSIM) code (Boore, 

2003; Boore, 2005) is used. The latest version, SMSIM 6.20 

(http://www.daveboore.com/software_online.html; last accessed: 10/15/2017) is used. In 

addition to the source function explained in Chapter 1, the path and site functions should be 

defined.  In the point-source model, the total Fourier amplitude spectrum (FAS) of the ground 

motion, Y, due to shear-wave propagation in an elastic half space can be expressed by the 

following equation (Boore, 2003) 

 0 0( , , ) ( , ) ( , ) ( ) ( )Y M f R S M f P f R G f I f= × × ×    (5-6) 

where M0 is the seismic moment (dyne-cm), R is the source-to-site distance (km), f is frequency 

(Hz), S(M0, f ) is the source spectrum, P ( f , R )  is the path attenuation function, G( f ) is the site-

response function, and I( f ) is a filter representing the type of GMIM. the recent seismological 

parameters determined for CENA to obtain the source, path, and site functions are used. Table 

5-1 tabulates values employed for use in SMSIM. In the following sections, the path, and the site 

terms are breifly described. 

Path Parameters 

P ( f , R ) describes the effects of the propagation path on seismic waves and consists of 

geometrical spreading and attenuation (scattering and anelastic attenuation). The geometrical 

spreading is defined as the decay of seismic wave amplitudes due to expansion on a spherical 

surface and Q represents the Earth’s structure in which seismic waves propagate and is usually 

found out to be frequency dependent P ( f , R ) is given by (Boore, 2003) 

 ( , ) ( ) exp
Q

fRP f R Z R
QV
π 

= −  
 

  (5-7) 
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where Z(R) is the geometrical spreading function defined as a function of R-α (α is the 

geometrical spreading exponent). VQ denotes the average group velocity of the desired phase of 

seismic waves through the propagation path. 

Six attenuation models were provided by the PEER NGA-East project (Silva et al., 2002; 

Atkinson, 2004; Atkinson and Boore, 1995; Boore et al. 2010; Boatwright and Seekins, 2011; 

Atkinson and Boore, 2014). Boore (2015) compared these models and concluded that models 

with 1/R1.3 as the geometrical spreading functions cannot fit the observed data at periods of 1.0 

and 2.0 sec. In addition, a very large stress drop is required to match the data at periods of 0.1 

and 0.2 sec. A similar observation has made by Sedaghati and Pezeshk (2016c) and Pezeshk et 

al. (2018a) for the New Madrid seismic zone (NMSZ) which is a part of CENA. Furthermore, 

Boore (2015) suggests using the Boatwright and Seekins (2011) attenuation model since it 

matches the observed data well compared to other attenuation models. This attenuation model is 

very similar to the attenuation model derived by Nazemi et al. (2017) for the NMSZ. Hence, we 

will use the Boatwright and Seekins (2011) attenuation model given by 
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−

−

=

 ≤= 
>

  (5-8) 

It is interesting that the inversion results from Darragh et al. (2015) also confirm using the 

bilinear geometrical spreading proposed by Boatwright and Seekins (2011). 

The next path parameter is the path-dependent duration. Table 5-2 reports the path 

duration model for a stable continental region determined by Boore and Thompson (2015). Note 

that the total duration is the summation of the source-dependent duration (TS = 1/fc) and path 

duration (TP). 

Site Parameters 

The G ( f ) function represents the combined effects of the diminution function (near site 

path independent attenuation introduced by Anderson and Hough, 1984) and the crustal 

amplification factor (Boore, 2003). The site response is obtained from 

 ( ) ( ) ( )G f A f D f= ×   (5-9) 
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in which A( f ) and D( f ) represent the amplification and diminution functions. The diminution 

function can be explained by an exponential function given by 

 0( ) exp( )D f fπ κ= −   (5-10) 

where κ0 is the path-independent loss of energy which occurs due to the damping at the site and 

can be obtained by the decay rate of the FAS on a log-linear plot (Anderson and Hough, 1984). 

The site amplification function indicates that the response of the low-velocity layers near the 

surface which corresponds to the shear-wave velocity, density, and damping ratio of the soil 

layers and can be estimated theoretically or experimentally. Table 5-3 lists the value of 

amplification factors derived using the quarter wavelength method (Boore and Thompson, 2015). 

For simulation purposes, the typically adopted value of 0.006 sec is used as κ0 (Campbell et al., 

2014). 

Source Parameters 

I will use a single corner frequency (SCF) source model with a constant stress drop. 

Equations to calculate the seismic moment and corner frequency were given in Chapter 1. Thus, 

to model the spectral shape at high frequencies, we need to have the stress drop value. Boore 

(2015) inverted the data in CENA and obtained that the median stress parameter is equal to 172 

bars based on the Boatwright and Seekins (2011) attenuation model. The average radiation 

pattern, shear-wave velocity near the source, and density of the rock near the source are assumed 

to be 0.55, 3.7 km/sec, and 2.8 g/cc, respectively. All these explained parameters are chosen to 

be consistent with each other. Since they are correlated, changing one parameter will result in 

changing the other parameters. 

Time domain analysis 

It is worth mentioning that having a smaller time step for the recorded small earthquake 

time history yields better and more accurate results, since the delay times will be adjusted to this 

vector. A value of 0.005 sec was used as the time step. 
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 Verification Procedure 

Example of the SCF source model using SMSIM 

For the first example, all values tabulated in Table 5-1 are ued to generate an M3.0 

earthquake (Δσ = 172 bar) using SMSIM 6.2 at a point-source distance of 40 km. The distance 

used in SMSIM is the effective point-source distance. Since SSGFM requires that the equivalent 

point-sources of both target and EGF are located at the same place, the effective point-source 

distance for the large event should be 40 km as well. To generate a large earthquake with 

magnitude of 6.0 and a point-source distance of 40 km, the stress drop is updated with a value of 

350 bars while the remaining parameters are the same. Figure 5-1 and Figure 5-2 illustrate the 

acceleration, velocity, and displacement time series for the small event (EGF) and the target 

event, respectively. To check the accuracy of the written code, the velocity and displacement 

time histories determined from the SSGFM code and from SMSIM are plotted. As can be seen, 

they are the same suggesting that this part of the code works correctly. Using equations (2-53) 

and (2-54), the number of summands and the scaling factor are obtained to be 

 
cs

ct

387805
0.0815
14.2421
0.5707

N

f
f

ξ
=
=
=
=

  (5-11) 

First, the TSP1 approach is used and simulate 50 sets of rupture times. Using the generated 

rupture times, scaling factor, and the number of summands, 50 different realizations are 

simulated to account for the source rupture variability. Figure 5-3 demonstrates the FAS of the 

EGF, the FAS of the target, and all realizations as well as the average FAS. The average FAS is 

obtained from the rms (root mean square) mean of all 50 realizations, given by 

 

2

1
meanFAS

N

i
i

FAS

N
==
∑

  (5-12) 

As can be seen, the FAS of realizations perfectly follows the trend of the FAS of the target event. 

Figure 5-4 displays the response spectra for the EGF, target event, each realization, and the 

average. The geometric mean of response spectra of realizations is used to determine the average 

response spectrum (Boore, 2003). Figure 5-4 also shows the bias of the realizations and based on 
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that, simulations match the target event very well. The effective significant duration (equation 

(5-3)) for the target event is 21.66 sec and the average effective significant duration from all 50 

realizations is 21.02 sec, indicating the simulations have very similar durations to the target 

event. Finally, Figure 5-5 presents two different simulated time histories compared to the target 

event. Values of PGA, PGV, and PGD for each time series are written. All values from 

synthetics are within ±15% of the observed values. 

Now, the TSP2 approach is used to simulate another 50 realizations. Figure 5-6, Figure 

5-7, and Figure 5-8 show the FAS, response spectra, and time series plots for the target event and 

all realizations. According to these plots, the simulated time histories perfectly match all desired 

characteristics of the target event. 

Note that the difference between the TSP1 and TSP2 approaches is clearly visible in the 

FAS plot, response spectrum plot, and the time histories plot. All simulations from the one-stage 

summation scheme are similar, while each simulation from the two-stage method is different 

than the other simulations. In fact, simulations from the two-stage method on average match the 

energy distribution, response spectrum, and FAS of the target event. Therefore, the two-stage 

method can better capture the variability of ground motions caused by the rupture process 

whereas simulations from the one-stage summation scheme produce very similar results. 

