SR 69/ 128 Corridor Study

Savannah, TN

Prepared for:

City of Savannah, Tennessee

November 15, 2016

CONTENTS

Resolution 3
Executive Summary 4
Introduction 8
1.1 Study Project Area 9
1.2 Grant Application Background 11
1.3 Vision 12
1.4 Goals 12
1.5 Study Team 13
2. Data Collection and Inventory 14
2.1 Corridor Description 14
2.2 Connectors 16
2.3 Existing Traffic Conditions 19
2.4 Crash Data 23
2.5 Multimodal Opportunities 23
2.6 Existing Land Use and Zoning 26
2.7 Planned Developments 28
2.8 School Access 30
3. Existing Conditions 34
3.1 Traffic Analysis 34
3.2 Crash Analysis 39
3.3 Environmental Overview 47
4. Public Involvement 59
4.1 Public Meeting \#1 59
4.2 Local Officials Meeting 63
4.3 Public Meeting \#2 63
4.1 Land Use Planning 66
4.2 Spot Improvements 70
4.3 Multimodal Improvements 74
4.4 Connectivity Improvements 75
4.5 School Access Improvements 75
4.6 Corridor Improvements 76
4.7 Cost Estimates and Project Prioritization 77
4.8 Funding Opportunities 80
APPENDIX A: Enlarged Figures
APPENDIX B: Traffic Data
APPENDIX C: Environmental Maps
APPENDIX D: Public Meeting Information
APPENDIX E: Access Management
APPENDIX F: Recommendations

RESOLUTION

RESOLUTION

RESOLUTION ADOPTING THE SAVANNAH SR 69/128 CORRIDOR STUDY PREPARED FOR
 THE CITY OF SAVANNAH, TENNESSEE

WHEREAS, the Board of Mayor and Commissioners of the City of Savannah, Tennessee have committed to supporting and improving the area's transportation system for mobility and accessibility of present and future generations of City of Savannah citizens; and,

WHEREAS, the City of Savannah was awarded a TDOT Community Transportation Planning Grant by the State of Tennessee, Department of Transportation to aid with the creation of planning documents that support improvements in traffic flow, safety and overall efficiency of the transportation system to achieve community visions as related to transportation and land use needs that promote economic growth; and,

WHEREAS, the TDOT Consultant (Neel-Schaffer, Inc.) has completed the Savannah SR69/128 Corridor Study per contract guidelines and deliverables providing recommendations for safety, capacity and connectivity within the study area; and,

WHEREAS, the City of Savannah hereby acknowledges receipt of the Savannah SR69/128 Corridor Study for use in sustaining guidance and compatibility with the planning of future development of the transportation network and land use planning within the study area;

NOW, THEREFORE BE IT RESOLVED by the Board of Mayor and Commissioners of the City of Savannah, meeting this the $7^{\text {th }}$ day of November, 2016, that the City of Savannah does hereby adopt the Savannah SR69/128 Corridor Study as a guiding document to be considered in future planning decisions.

READ, ADOPTED, AND APPROVED IN OPEN PUBLIC MEETING THIS $7^{\text {th }}$ DAY OF NOVEMBER, 2016.

Attest:

EXECUTIVE SUMMARY

The SR 69/128 Corridor Study was initiated by the City of Savannah, in conjunction with the Tennessee Department of Transportation (TDOT) utilizing TDOT's Tennessee Community Transportation Planning Grant (CTPG) funds. The study developed projects that would meet the City's vision and goals for the study. The three goals for the project were:

Goal 1: Enhance the functionality of the routes for all users through geometric and operational improvements to address access management issues, capacity deficiencies and safety concerns.

Goal 2: Provide for the efficient movement of people and goods from developing industrial and commercial areas south of Savannah into the city.

Goal 3: Ensure compatibility of future development with the transportation network through appropriate land use planning.

The study area includes a portion of the SR 69/128 corridors including areas within the City of Savannah and Hardin County. It begins at the intersection of SR 128 and SR 206, north to SR 15, east to SR 69, and ends at the intersection of SR 69 and SR 206.

The first step of the SR 69/SR 128 Corridor Study was a thorough review of existing data and a public input session to solicit input about the issues in the study area. Next, peak-hour turning movement traffic volumes were collected at 30 key locations throughout the study area. Concurrently, an inventory of basic roadway information was compiled for use in the traffic analyses.