Example of the DCF source model using SMSIM 

To perform the second example, all parameters except the SCF source model from Table 

5-1 are used to simulate two earthquakes with magnitude 5 (EGF) and magnitude 7 (target) 

having the same stress parameters. Both events are simulated at an effective point source 

distance of 70 km. To model the source, the additive double corner frequency model suggested 

by Atkinson and Silva (2000) for ENA (equation (3-33)) is used. Figure 5-9 and Figure 5-10 

illustrate the acceleration, velocity and displacement time series for the small event (EGF) and 

the target event, respectively. Using equations (2-53) and (2-54), the number of summands and 

the scaling factor are given by 
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  (5-13) 

The TSP1 approach is skipped since it generates very similar time histories and the 

results from the two-stage summation scheme have a more realistic shape since the energy is not 

concentrated in the middle like the one-stage summation scheme. Using the TSP2 approach, 50 

different simulations are produced. Figure 5-11 demonstrates the FASs for all realizations and 

the small and target event as well as the average FAS. As can be seen, the FAS of the simulated 

time histories on average match the FAS of the target event, while the FAS of each realization 

can deviate from the FAS of the target event. Figure 5-12 depicts that the average of the 50 

spectra matches the target response spectrum very well, although the spectrum of each 

simulation may deviate from the average at some frequencies. In addition, this figure shows that 

the bias is near to zero, indicating the simulations can mimic the characteristics of the target 

event. The effective significant duration (equation (5-3)) for the target event is 36.82 sec and the 

average effective significant duration from all 50 realizations is 33.23 sec, indicating the 

simulations have very similar durations to the target event. Simulated acceleration time series as 

well as their resulting velocity and displacement time histories are shown in Figure 5-13. All 

PGA, PGV, PGD values are within ±20% of the observed values, indicating that the results from 

the synthetics are satisfactory. 

Example of the SCF source model using EXSIM 

The next step for verification of the proposed method and written codes is to generate 

two events with magnitudes 7 and 8 using the EXSIM software. EXSIM (EXtended-finite fault-

method SIMulation) is an open-source FORTRAN code to simulate ground motions (Motazedian 

and Atkinson, 2005; Boore, 2009; Assatourians and Atkinson, 2012). In this regard, weak ground 

motions for subsources are generated using the stochastic point source model. Then, time series 

are normalized and shifted in the time domain to construct the time histories of the large event. 

The basic idea of EXSIM is very similar to SSGFM. The advantage of SSGFM is that if a 

recorded weak motion is available, it is not required to have detailed information of the path and 
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site parameters such as geometrical spreading and attenuation. Also, SSGFM needs fewer input 

parameters related to the source compared to EXSIM. 

To generate M7.0 and M8.0 events, the Wells and Coppersmith (1994) relationships to 

estimate the width and length of the fault is used. All parameters used for the M8.0 event are 

reported in Table 5-4 and the distance is 7 km. For the M7.0 event, the length and width of the 

fault are equal to 46.737 and 10.707 km, respectively, and the distance is 15 km. To generate 

time series, the time step is chosen to be 0.01 sec. 

Using equations (2-53) and (2-54), the number of summands and the scaling factor are 

given by 
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  (5-14) 

I use the TSP2 scheme to scale, shift, and sum up time histories from the M7.0 event to simulate 

50 different time histories from an M8.0 event. Figure 5-14 demonstrates the FASs for all 

realizations and the small and target event as well as the average FAS. As can be seen, the FAS 

of the simulated time histories on average match the FAS of the target event, while the FAS of 

each realization can deviate from the FAS of the target event. Figure 5-15 depicts that the 

average of the 50 spectra matches the target response spectrum very well, although the spectrum 

of each simulation may deviate from the average at some frequencies. Note that with increasing 

frequency the deviation from the average gets larger, whereas all realizations are very close to 

the average at low frequencies. In addition, this figure shows that the bias is near to zero, 

indicating the simulations can mimic the characteristics of the target event. The effective 

significant duration (equation (5-3)) for the target event is 31.38 sec and the average effective 

significant duration from all 50 realizations is 27.63 sec, indicating the simulations have very 

similar durations to the target event. The simulated acceleration time series as well as their 

resulting velocity and displacement time histories are shown in Figure 5-16. All PGA, PGV, 

PGD values are within ±20% of the observed values, indicating the results from the synthetics 

are satisfactory. 



170 

 

 Verification Using Observed Ground Motions 

The 11 March 2011 Tohoku, Japan, megathrust earthquake with M9.0 is one of the 

recorded largest subduction earthquakes. About 23,000 people were killed due to this earthquake 

and the tsunami generated by this event. The source of this earthquake approximately has a 

length of 450 km and a width of 200 km with a maximum slip of 30 m (Kurahashi and Irikura, 

2011; Ghofrani et al., 2012). Detailed investigations of this event reveal that the source model is 

a combination of areas with large slip velocity or high stress drop (asperities) and areas with 

large slip (background source). This kind of rupture model is called compound (Frankel, 2016). 

The comprehensive description of this event can be found in Kurahashi and Irikura (2011). This 

earthquake was selected since a rich dataset of strong motions from this earthquake can be 

obtained from the National Research Institute for Earth Science and Disaster Prevention (NIED) 

and it is freely available to download via http://www.kyoshin.bosai.go.jp/ (last accessed Jan 

2018). To select an appropriate small earthquake for use in the SSGFM, both events must have 

the same radiation pattern and also propagation path and site effects. Therefore, the M6.8 10 

March 2011 Tohoku, Japan, earthquake is selected since its hypocenter is very close to the 

hypocenter of the target event and their source characteristics are similar. Table 5-5 provides 

general information about source parameters of the main event (target) and the small event 

(EGF). 

Two popular NIED strong motion seismograph networks are K-NET and KiK-net. The 

K-NET network consists of more than 1,000 stations, installed on the ground surface throughout 

Japan, distributed uniformly every 20 km. The KiK-net network has 687 pairs of strong-motion 

seismographs installed on the ground surface and in boreholes within Japan. In this study, three-

component accelerograms from KiK-net in boreholes is used, since recordings of these large 

earthquakes from the ground surface are strongly affected by the soil nonlinearity and the 

SSGFM cannot capture this effect. Therefore to have better simulation results, borehole data is 

used. A total of 10 KiK-net stations was selected in which both events were recorded at the 

bottom of boreholes with JB distances ranging from 35 to 120 km. Table 5-6 tabulates the 

location of stations and their details and Figure 5-17 demonstrates the location of the selected 

sites as well as the location of the target event and its EGF. As can be seen from this figure, all 

stations are above half of the fault’s length. Note that stations located beneath half of the fault’s 

http://www.kyoshin.bosai.go.jp/
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length were not employed since the effective distance for them is significantly different; and 

therefore, those stations will need another EGF with a hypocenter located near the equivalent 

point-source of the target event. 

To perform the SSGFM, we need to have stress drop values or corner frequencies of both 

events as inputs. The corner frequency of the small event is obtained by Kurahashi and Irikura 

(2011) and is equal to 0.22 Hz. The corner frequency of the target event is obtained in this report 

based on a trial and error approach by minimizing the sum of the squared residuals, obtained 

from fitting the Fourier acceleration spectra of all waveforms by a SCF source model. The 

estimated corner frequency for the target event is equal to 0.0225. Therefore, the number of 

summand and the scaling factor are 

 
9140

0.2125
N
ξ

=
=

  (5-15) 

I use the TSP2 scheme and simulate 50 different realizations for each component 

recorded at each station, to account for variations in the source rupture process. Thus, there are 

1500 synthetics based on 30 input ground motions.  

Figure 5-18, Figure 5-19, and Figure 5-20 present the comparison of the FAS of the 

target event to each realization, as well as the average FAS for stations AKTH19 (N-S direction), 

YMTH14 (E-W direction), and YMTH15 (vertical direction), respectively. Overall, there is a 

reasonable agreement between the target FASs and the average FAS. There are some sparks in 

FAS of different stations which may be attributed to the reverberation in data caused by site 

response (Frankel, 2016; Sedaghati et al., 2018) or the presence of surface waves (Ghofrani et 

al., 2013). The SSGFM perfectly models these sparks in the FAS of the simulations. It should be 

mentioned the average FAS in a few stations falls below the target FAS at high frequencies. The 

reason for this issue is that the equivalent point-source of the target event for these stations is 

located closer to the site, but the EGF used in the simulation process is farther to the site. 

Therefore, it affects the FAS at high frequencies. 

To obtain the response spectrum, normalized Arias intensity, and time series plots, the 

acceleration waveforms (both data and synthetics) filtered between 0.10 and 15 Hz is used. 