Capacity analysis indicated six intersections operated poorly in the morning and three performed poorly in the afternoon. Future traffic projections to the 2040 planning horizon year were made for intersections in the study area based on anticipated growth rates provided by TDOT. Based on this information traffic on corridors was not expected to grow more than 5\% over the 25-year period on either corridor. Even under the added growth scenario, no additional intersections are anticipated to perform at unacceptable levels-of-service.
The analysis also considered crash history based on review of crash data provided by TDOT for the period from January 1, 2013 to December 31, 2015. The majority of the crashes analyzed involved rear end accidents, the second highest type was angle crashes, and the third most prominent type of crash was "No Collision with Vehicle." Although bicycle and pedestrian safety were named as relatively highranking concerns from the public input session, there were no recorded crashes involving these users during the analysis period. There were no bike lanes and few sidewalks in the study area at the time of data collection which would curtail
usage of the corridor by these user groups. A preliminary planning level environmental screening was conducted for areas along the study corridors to identify potential environmental constraints. No environmental issues were identified that would impact recommendations.
The study included two public meetings as well as a presentation to the Planning Commission which was also open to the public. At the first public meeting the Study Team sought information on the perceived issues within the corridors. At the Planning Commission meeting draft recommendations were prioritized. At the final public meeting feedback was requested on proposed recommendations. The feedback received indicated that local officials and the general public were supportive of the recommendations.
The CTPG program specifically calls for studies to consider recommendations to address land use and access management, identify transportation improvements, and serve as an overall guide for future implementation. The land use planning suggestions are intended to guide zoning and land development decisions including access management policies for new development, as well as, for retrofitting existing access; spot improvement plan address specific safety and/or operational issues; and new connectors and corridor projects require right-of-way acquisition and more extensive construction. The land use recommendations included the following items:

- Short-Term: Use Access Management as a Land Use Strategy
- Short-Term: Adopt Traffic Impact Analysis Requirements
- Mid Term Action: Adopt Subdivision Regulations
- Mid-Term Action: Adopt goals to guide all land use decisions
- Long-Term: Adopt a Comprehensive Plan

The recommended transportation improvements are included in Figure E-1 and in Table E-2 below. The priorities for the project are based upon the benefits derived from the project, as well as, impact as indicated by local officials.

Figure E-1 Recommendations

Table E-2 Improvement Recommendation Priorities and Costs

Improvement Project	Estimated Project Costs		Recommended Priority
SR 128/Dodd Road	\$	70,000	Medium
SR 128/Sevier Street Signal	\$	220,000	High
SR 15/Main Street and Water Street Interconnect, Coordinate and Retime Downtown			
Signals	\$	530,000	High
SR 69/SR 15 Realignment	\$	550,000	Medium
SR 69/SR 203 (Pinhook) Realignment	\$	630,000	High
SR 69/Malcomb Street	\$	70,000	High
SR 69/Lewis Street	\$	70,000	High
SR 69/Ranch Street	\$	70,000	High
SR 69/Austin Street	\$	70,000	High
SR 69/One Stop Drive	\$	100,000	High
SR 69 Curve Improvement South of One Stop			
Drive	\$	550,000	High
SR 69/SR 226 (Airport Drive)	\$	10,000	High
SR 226 (Airport Drive)/Discount Drive	\$	10,000	High
Main Street	\$	220,000	Medium
Water Street	\$	180,000	Low
Malcomb Street	\$	470,000	Low
Hickory Street	\$	430,000	Low
Lewis Street	\$	380,000	Low
Ranch Street	\$	410,000	Low
Eureka Lane	\$	420,000	Low
Higgins Drive + North to Opel Loop	\$	500,000	Low
Sevier to Stout Connector	\$	1,540,000	High
Dodd/Discount Drive Connector	\$	2,090,000	Medium
South Street Improvement	\$	220,000	High
Driveway/Storage Lane Improvements	\$	70,000	Medium
SR 69 Higgins to Main Street	\$	10,920,000	Medium

INTRODUCTION

The City of Savannah and the Tennessee Department of Transportation (TDOT) initiated the SR 69/128 Corridor Study in March 2016 after the City made a successful application for Tennessee Community Transportation Planning Grant (CTPG) funds. This document identifies the vision and goals for the study and presents the findings of the study team in the form of a data inventory, existing conditions review, traffic analysis, future conditions projections, and recommendations for improvements and policy guidance. An overview of public involvement is also included.