Following Ghofrani et al. (2012), the lower cut-off frequency is selected by the inspection of 

data somehow the displacement spectrum has a flat portion at low frequencies resulting in well-
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shaped displacement time histories. The upper cut-off frequency is chosen based on the 

characteristics of the seismographs (Ghofrani et al., 2012). A zero-phase (acausal) four-pole 

Butterworth filter to avoid changing the size and location of peak amplitudes (Sedaghati and 

Pezeshk, 2016c) is used.  

The comparison between the response spectra of simulations and target event as well as 

bias plots are depicted in Figure 5-21, Figure 5-22, and Figure 5-23 for stations AKTH19 (N-S 

direction), YMTH14 (E-W direction), and YMTH15 (vertical direction), respectively. As can be 

seen, the bias lines bracket the zero-line indicating that there is no systematic underestimation or 

overestimation of the responses. 

Table 5-7 compares the durations derived from different definitions for time histories of 

stations AKTH19 (N-S direction), YMTH14 (E-W direction), and YMTH15 (vertical direction), 

respectively. The duration of the synthetics is often longer than the target event. The reason for 

this issue is that the EGF is located further, compared to the equivalent point source of the target 

event. Therefore, the EGFs have longer total duration due to the effect of path-dependent 

duration. The longer duration of the EGF is accumulated within the simulation process and 

produces synthetics with longer duration compared to the target event. 

Acceleration, velocity, and displacement time histories of the EGF, the target event, and 

two different realizations for stations AKTH19 (N-S direction), YMTH14 (E-W direction), and 

YMTH15 (vertical direction) are shown in Figure 5-24, Figure 5-25, and Figure 5-26, 

respectively. The peak values are also denoted on the plots. Regarding these figures, all PGA, 

PGV, and PGD values from synthetics match the observed values within a factor of 1.4 

indicating that the results are satisfactory. It is interesting to note that the other stochastic 

methods such as EXSIM fail to reproduce the velocity and displacement waveforms for very 

large earthquakes since they are strongly affected by the integration of the slip across the entire 

fault plane (Ghofrani et al., 2013). The method presented in this report can reproduce well-

simulated velocity and displacement waveforms that look reasonable and coherent. 

Eventually, the final bias is determined from averaging the three components captured at 

all stations. As can be seen in Figure 5-27, the broadband synthetics overall produce PSAs with 

low bias compared to the data. Therefore, the resultant simulations even at close distances are in 

good agreement with the recorded data. The upper plot shows the residuals from each realization 
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as well as the average and the standard deviation. The lower plot depicts the average, 90% 

confidence interval, and standard deviation lines. Note that the improved SSGFM is a simple 

stochastic method that works with a few input parameters that aim to mimic the effects of rupture 

propagation, rupture inhomogeneity, and a fault’s geometry without any specific details of the 

physics of the rupture process. Thus, synthetics may sometimes miss coherent pulses and 

phasing information. In fact, the produced synthetics match the key characteristics of ground 

motions such as response spectrum and duration although they can have different shapes of time 

series compared to the observed ones.  
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 Tables 

Table 5-1. Parameters of the stochastic model for use in SMISM 

Source Parameters 
Source spectrum, SCF ω2 model 
Stress drop, Δσ = 172 bars 
Radiation pattern coefficient = 0.55 
Velocity, βS = 3.7 km/sec 
Density, ρ = 2.8 g/cc 
Source duration, TS = 1/fc where fc is the corner frequency 

Path Parameters 
Geometrical spreading, Z(R) = R-1.0 for R ≤ 50; and R-0.5 beyond 50 km 
Quality factor, Q( f ) = 410f 0.5 (from Boatwright and Seekins, 2011) 
Path duration, TP see Table 5-2 (from Boore and Thompson, 2015) 

Site Parameters 
Partition factor = 0.707 
Free-surface factor = 2.0 
Site attenuation, κ0 = 0.006 sec 
Site amplification, A( f ) see Table 5-3 (from Boore and Thompson, 2015) 
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Table 5-2. The path duration function for CENA (from Boore and Thompson, 2015) 

Rupture distance (km) TP (sec) 
0 0.0 
15 2.6 
35 17.5 
50 25.1 
125 25.1 
200 28.5 
392 46.0 
600 69.1 

Slope of last segment 0.111 
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Table 5-3. Crustal amplification factors for CENA for a reference hard-rock site 

f (Hz) A( f ) 
0.001 1.000 
0.008 1.003 
0.023 1.010 
0.04 1.017 
0.061 1.026 
0.108 1.047 
0.234 1.069 
0.345 1.084 
0.508 1.101 
1.09 1.135 
1.37 1.143 
1.69 1.148 
1.97 1.150 
2.42 1.151 
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Table 5-4. Parameters of the stochastic model for use in EXSIM 

Fault Strike              =     0.00 
Fault dip                 =    90.00 
Fault depth to upper edge  =     2.00 
Fault length from Wells and Coppersmith for fault type S, using a reference stress of    70.0 
Fault Length              =   194.830 
Fault width from Wells and Coppersmith for fault type S, using a reference stress of    70.0 
Fault Width               =    19.937 
ratio of rupture to s-wave velocity =     0.80 
FaultLat                  =     0.00 
FaultLon                  =     0.00 
No.of subs along strike   =      129 
No.of subs along dip      =       13 
subfault length           =     1.51 
subfault width            =     1.53 
i_rise_time (1=orig,2=1/f0) =  2 
iseed, nsims =          -40    5 
----------------------------------------------- 
input hypocenter at position    =  -1.000E+00 -1.000E+00 
input hypocenter at subfault    =    0   0 
n_hypocenters    =    2 
Mag.                      =     8.00 
----------------------------------------------- 
dt (sec)                  =   0.0100 
beta (km/s)               =     3.70 
density (rho), gr/cm3     =     2.80 
prtitn                    =     0.71 
rtp                       =     0.55 
fs                        =     2.00 
pulsing Percentage        =    50.00 
iflagscalefactor (1=vel^2; 2=acc^2;  3=asymptotic acc^2 (dmb)) = 2 
flocut, nslope            =   0.000  8 
iflagfas_avg              = 3 
iflagpsa_avg_over_hypos   = 2 
iflagpsa_avg_over_sims   = 1 
stress parameter (bars)   =   140.00 
fmax                      =     0.00 
kappa                     =   0.0050 
----------------------------------------------- 
Corner Frequency 
Dynamic Corner Frequency Flag is  ON =    1 
----------------------------------------------- 
fr1, qr1, s1q, ft1, ft2, fr2, qr2, s2q, c_q, qt1, stq  = 
1.00000000 1000.00000 0.00000000E+00 1.42420006 1.42420006 1.00000000 893.000000 0.319999993 
3.70000005 1000.00000 0.00000000E+00 
Path duration: ndur_hinges, rpathdur, pathdur, durslope: 
4 
0.0   0.00 
10.0   0.00 
70.0   9.60 
130.0   7.80 
0.040 
gspread: i, nsprd_segs, r_ref, rlow, a_s, b_s, m_s 
1 3 1.00000000 1.00000000 -1.29999995 0.00000000E+00 6.50000000 
2 3 1.00000000 70.0000000 0.200000003 0.00000000E+00 6.50000000 
3 3 1.00000000 140.000000 -0.500000000 0.00000000E+00 6.50000000 
----------------------------------------------- 
window applied               = Saragoni-Hart 
----------------------------------------------- 
Crustal amps from file crustal_amps_sample.txt 
freq     amp 
0.500   1.000 
1.000   1.130 
2.000   1.220 
5.000   1.360 
10.000   1.410 
----------------------------------------------- 
site amps from file site_amps_sample.txt 
freq     amp 
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1.000   1.000 
----------------------------------------------- 
----------------------------------------------- 
Analytical Pulse parameters 
----------------------------------------------- 
Analytical Flag is  OFF   =     0 
tpadl, tpadt, dt(sec)                     :    50.000    20.000     0.010 
For site   1 siteLocation coordinates 1&2 =     98.12     0.71 
For site   2 siteLocation coordinates 1&2 =    105.90     8.49 
Site may have been moved to midpoint or end of surface projection of upper edge of fault 
For site   1 elapsed time (sec) = 183.27 
For site   2 elapsed time (sec) = 183.36 
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Table 5-5. Source parameters of the small event and the main shock 

  Source Origin Time 
(UT) Latitude Longitude Depth 

(km) M Strike 
(º) 

Dip  
(º) 

Rake  
(º) 

M0  
(N.m) 

Small 
Event 

JMA* 2011/03/09 
21:23:59.00 38.1722  143.0448  

9.30 6.8         
Manual** 20.00 6.5 22 ; 213 68 ; 23 85 ; 101 5.51E+18 

Main 
Shock 

JMA* 2011/03/11 
05:46:18.12 38.1035  142.8610  

23.74 9.0     
Manual** 20.00 8.7 22 ; 200 63 ; 27 91 ; 88 1.07E+22 

*JMA: Japan Meteorological 
Agency 
**Manual: From F-net website, 
http://www.fnet.bosai.go.jp/top.php 
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Table 5-6. Locations of the selected station from KiK-net 

  Site Code Site Name Latitude Longitude Altitude (m) Depth (m) 
1 AKTH01 NISHIKI-N 39.8147 140.5790 318 100 
2 AKTH02 NISHIKI-S 39.6634 140.5721 95 100 
3 AKTH06 OGACHI 38.9801 140.4952 285 100 
4 AKTH19 YUZAWA 39.1913 140.4710 74 180 
5 IWTH12 KUNOHE 40.1533 141.4245 365 100 
6 MYGH02 NARUKO 38.8587 140.6513 345 203 
7 YMTH02 YAMAGATA 38.2693 140.2583 130 150 
8 YMTH07 YONEZAWA 37.8960 140.0278 352 200 
9 YMTH14 NISHIKAWA-W 38.3860 139.9916 465 103 
10 YMTH15 NISHIKAWA-E 38.4257 140.1249 305 100 
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Table 5-7. Comparison between the durations of synthetics and observed recording at the three 

selected stations 

 D'95-5 (sec) 
Stations Observed Synthetics 

AKTH19 143.60 134.80 
YMTH14 147.18 162.01 
YMTH15 129.04 147.60 
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 Figures 

 

Figure 5-1. Time series for an M 3.0 earthquake following a SCF source model for use as EGF 
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Figure 5-2. Time series for an M 6.0 earthquake following a SCF source model for use as target 
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Figure 5-3. Comparison of the FASs of the target event, each realization, and the average for a 

SCF source model using the TSP1 scheme 
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Figure 5-4. Comparison of the response spectra computed from the target event, each realization, 

and the average for a SCF source model using the TSP1 scheme 
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Figure 5-5. EGF, target event, and two synthetic time series for a SCF source model using the 

TSP1 scheme. Values on the plots represent the peak value. 
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Figure 5-6. Comparison of the FASs of the target event, each realization, and the average for a 

SCF source model using the TSP2 scheme 
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Figure 5-7. Comparison of the response spectra computed from the target event, each realization, 

and the average for a SCF source model using the TSP2 scheme 
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Figure 5-8. EGF, target event, and two synthetic time series for a SCF source model using the 

TSP2 scheme. Values on the plots represent the peak value. 
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Figure 5-9. Time series for an M 5.0 earthquake following a DCF source model for use as EGF 
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Figure 5-10. Time series for an M 7.0 earthquake following a DCF source model for use as 

target 
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Figure 5-11. Comparison of the FASs of the target event, each realization, and the average for a 

DCF source model using the TSP2 scheme 
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Figure 5-12. Comparison of the response spectra computed for the target event, each realization, 

and the average for a DCF source model using the TSP2 scheme 
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Figure 5-13. EGF, target event, and two synthetic time series for a DCF source model using the 

TSP2 scheme. Values on the plots represent the peak value. 
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Figure 5-14. Comparison of the FASs of the target event generated using EXSIM, each 

realization, and the average for a SCF source model using the TSP2 scheme 
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Figure 5-15. Comparison of the response spectra computed for the target event generated using 

EXSIM, each realization, and the average for a SCF source model using the TSP2 scheme 
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Figure 5-16. EGF, target event generated using EXSIM, and two synthetic time series for a SCF 

source model using the TSP2 scheme. Values on the plots represent the peak value. 
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Figure 5-17. Map showing the location of the selected KiK-net stations and fault plane of the 

target event as well as the location of the epicenter of the target event and EGF (this plot is 

generated using QGIS 2.18.12) 
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Figure 5-18. Comparison of the FASs of the target event, each realization, and the average from 

waveforms captured at AKTH19 (N-S direction) 
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Figure 5-19. Comparison of the FASs of the target event, each realization, and the average from 

waveforms captured at YMTH14 (E-W direction) 
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Figure 5-20. Comparison of the FASs of the target event, each realization, and the average from 

waveforms captured at YMTH15 (vertical direction) 
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Figure 5-21. Comparison of the response spectra computed for the target event, each realization, 

and the average from waveforms captured at AKTH19 (N-S direction) 
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Figure 5-22. Comparison of the response spectra computed for the target event, each realization, 

and the average from waveforms captured at YMTH14 (E-W direction) 
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Figure 5-23. Comparison of the response spectra computed for the target event, each realization, 

and the average from waveforms captured at YMTH15 (vertical direction) 
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Figure 5-24. EGF, target event, and two synthetic time series from waveforms captured at 

AKTH19 (N-S direction). Values on the plots represent the peak value. 
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Figure 5-25. EGF, target event, and two synthetic time series from waveforms captured at 

YMTH14 (E-W direction). Values on the plots represent the peak value. 
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Figure 5-26. EGF, target event, and two synthetic time series from waveforms captured at 

YMTH15 (vertical direction). Values on the plots represent the peak value. 
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Figure 5-27. Average bias and its uncertainty over all 1500 simulations. CI: confidence interval. 
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6. An Application to Central and Eastern North America 

(CENA) and Development of Ground Motion Prediction 

Equations for This Region 

 Introduction 

Due to the low level of seismicity in central and eastern North America (CENA), the 

database for this region is not robust in terms of magnitude and distance, particularly for large 

magnitudes and close distances. Therefore, a significant issue exists in selecting appropriate 

ground motions for structural design and development of ground motion prediction equations 

(GMPEs) in this region. Employing synthetic ground motions generated based on the 

seismological characteristics of CENA is one of the solutions for this issue. 

The main objective of this chapter is to provide peak ground velocity (PGV), peak 

ground acceleration (PGA), and 5%-damped pseudo-spectral acceleration (PSA) values at 

spectral periods of 0.01 to 10 sec and to develop GMPEs for CENA. To achieve this goal, the 

geological and seismological characteristics of this region is used to construct region-specific 

input ground motions into the SSGFM code instead of using site-specific observed ground 

motions. The region-specific synthetics, generated using SMSIM, are then employed as input 

Green’s functions (GF) into the SSGFM code.  Using the improved SSGFM code considering 

the effective distance, the effects of finite-fault geometry as well as rupture propagating and 

rupture inhomogeneity are taken into account. 

In the following page, a detailed discussion is provided on why the point-source 

stochastic simulation of Boore (2003) is used to generate GFs. The Southern California 

Earthquake Center (SCEC) broadband platform validation committee compared 5 different 

finite-fault simulation approaches. These 5 models are listed in Table 6-1. Based on the results 

shown in Figure 6-1 and Figure 6-2, it can be concluded that although all methods, except 

EXSIM, are assumed to generate broadband synthetics, all of them, except EXSIM, failed in 

validation exercises at long periods (Goulet et al., 2014; Dreger et al., 2014). The SCEC 

validation exercise-part B considered 12 well-recorded earthquakes (7 in CA, 2 in Japan, and 3 
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in ENA) to compare 5 simulation methods. Figure 6-1 shows the bias normalized with the 

GMPEs’ predictions presenting the performance of each model for the selected earthquakes at 

different periods and distance ranges. All simulation methods mostly produce fail conditions for 

the distance range of 0 to 5 km. Also, bias increases with increasing period.  However, EXSIM 

noticeably works better than the other simulation methods. This is very interesting since other 

methods are supposed to produce more accurate broadband ground motions at low frequencies, 

not overestimating the median PSAs. But EXSIM, which is developed based on a bandlimited 

stochastic white noise method, produces better results at low frequencies compared to physic-

based and hybrid methods (see Figure 6-2). It should be mentioned that EXSIM constructs weak 

motions using the similar procuedure used in SMSIM and then scales and shifts the weak 

motions to generate large earthquake time series. The second reason to use SMSIM for 

simulating weak motions instead of other methods is that for small events in which the length 

and width of the faults is small, even a close distance site can be considered as far-field. 

Therefore, using SMSIM to generate weak motions as input ground motions in the SSGFM code 

is reasonable. The third reason is that the SSGFM itself cannot capture the effect of directivity 

and it just accumulates the effect of directivity if it exists in the simulated ground motions 

through summation. Therefore, if we include directivity effect in the input weak motion, all large 

earthquake simulations would be biased and they do not reflect the average trend. 

Regarding these 3 reasons, weak motions for CENA using SMSIM is generated first. 

Then, these weak motions are used as input GFs to the improved SSGFM code to synthesize 

strong ground motions. From the simulated time series, PGV, PGA, and PSA values are 

calculated and these values are compared and validated with the predicted PGA and PSA values 

from GMPEs developed for CENA. Finally, a new suite of GMPEs for this region are developed. 