Savannah, located in southwestern Tennessee, is a popular destination for tourists and retirees due to its close proximity to the Tennessee River and other recreational sites. The City has all the charm and amenities expected by both groups with the exception of the transportation infrastructure. Like most cities, Savannah is very car-centric, with virtually no safe biking facilities, no public transportation, and incomplete, missing or inaccessible sidewalks. Because of the City's desire to continue to attract retirees and tourists, these multimodal alternatives would further enhance the City's appeal as a destination.

Both SR 128 and SR 69 are important arterials in Savannah, Hardin County and West Tennessee. The two corridors provide connectivity to and from SR 15 (US Hwy 64), which is the primary east-west arterial across the southern part of West and Middle Tennessee. The corridors provide key connectivity to industrial and recreational areas, as well as, activity areas in the adjacent states.

The corridor study and resultant plans will preserve and enhance the operational and safety performance of the SR-128 and SR 69 routes in and around Savannah. The greatest impact of the study on the state transportation system will be preservation of roadway capacity through greater compatibility between future development and the transportation system.

Traffic congestion and safety are primary concerns for citizens of Savannah, particularly in the downtown area along SR 15/Main Street and along SR 128/Pickwick Street near the schools. Outside of school arrival and dismissal times, most of the study area south of downtown is not congested. South of downtown, traffic is generally only restricted on both SR 128 (Pickwick Street) and SR 69 (Florence Road) by turning vehicles (especially left turns) and oversized vehicles. However, during the evening peak hours backups occur along, not only along SR 128 and SR 69 in the downtown area, but also along SR 15 (Main Street) and US 64 (Wayne Road). A major contributing factor to this congestion is the relatively short left-turn lanes and the short spacing between signals in this area, which create gridlock at this time of day.

This gridlock, coupled with the difficulties in turning left at some intersections, poses safety concerns for motorists. At the location of the schools concerns abound due to the congestion, increased turn movements from many driveways and streets, and presence of students either walking down SR 128 or crossing the street without the benefit of a signalized crosswalk.
Two tools that can assist communities in the development of safe and attractive transportation are access management plans and land use plans. Access management plans impact safety by controlling the placement and access of driveways. By consolidating the length or number of driveways, it becomes safer for vehicles to enter a property and for cyclists and pedestrians to pass by a property by reducing conflict points with vehicles. Much of the SR 69 corridor and some parts of the SR 128 corridor lack access control and have curb openings along the entire frontage. Properly implemented, access management measures not only enhance safety, but can add to the attractiveness of roadway facilities.
Land use and zoning allow for compatible uses of property next to one another. Zoning approvals are generally tied to transportation improvements especially sidewalks, controlled entrances and turn lanes, which are needed to improve the capacity and safety of the transportation system based upon the additional impacts of new development.

1.1 Study Project Area

The study area includes a portion of the SR 128/ SR 69 corridors beginning at the intersection of SR 128 and SR 206, north to SR 15, east to SR 69, and ending at the intersection of SR 69 and SR 206. The study area includes areas within the City of Savannah and Hardin County. A detailed map of the study area is included as Figure 1.1.

Figure 1.1 Study Area

1.2 Grant Application Background

The purpose of the grant application was to seek funds for a study to identify strategies to improve multimodal transportation operations within the study area for

Community itransportation Planning Grant

 vehicular traffic, pedestrians, bicyclists and freight movement. Specifically, the study would analyze the corridors to identify deficiencies and develop improvement strategies for:- Safety improvements at intersections and identified high accident locations
- Operational improvements at critical areas
- Accommodation of all travel modes as appropriate
- Access management on developed properties
- Land use plans for undeveloped properties
- General roadway capacity improvements

The benefits to the community will take the form of visible, near-term improvements as well as longer- term improvements through the corridor planning and land-use plan components. Immediate benefits will come from operational modifications and minor construction projects for spot improvements.
The intent of this corridor study is to develop four distinct but related plans: a landuse plan, an access management plan, spot improvement plans, and an overall corridor plan.

- The land use plan portion of the study can be presented to local planning authorities for adoption immediately upon conclusion of the study. Once adopted, the land-use plan will guide zoning and land development decisions as the subject properties develop throughout the life of the plan.
- The access management plan will be implemented both through adoption of access management policies for new development along the corridor, as well as, retrofit of existing access as a series of small projects as funding is available or when opportunities present themselves through redevelopment of properties abutting the routes.
- \quad The spot improvement plans include both operational improvements, as well as, slightly more involved projects, which may require right-of-way
acquisition and more extensive construction than the access management projects. The study will provide adequate information regarding these projects, including functional plans and cost estimates, to allow them to be developed either as locally funded projects, through the TDOT Locally Managed Projects process, or through traditional TDOT project development channels.
- The overall corridor plan will be used to guide implementation of the other phases to ensure that future improvements are done in a way that is logical for the planned future development of the corridor.

1.3 Vision

The vision of the Savannah SR128/69 Corridor Study is to develop a comprehensive transportation plan for the corridors that addresses current deficiencies in capacity and safety, provides guidance for improvements to address existing access management issues, and creates a framework to guide future development and public investment through land use policy and access management policy for the subject routes.

1.4 Goals

Goal 1: Enhance the functionality of the routes for all users through geometric and operational improvements to address access management issues, capacity deficiencies and safety concerns.

The SR 69 and SR 128 corridors suffer from recurring congestion due to inadequate capacity, lack of turn lanes, and poor access management. Design of street intersections in several locations creates serious operational and safety concerns. The plan will identify deficiencies and develop both near-term and long-term solutions to address those issues.

Goal 2: Provide for the efficient movement of people and goods from developing industrial and commercial areas south of Savannah into the city.

SR 128 and SR 69 are both important arterials in Savannah/Hardin County, providing links from the City to the Savannah-Hardin County Airport, the Florence/Muscle Shoals, Alabama area to the southeast, and Pickwick Dam and the industrial facilities along Yellow Creek and
the Tennessee-Tombigbee Waterway in Mississippi. The plan will address improvements needed to support and enhance the ability of the corridor to accommodate anticipated growth in demand in these areas.

Goal 3: Ensure compatibility of future development with the transportation network through appropriate land use planning.

In the southern portion of the study area, traffic operations are presently not a problem since much of the abutting property is currently undeveloped. However, given the presence of the Savannah/Hardin County Airport, major gas and electric transmission lines, and access to the Tennessee River, there is a high potential for rapid development by commercial, industrial, or residential land uses. The plan will develop land-use policy guidance and access management guidance for these areas to ensure that development occurs in a way that is integrated with the ability of the transportation network to support the increasing demand.

1.5 Study Team

Individuals representing TDOT and the City of Savannah comprised the Study Team. A consultant team of Neel-Schaffer, Inc., Younger Associates and Quality Counts assisted in the process. TDOT representatives included Calvin Abram and Nicole Seymour from the Office of Community Transportation. The City's representative on the project was Tom Smith, Project Manager for the City of Savannah. The consultant leads at Neel-Schaffer were Barry Alexander, PE, PTOE, and Karen Mohammadi, PE, AICP, PTOE.

2. DATA COLLECTION AND INVENTORY

The first step of the SR 69/SR 128 Corridor Study was a thorough review of existing data pertaining to the road network and collection of traffic counts at key intersections and driveways.