The simulated time histories can be employed for nonlinear structural analysis and performance-

based design applications. The developed GMPEs can be used for seismic hazard analysis for 

CENA. 

 Simulation of Synthetic Seismograms for CENA 

The latest version of SMSIM is used to generate region-specific stochastic simulations 

for M3.5, M4.0, and M4.5 events at 26 equivalent point-source (effective point-source) distances 
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of 9.2, 10, 11, 12.5, 14, 15, 20, 25, 30, 40, 50, 60, 70, 80, 100, 120, 150, 200, 250, 300, 400, 500, 

600, 700, 800, and 1000 km (http://www.daveboore.com/software_online.html; last accessed: 

10/15/2017). These effective distances are equivalent to JB distances of 1 to 1000 km based on 

tables generated at the end of Chapter 4. Ground motions in this report are simulated for a 

reference hard rock site with VS30 = 3.0 km/sec. Note that it is very important to select 

seismological and geological parameters that are internally consistent. In fact, it is unreasonable 

to use a stress drop from a particular study and then to use the path attenuation from another 

study. Boore (2015) and Boore (2018) have calculated the stress drop for 6 different attenuation 

models (combination of Q and the geometrical spreading) determined from the inversion of PSA 

values at spectral periods of 0.1 and 0.2 sec within 200 km and 600 km. The Atkinson and Boore 

(2014) attenuation model is used with a frequency independent geometrical spreading function 

which Boore (2018) referred to as AB14mod2. Table 6-2 lists the seismological and geological 

characteristics which are used as the representative values in CENA to construct ground motions 

based on the stochastic point-source approach. A key feature of the source model for these 

simulations is a constant stress drop for all magnitudes (magnitude-independent stress drop). 

Constant stress drop is accepted as a first order approximation for moderate to large earthquakes 

(Aki, 1967; Hutching and Viegas, 2012; Frankel, 2015). Frankel (2015) used 200 bars as the 

stress drop value for constructing high frequency stochastic synthetics for ENA. Pezeshk et al. 

(2015) used a constant stress drop value of 400 bars. The selected parameters are also consistent 

with the ones used in Chapter 4 to determine effective distances. 

For each small magnitude-distance pair, 5 different simulations are generated using 

SMSIM. Therefore, a total of 5*3*26 = 390 weak motions are generated. The simulated weak 

motions are used as input GFs into the SSGFM code and are scaled, shifted, and added together 

to synthesize motions from large earthquakes with magnitudes of 5.0, 5.5, 6.0, 6.5, 7.0, 7.5, and 

8.0 at those effective point-source distances. For each input GFs, 10 realizations are generated to 

account for the effect of slip variability. Therefore, for each large magnitude magnitude-distance 

pair, 50 various synthetics are generated. Overall, a database containing 50*26*7 + 390 = 9490 

synthetics with magnitudes varying from 3.5 to 8 and effective distances ranging from 9.2 to 

1000 km is created. To simulate synthetics of M5.0 and M5.5, time histories of M3.5 is used as 

the seeds, to simulate synthetics of M6.0 to M 7.0, time histories of M4.0 is used as the seeds, 

and for simulations of M7.5 and M8.0, time series of M4.5 are employed as the seeds. A total of 
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24 ground motion intensity measures (GMIMs) including PGV (cm/sec), PGA (g), and 5%-

damped PSA (g) from 0.01 to 10 sec are calculated for each synthesized time series. The distance 

range, magnitude range, and spectral ordinates considered in this study are consistent with the 

PEER NGA-East project (Goulet et al., 2014). 

The equivalent JB distance to each effective point-source distance-magnitude pair is 

determined based on Table 4-1 assuming faults are all strike-slip. Observed data reveals that the 

rate of increasing ground motions with magnitude decreases for larger magnitude earthquakes 

due to saturation effects. To capture the effects of magnitude and distance saturation, there are 

two different approaches (Darragh et al., 2015): 1) using a magnitude-dependent stress drop 

which decreases with increasing magnitude; and 2) incorporating an additional term in distance 

metric called the fictitious depth (Boore, 2009; Yenier and Atkinson, 2014; Tavakoli et al., 2018) 

discussed in Chapter 4. In this study, the effective point-source distance tables developed in 

Chapter 4 are employed. In fact, when a small earthquake is used within the framework of the 

SSGFM, the GF is supposed to be located at the effective point (equivalent point-source 

location) of the target event. In other words, to simulate a large earthquake, the effective point of 

the target event is placed at the effective point of the GF. For instance, to simulate an M7 

earthquake with a JB distance of 10 km, the effective distance is 19.56 km (see Table 4-1). Thus, 

if the GF is a M4.5 event, we need to have a record at a JB distance of around 17 km which has 

an effective distance similar to the target event. This correction actually resolves the shortcoming 

of the point-source approach in modeling the magnitude and distance saturation. Since Table 4-1 

is used to convert effective distances to JB distances, all shaking scenarios are defined for a 

strike-slip faulting mechanism with a 90º dip angle having the characteristics (depth, width, and 

length) explained in Chapter 4. 

 Validation Procedure: Against Appropriate GMPEs (SCEC Validation 

Exercise-Part B) 

According to the SCEC validation exercise-part B, the simulated ground motions are 

compared with GMPEs developed for the region where synthetic ground motions are generated. 

This approach was first proposed by Frankel (2009). To this end, first medians, minima, maxima, 

and standard deviations of all realizations are identified. Then, the boxplots indicating the 
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median, standard deviations, and extrema are drawn on the PSA versus spectral period plot. The 

next step is to plot the median of predicated PSAs from selected relevant GMPEs. Finally, the 

pass/fail limits are determined as follows (Dreger et al., 2015): 

• The upper bound is determined by the largest positive departure of any individual 

GMPE from the overall median plus 15% and then adding the difference to the 

overall median uniformly at all periods. 

• The lower bound is determined by the largest negative departure of any individual 

GMPE from the overall median minus 15% and then subtracting the difference 

from the overall median uniformly at all periods. 

Therefore, if the median of realizations is placed out of the lower and upper bounds, it implies 

that simulations are not consistent with the selected GMPEs. 

Various GMPEs have been developed for CENA based on different approaches such as 

the hybrid empirical method (Tavakoli and Pezeshk, 2005; Pezeshk et al., 2011; Pezeshk et al., 

2015), the point-source stochastic method (Boore, 2018), and the finite-fault stochastic method 

(Atkinson and Boore, 2006). Pezeshk et al. (2018b), Pezeshk et al. (2011), Atkinson and Boore 

(2006) which has been modified by Atkinson and Boore (2011), Boore (2018), and Al Noman 

and Cramer (2015) with updated parameters (hereafter referred to as: PZCT18, PZT11, AB06 

(revised), Boore18, and AC16, respectively) are selected as the representative GMPEs developed 

for CENA. These GMPEs for use in this analysis are selected somehow to cover different 

methodologies and input seismological and geological parameters such as stress drop and 

attenuation to capture the effect of epistemic uncertainty. Figure 6-3, Figure 6-4, Figure 6-5, and 

Figure 6-6 illustrate the variation of response spectra for selected GMPEs at rupture distances of 

5, 10, 100, and 300 km, respectively. Note that since AC16 is derived using observed ground 

motions and is not simulation-based, the magnitude and distance ranges of applicability are 

limited to magnitudes up to 5.8 and distances beyond 50 km. 

To assess and evaluate the accuracy of the simulations, the median and standard deviation 

of 50 simulations at each distance-magnitude bin are determined and are compared against the 

median PSAs predicted by selected GMPEs. As can be seen from Figure 6-7 to Figure 6-14, the 

estimated values from synthetics generated using the proposed method (improved SSGFM), fall 

between the defined acceptance criteria indicating acceptable performance of the synthetics at all 
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magnitude and distance ranges. Note that since the selected GMPEs use the rupture distance, this 

distance metric is converted to the JB distance (using equations explained in Chapter 4) to be 

consistent with the distance of simulations. 

 Ground Motion Prediction Equations for CENA 

Regarding the shape of the geometrical spreading function used to generate GFs by 

SMSIM, the functional form is given by 
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in which 

 2 2
11JBR R C= +   (5-17) 

and C1 to C11 are the coefficients of the functional form, M is the moment magnitude, RJB is the 

Joyner-Boore distance (km) defined as the closest horizontal distance to the surface projection of 

the rupture plane, and Ln(Y) is the natural logarithm of the GMIM of interest (PGV in cm/sec 

and PGA and 5%-damped PSAs in g unit). A nonlinear least-squares regression is then employed 

to derive the model coefficients and its standard deviations. Table 6-3 tabulates the model 

coefficients and the regression standards deviation for 23 spectral periods from 0 to 10 sec as 

well as PGV. The proposed GMPEs for CENA are applicable for magnitudes ranging from 3.5 to 

8.0 and JB distances up to 1000 km for generic hard rock sites with VS30 = 3000 m/sec. For other 

site conditions, the estimated GMIMs should be modified based on VS30 (e.g., Stewart et al., 

2017; Parker et al., 2018). It is worth mentioning that all simulations are directly used in the 

regression analysis to derive GMPEs and the regression analysis is not based on only the 

geometric mean or median spectral acceleration at each period for each distance-magnitude bin. 

It should be mentioned that the calculation of aleatory uncertainty is a part of GMPE 

development. The GMPEs proposed in this report are for generic hard rock site with VS30 = 3000 

m/sec; while the Next Generation Attenuation-East (NGA-East) database (Goulet et al., 2014) 

includes events recorded on sites having different VS30. Therefore, the NGA-East data must be 
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adjusted for the generic hard rock site. The impact of epistemic uncertainty is not considered in 

this study. The most important part of epistemic uncertainty is related to the seismological and 

geological parameters used in the simulations such as stress drop, attenuation, and duration. 

Epistemic uncertainty is often handled by using different GMPEs constructed based on various 

assumptions within the framework of logic trees. 

Figure 6-15 depicts the decay rate of the estimated spectral accelerations with distance at 

different spectral periods. As observed from this figure, because of selection of a geometrical 

spreading function with three hinge points, there are three different segments in the distance-

scaling plots. Since the decay trends are linear at close distances, it indicates that the effect of 

geometrical spreading overcomes Q up to 50 km. However, beyond this distance, the higher 

effect of Q causes the presence of curvature in plots.  Furthermore, although the distance and 

magnitude saturation effects are obvious in the plots, we do not observe oversaturation at large 

magnitudes and very short distances. Figure 6-16 demonstrates the median response spectra for 

sites located at Joyner-Boore distances of 10, 30, 100, and 300 km. These plots again reveal the 

presence of saturation, but not oversaturation. Moreover, it is interesting to note that the 

predominant period increases with increasing magnitude. This pattern has been observed in other 

studies such as Boore et al. (2014) and Sedaghati and Pezeshk (2017). 

 Comparison with Previous Models Developed for CENA 

Figure 6-17, Figure 6-18, Figure 6-19, and Figure 6-20 present the comparison of the 

GMPEs developed in this study (hereafter PST18: Pezeshk, Sedaghati, and Tavakoli 2018) at 4 

different spectral periods with 3 selected GMPEs derived for CENA: Shahjouei and Pezeshk 

(2016), Gupta et al. (2017) which is a modified version of Shahjouei and Pezeshk (2016), and 

Pezeshk et al. (2011) (referred to as SP16, SP16scaled, and PZT11, respectively). Upper plots 

compare the decay rate of selected GMPEs for M5 and M7 and lower plots compare the decay 

rate of selected GMPEs for M4 and M6 for PGA and PSA at 0.2, 1.0, and 5.0 sec. Note that 

PZT11 is constructed using the rupture distance. Therefore, the rupture distance is converted to 

the JB distance using equations explained in Chapter 4 to have a consistent distance metrics. It 

should be also mentioned that the seismological parameters employed for each set of GMPEs are 

different. For instance, the stress drop values used for PZT11 and PST18 are 250 and 229 bar, 

respectively. SP16 used equally weighted simulations based on stress parameters of 400 and 600 
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bars. In addition, the geometrical spreading and the quality factor function for these GMPEs are 

completely different. In SP16scaled, Gupta et al. (2017) updated the coefficents of the functional 

form proposed by Shahjouei and Pezeshk (2016) to follow the trend of recorded small to 

moderate ground motions with distances less than 200 km in CENA. Overall, the proposed 

model is placed between other models. At close distances, the proposed model in this study 

predicts spectral amplitudes pretty similar to SP16scaled. At longer distances, spectral 

amplitudes estimated from PST18 are similar to SP16. Note that SP16 was developed for 

magnitudes larger than 5 and as can be seen in these figures, SP16 significantly overestimates 

spectral amplitudes for M4 events. On the other hand, since SP16scaled is modified based on 

recorded small to moderate magnitude earthquakes in CENA, it should predict reasonable 

spectral amplitudes. For the small magnitude range, PST18 and SP16scaled have similar trends 

in the JB distance range of 1 to 200 km and both result in comparable spectral amplitudes. 

 Comparison with Observed Ground Motions in CENA 

The NGA-East database (Goulet et al., 2014) contains ground motions recorded on 

different soil conditions in CENA. Therefore, the ground motions for sites other than reference 

hard rock should be adjusted. There are many practical limits to perform site adjustment and all 

of them include severe uncertainty (Pezeshk et al., 2015; Hassani and Atkinson, 2016). In this 

regard, we use only observed data of NGA-East database with VS30 > 1000 m/sec to reduce the 

impact of uncertainty inherent in the site adjustment factor. To account for the effect of different 

site-damping coefficient and amplification factors, the adjustment factor explained in Pezeshk et 

al. (2018) (see Figure 9 of Pezeshk et al., 2018b) is used to modify the GMIMs of interest for a 

reference hard rock site. This compiled dataset is then combined with a dataset of Gupta et al. 

(2017). The Gupta et al. (2017) dataset consists of 46,178 recordings from 2873 small to 

moderate earthquakes with distances up to 200 km captured at 1069 stations located within 

CENA. This database of ground motions is available at 

https://github.com/abhineetgupta/groundMotionsDatabase_CEUS (last accessed Feb 2018). The 

recordings of this database have been corrected for the effects of site using the site amplification 

model of Seyhan and Stewart (2014) to convert for a site with VS30 = 760 m/sec. Note that the 

used site amplification model is developed for the NGA-west2 database; and therefore, it may 

not be appropriate to use in CENA (Hassani and Atkinson, 2016). However, since the objective 
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here is only visual comparison, we add this dataset to the NGA-East dataset. The site condition 

for the Gupta et al. (2017) (referred to as GKE17) dataset is not adjusted to VS30 of 3000 m/sec to 

avoid incorporating more uncertainty into the GMIMs. 

Figure 6-21, Figure 6-22, and Figure 6-23 compare recorded ground motions from NGA-

East and Gupta et al. (2017) (referred to as GKE17) datasets with the median spectral 

accelerations estimated from GMPEs developed in this study for M4.0, M4.5, and M5.0 events, 

respectively, at different spectral ordinates. Overall, comparisons demonstrate good agreement 

between the proposed model and observed ground motions. The proposed model perfectly 

follows the trend of recorded ground motions at even very close distances. For very long periods 

at very long distances, the proposed model slightly underpredicts spectral acceleration compared 

to observed recordings which may attribute to the attenuation function (higher attenuation 

compared to reality) or stress drop (lower compared to reality). 
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 Tables 

Table 6-1. List of the different simulation schemes used in SCEC broadband platform 

Approach Contact(s) and Institution Name 

Broadband deterministic J. Anderson (UNR) Composite source model 
Archuleta and Cremoien (UCSB) UCSB 

Hybrid: LF deterministic 
and HF stochastic 

Graves (USGS) Graves and Pitarka 
Olsen (SDSU) SDSU (BB toolbx) 

Stochastic finite fault Assatourians and Atkinson (UWO) EXSIM 
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Table 6-2. Parameters of the stochastic model for use in SMISM 

Source Parameters 
Source spectrum, SCF ω2 model 
Stress drop, Δσ = 229 bars 
Radiation pattern coefficient = 0.55 
Velocity, βS = 3.7 km/sec 
Density, ρ = 2.8 g/cc 
Source duration, TS = 1/fc where fc is the corner frequency 

Path Parameters 
Geometrical spreading, Z(R) = R-1.0 for R ≤ 10; R-1.3 for 10 < R ≤ 50; and 
R-0.5 beyond 50 km 
Quality factor, Q( f ) = 525f 0.45 (from Atkinson and Boore, 2014) 
Path duration, TP see Table 5-2 (from Boore and Thompson, 2015) 

Site Parameters 
Partition factor = 0.707 
Free-surface factor = 2.0 
Site attenuation, κ0 = 0.006 sec 
Site amplification, A( f ) see Table 5-3 (from Boore and Thompson, 2015) 
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Table 6-3. Derived coefficients of the functional form defined for CENA in this study 

Period C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 σReg 
PGV -9.9497 3.1354 -0.1464 -0.0097 -0.0859 -2.9860 0.2703 -1.7261 0.1884 -0.00204 1.8432 0.2800 
PGA -9.7886 2.5152 -0.1345 -0.0322 -0.1053 -3.0052 0.2499 -1.9066 0.1609 -0.00273 2.6190 0.2094 
0.01 -9.1259 2.4536 -0.1302 -0.0015 -0.1185 -3.0982 0.2488 -2.1473 0.1778 -0.00248 2.8313 0.1996 
0.02 -8.1691 2.3487 -0.1282 -0.2608 -0.0741 -2.8021 0.2042 -2.5160 0.1939 -0.00212 2.4712 0.2206 
0.03 -8.3106 2.2761 -0.1172 -0.0485 -0.0940 -2.6971 0.1980 -2.4199 0.1820 -0.00239 2.2830 0.2522 
0.04 -8.4363 2.3203 -0.1177 -0.1567 -0.0908 -2.5013 0.1798 -2.2608 0.1711 -0.00276 2.8045 0.2699 
0.05 -8.3931 2.2794 -0.1184 -0.1076 -0.0821 -2.7732 0.2236 -2.0211 0.1485 -0.00307 1.8654 0.2886 
0.08 -8.7766 2.3018 -0.1069 0.1284 -0.1415 -2.7992 0.2330 -1.5607 0.1118 -0.00368 3.5379 0.3224 
0.10 -9.0902 2.3307 -0.1084 0.1271 -0.1343 -2.7158 0.2268 -1.3249 0.0984 -0.00409 3.3217 0.3528 
0.15 -10.5794 2.6042 -0.1317 0.1841 -0.1139 -2.8045 0.2420 -1.0109 0.0722 -0.00401 2.0199 0.3459 
0.20 -11.9932 2.9406 -0.1543 0.2604 -0.1255 -2.7546 0.2450 -0.9989 0.0703 -0.00375 2.3634 0.3531 
0.25 -12.9046 3.2242 -0.1796 0.0814 -0.0979 -2.6531 0.2350 -0.9174 0.0648 -0.00369 1.9677 0.3679 
0.30 -14.3076 3.5189 -0.1971 0.1581 -0.1051 -2.6124 0.2325 -0.8457 0.0562 -0.00343 1.7414 0.3629 
0.40 -16.6885 4.1629 -0.2353 0.3396 -0.1539 -2.7406 0.2440 -0.7492 0.0403 -0.00300 3.5677 0.3757 
0.50 -18.9354 4.6095 -0.2655 0.5704 -0.1560 -2.5803 0.2284 -0.6233 0.0274 -0.00294 1.7632 0.3966 
0.75 -22.9284 5.4859 -0.3183 1.0055 -0.2061 -2.4381 0.1965 -0.7504 0.0638 -0.00299 0.7383 0.4073 
1.00 -24.3573 5.9099 -0.3522 0.6829 -0.1670 -2.6300 0.2332 -0.8903 0.0650 -0.00232 0.9506 0.4106 
1.50 -25.1991 6.1462 -0.3688 -0.0828 -0.0851 -2.6507 0.2481 -0.5505 0.0275 -0.00238 1.7931 0.4209 
2.00 -24.6729 5.9743 -0.3611 -0.8591 0.0177 -2.2927 0.2014 -0.7699 0.0677 -0.00236 2.4364 0.4164 
3.00 -27.1609 6.2135 -0.3628 -0.7059 0.0300 -2.4647 0.2181 -0.6717 0.0278 -0.00119 1.9928 0.3936 
4.00 -28.3079 6.1956 -0.3330 -0.1525 -0.0857 -2.5172 0.2331 -0.8686 0.0661 -0.00176 3.5658 0.4085 
5.00 -28.7753 6.0708 -0.3087 0.1557 -0.1482 -2.6554 0.2547 -0.9352 0.0697 -0.00157 3.5803 0.4150 
7.50 -28.1283 5.4054 -0.2568 0.0158 -0.0839 -2.5556 0.2422 -1.2105 0.1044 -0.00113 1.4088 0.3753 
10.00 -26.5872 4.7754 -0.2013 -0.2719 -0.0594 -2.6764 0.2545 -1.1911 0.0995 -0.00101 2.7920 0.3784 

C1 to C11 are the functional form coefficients and σReg is the regression standard deviation in the natural logarithm unit. 



221 

 

 Figures 

 

 

Figure 6-1. Comparison of combined goodness of fit values obtained from different simulation 

schemes (from Dreger et al., 2015) 
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Figure 6-2. Comparison of the average response spectrum from simulations with the average 

response spectrum obtained from NGA-west 2 GMPEs based on the SCEC validation exercise 

part B for an M 6.2, strike-slip event at a distance of 50 km (from Dreger et al., 2015) 
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Figure 6-3. Response spectra predicted from the considered GMPEs developed for CENA at a 

rupture distance of 5 km for implementation in the SCEC-Part B validation exercise. 

 

 



224 

 

 

 

Figure 6-4. Response spectra predicted from the considered GMPEs developed for CENA at a 

rupture distance of 30 km for implementation in the SCEC-Part B validation exercise.  
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Figure 6-5. Response spectra predicted from the considered GMPEs developed for CENA at a 

rupture distance of 100 km for implementation in the SCEC-Part B validation exercise. 
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Figure 6-6. Response spectra predicted from the considered GMPEs developed for CENA at a 

rupture distance of 300 km for implementation in the SCEC-Part B validation exercise.  
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Figure 6-7. Comparison of the average (median) response spectrum obtained from the considered 

GMPEs for CENA and its acceptance criteria with the median spectral accelerations ±1 standard 

deviations determined from synthetics simulated in this study for an M8 event at a JB distance of 

2.2 km. 
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Figure 6-8. Comparison of the average (median) response spectrum obtained from the considered 

GMPEs for CENA and its acceptance criteria with the median spectral accelerations ±1 standard 

deviations determined from synthetics simulated in this study for an M8 event at a JB distance of 

40 km. 
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Figure 6-9. Comparison of the average (median) response spectrum obtained from the considered 

GMPEs for CENA and its acceptance criteria with the median spectral accelerations ±1 standard 

deviations determined from synthetics simulated in this study for an M7 event at a JB distance of 

110 km. 
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Figure 6-10. Comparison of the average (median) response spectrum obtained from the 

considered GMPEs for CENA and its acceptance criteria with the median spectral accelerations 

±1 standard deviations determined from synthetics simulated in this study for an M6 event at a 

JB distance of 8 km. 
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Figure 6-11. Comparison of the average (median) response spectrum obtained from the 

considered GMPEs for CENA and its acceptance criteria with the median spectral accelerations 

±1 standard deviations determined from synthetics simulated in this study for an M6 event at a 

JB distance of 496 km. 
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Figure 6-12. Comparison of the average (median) response spectrum obtained from the 

considered GMPEs for CENA and its acceptance criteria with the median spectral accelerations 

±1 standard deviations determined from synthetics simulated in this study for an M5.5 event at a 

JB distance of 26 km. 
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Figure 6-13. Comparison of the average (median) response spectrum obtained from the 

considered GMPEs for CENA and its acceptance criteria with the median spectral accelerations 

±1 standard deviations determined from synthetics simulated in this study for an M5.5 event at a 

JB distance of 297 km. 
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Figure 6-14. Comparison of the average (median) response spectrum obtained from the 

considered GMPEs for CENA and its acceptance criteria with the median spectral accelerations 

±1 standard deviations determined from synthetics simulated in this study for an M5.5 event at a 

JB distance of 998 km. 
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Figure 6-15. Distance scaling characteristics of the proposed GMPEs for a reference hard rock 

site with VS30 of 3000 m/sec at spectral periods of PGA, 0.2, 1.0, and 5.0 sec. 
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Figure 6-16. Variation of median estimates of response spectra versus spectral period at JB 

distances of 10, 30, 100, and 300 km 

  



237 

 

 

Figure 6-17. Comparison of estimated PGA values from the GMPEs proposed in this study with 

the predicted values by other GMPEs developed for CENA. M4 and M5 are the lower curves 

and M6 and M7 are the upper curves; PST18 (Pezeshk, Sedaghati, and Tavakoli, 2018); SP16 

(Shahjouei and Pezeshk, 2016); SP16scaled (Gupta et al., 2017); PZT11 (Pezeshk et al., 2011). 
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Figure 6-18. Comparison of estimated SA values at 0.2 sec from the GMPEs proposed in this 

study with the predicted values by other GMPEs developed for CENA. M4 and M5 are the lower 

curves and M6 and M7 are the upper curves; PST18 (Pezeshk, Sedaghati, and Tavakoli, 2018); 

SP16 (Shahjouei and Pezeshk, 2016); SP16scaled (Gupta et al., 2017); PZT11 (Pezeshk et al., 

2011). 
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Figure 6-19. Comparison of estimated SA values at 1.0 sec from the GMPEs proposed in this 

study with the predicted values by other GMPEs developed for CENA. M4 and M5 are the lower 

curves and M6 and M7 are the upper curves; PST18 (Pezeshk, Sedaghati, and Tavakoli, 2018); 

SP16 (Shahjouei and Pezeshk, 2016); SP16scaled (Gupta et al., 2017); PZT11 (Pezeshk et al., 

2011). 
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Figure 6-20. Comparison of estimated SA values at 5.0 sec from the GMPEs proposed in this 

study with the predicted values by other GMPEs developed for CENA. M4 and M5 are the lower 

curves and M6 and M7 are the upper curves; PST18 (Pezeshk, Sedaghati, and Tavakoli, 2018); 

SP16 (Shahjouei and Pezeshk, 2016); SP16scaled (Gupta et al., 2017); PZT11 (Pezeshk et al., 

2011). 
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Figure 6-21. Comparison of the median spectral acceleration predicted from the derived GMPEs 

in this study for the M4 case with the GMIMs of observed ground motions with magnitudes 

ranging from 3.75 to 4.25 at spectral ordinates of PGA, 0.2 sec, 1.0 sec, and 5.0 sec. 
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Figure 6-22. Comparison of the median spectral acceleration predicted from the derived GMPEs 

in this study for the M4.5 case with the GMIMs of observed ground motions with magnitudes 

ranging from 4.25 to 4.75 at spectral ordinates of PGA, 0.2 sec, 1.0 sec, and 5.0 sec. 
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Figure 6-23. Comparison of the median spectral acceleration predicted from the derived GMPEs 

in this study for the M5 case with the GMIMs of observed ground motions with magnitudes 

ranging from 4.75 to 5.25 at spectral ordinates of PGA, 0.2 sec, 1.0 sec, and 5.0 sec.  
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7. Summary, Conclusions, and Future Work 

 Summary of the Current Study 

Near source and high magnitude recordings of ground motions are of great interest to 

both seismologists and engineers particularly for performing probabilistic seismic hazard 

assessment (PSHA) and engineering design. In seismically active areas, there are many near 

source and high magnitude events to create a robust database. However, there is an essential 

need to use synthetic data regions such as central and eastern North America where there is a 

scarcity of recorded large events. Furthermore, there is a great need for strong motion time 

histories in case of nonlinear performance for complex structures such as tall buildings, long 

span bridges, structures with base isolations, or structures supported by damping devices. 

Many different techniques have been proposed to simulate synthetic time histories 

including physics-based, stochastic, and hybrid approaches. The problem of physics-based and 

hybrid approaches is that they require many input parameters and details about the source, path, 

and site terms. In addition, these methods are often computationally expensive. On the other 

hand, most stochastic methods particularly those constructed based on point-source models 

ignore important characteristics of finite fault rupture such as source-to-site geometry, rupture 

propagation, and asperities. In this report, the two-stage stochastic summation of Green’s 

functions method (SSGFM) is combined with the definition of the effective point-source distance 

to employ the simplicity of the stochastic method and to augment the accuracy of simulations. 

Using this method, three components of a strong ground motion can be simultaneously predicted 

in the whole frequency range. 

The required input parameters for SSGFM are values of the stress drop and the moment 

magnitude of both the target and small events. Then, the time series of the postulated large 

(target) earthquake can be simulated as a linear combination of observed small earthquakes. In 

this simulation technique, the target fault is divided into a specific number of identical sub-faults 

having the same characteristics of the small event fault. Then, time series from the considered 

sub-faults are shifted and are added together to construct the large target earthquake time series. 

Since deterministic or theoretic Green’s functions are difficult to obtain due to the complex 
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nature of the propagation path and site through which seismic waves propagate. Hartzell (1978) 

suggested using small earthquakes which have effectively impulse source time function, and 

thereby, they reflect the effects of the propagation path (geometrical spreading and attenuation) 

and site responses (amplification and near-site distance independent). In fact, these small events 

can be considered as empirical Green’s function (EGF). 

In Chapter 1, two improvements were proposed to extend SSGFM. In Chapters 2 and 3, 

the first improvement was achieved, which is the generalization and extension of the summation 

scheme to the general SCF and DCF source models. In Chapter 4, the second improvement was 

achieved, which is the definition of another distance metric, called effective point-source 

distance, to capture the effect of source-to-site geometry of the fault on simulations. In Chapter 

5, we tested and verified the proposed summation schemes and developed codes using a variety 

of synthetics and real ground motions. Finally in Chapter 6, the improved SSGFM was employed 

for CENA to generate region-specific time series and the derived PGV, PGA, and PSA values 

were used to develop a new set of GMPEs for CENA. Comparing the results with other exsiting 

GMPEs developed for CENA and observed ground motions in this region, we concluded that the 

SSGFM can reproduce ground motions that the PGV, PGA, and PSA values estimated from 

synthetics match well the estimated values from observed ground motions. 

 Achievements and Conclusions 

The significant achievements and findings of this study are summarized as follows: 

• Generalization of the summation scheme: one-stage and two-stage summation schemes 

for the SCF and DCF source models following the general forms proposed by Boore et 

al. (2014) were defined to follow the source scaling relationships. 

• Analytical equations to obtain the effective distance: analytical equations were derived to 

obtain the effective distance for a given JB distance based on general input parameters 

such as the geometrical spreading and anelastic attenuation functions. 

• Application to very large earthquakes: using the synthetic ground motions and observed 

ground motions of the 2011 M9 Tohoku Japan subduction earthquake, it was shown that 

SSGFM is capable of generating and simulating time series for very large earthquakes. 
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• Application to CENA and to develop time series for this region: using the developed 

method in this report, the improved SSGFM, which was combined with the definition of 

the effective point-source distance, a large set of time series was synthesized for CENA. 

Then, the latest and the most updated seismological and geological characteristics were 

incorporated in simulations. The synthetics generated in this study can be employed for 

structural analysis and design purposes in this region considering the effects of finite-

fault rupture. 

• Development of a new suite of GMPEs for CENA for implementation in seismic hazard 

assessment: the derived GMPEs are applicable for earthquakes with moment magnitudes 

ranging from 3.5 to 8.0 and Joyner-Boore distances up to 1000 km for sites with VS30 of 3 

km/sec. 

 Recommendations for Future Studies 

The research presented in this report can be considered as a reference point in thhe 

simulation of large earthquakes by the stochastic summation of Green’s functions. However, 

several studies are recommended to improve and extend the various topics presented in this study 

as follows: 

• Generalized summation scheme for the case that the GF has a SCF source model and the 

target event has a DCF source model: in this report, both GF and target event follow 

identical source models (both follow the SCF source model or both follow the DCF 

source model). As an improvement, the summation scheme can be updated to use GFs 

following the SCF source model and to construct large earthquakes conforming the DCF 

source model. 

• Multiple-stage summation scheme: the summation schemes developed in this study are 

performed in one stage or two stages. The new recommended scheme would be similar to 

EXSIM with a dynamic corner frequency in which the corner frequency of subsources 

decrease (see Atkinson and Assatourians, 2015: SCEC). In the dynamic corner frequency 

model, the frequency content of a radiated seismic wave moves towards lower 

frequencies as the rupture propagates. To do summation in multiple-stages, many small to 

moderate events between the GF and the target event should be defined and those small 
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to moderate events are scaled, shifted, and added gradually to follow the source scaling 

relationships. 

• Evaluating the aleatory uncertainty of the developed GMPEs: if the recorded data are 

correctly modified to adjust for hard rock sites, then the between-event and within-event 

components of the aleatory uncertainty can be determined using a regression analysis. 

• Accounting for epistemic uncertainty: different input parameters such as stress drop and 

geometrical spreading and anelastic attenuation can be used in simulations to capture the 

effect of epistemic uncertainty. 

• Development of GMPEs for CENA based on the DCF source model instead of the SCF: 

in this report, it was assumed that the source scaling follows a SCF model. Following the 

proposed DCF source models for CENA, a new set of simulations and thus GMPEs can 

be derived. 
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Appendix A.  Examples 

Example 2: with fcs = 1 Hz, Δσs = 1 and fct = 0.1 Hz, Δσt = 1 
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Example 3: with fcs = 5 Hz, Δσs = 0.5 and fct = 0.5 Hz, Δσt = 2 
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10 different generated delay times using the TSP2 method for example 3 
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