2.1 Corridor Description

SR 128/Pickwick Street
SR 128 within the study limits is a two-lane roadway with traffic volumes ranging from 11,370 vehicles per day at the northern end of the study area to 4,360 vehicles per day near the southern end of the study area. Sections of two-way leftturn lane are present near Hardin County High School and near the northern end of the study area from Malcomb Street to SR 15 but otherwise it is predominantly two-lane cross section. The roadway is a rural section (no curb-and-gutter) throughout most of its length with a posted speed limit ranging from 35 mph near downtown Savannah to 55 mph in the more rural sections. This corridor has narrow shoulders of less than two feet in the county and widening to full, eight foot shoulders in the city. The terrain is rolling, particularly to the south. There are no major horizontal curve issues with the largest horizontal curve deflection being 20 degrees. No bicycle lanes or significant reaches of sidewalk are present, although pedestrians are often seen on the corridor. The corridor has two signalized intersections at Water Street and at SR 15 (Main Street).
Key properties include River City Concrete Plant, the Hardin County Library, Parris Elementary School, Hardin County Middle School, Hardin County High School and numerous large churches. A major reconstruction project was underway during the course of the study to widen the corridor from SR 15/Main Street south to Opel Loop from two lanes to five lanes including a center turn lane, sidewalks, and shoulders that could accommodate bicyclists. Construction plans exist to widen the corridor in the future from Opel Loop to the City/county line. Table 2.1 shows the roadway features for the SR 128 corridor by segment.

Table 2.1 SR 128 Roadway Features

Start Point	End Point	Functional Class	Right of Way (ft)	Access Control	Type of Terrain	Land Use	Thru Lanes	Number of Lanes	Speed Limit
Airport Road	One Stop Drive	Rural* Minor Arterial	100	None	Rolling	Rural	2	2	55
One Stop Drive	School Zone North of Walkertown Drive	Rural* Minor Arterial	100	None	Rolling	Rural	2	2	45
$\begin{aligned} & \hline \text { School } \\ & \text { Zone } \\ & \text { North of } \\ & \text { Walker- } \\ & \text { town } \\ & \text { Drive } \\ & \hline \end{aligned}$	City Limits	Rural* Minor Arterial	100	None	Rolling	 Commercial	2	2	45
City Limits	Stadium Drive	Urban Minor Arterial	100	None	Rolling	Mixed Residential $\&$ Commercial	2	2	35
Stadium Drive	South Street	Urban Other Principal Arterial	100	None	Rolling	Mixed Residential $\&$ Commercial	2	2	35
South Street	Malcomb Street	Urban Other Principal Arterial	100	None	Rolling	Commercial	2	2	35
Malcomb Street	Water Street	Urban Other Principal Arterial	62	None	Rolling	Commercial	2	2	35
Water Street	Main Street	Urban Other Principal Arterial	60	None	Rolling	Commercial	2	2	35

*TDOT lists these as Urban Minor Arterials

SR 69/Florence Road

SR 69 within the study limits is generally a two-lane roadway with traffic volumes ranging from 9,380 vehicles per day near the intersection with SR 15 in Savannah to 3,100 vehicles per day near the southern end of the study area. The road is twolane, with a rural section (no curb-and-gutter) throughout most of its length. No bicycle lanes or significant reaches of sidewalk are present. The posted speed limit ranges from 35 mph near the intersection with SR-15 to 50 mph outside of the Savannah city limits. Shoulders are generally less than two feet wide throughout the corridor. SR 69 also has a rolling terrain in the south. The corridor has three signalized intersections, one at SR 15/US 64, one at Water Street and one at Higgins Drive/Freewill Lane.

The north section of the corridor is fairly heavily lined by commercial and light industrial uses. Key facilities along the corridor include the Hardin County Industrial Park, East Hardin Elementary, and the Savannah Health Care and Rehabilitation. The Savannah/Hardin County Airport and Clayton Homes are located just off the corridor near Airport Road. Clayton Homes use wide load semitrucks along SR 69 to transport manufactured houses. Table 2.2 shows the roadway features for the SR 69 corridor by segment.

Table 2.2 SR 69 Roadway Features

Start Point	End Point	Functional Class	Right of Way (ft)	Access Control	Type of Terrain	Land Use	Thru Lanes	Number of Lanes	Speed Limit
Airport Road	South of Airport Road	Rural Minor Arterial	120	None	Rolling	Rural	2	2	55
South of Airport Road	Austin Street	Rural Minor Arterial	50	None	Rolling	Rural	2	2	55
Austin Street	Main Street	Rural Minor Arterial	50	None	Rolling	Rural	2	2	$35-40$
Main Street	SR15/ Wayne Street	Rural Minor Arterial	50	None	Rolling	Rural	2	2	35

2.2 Connectors

The number of connector routes between SR 128 and SR 69 are good, but their usefulness in carrying traffic is limited due to roadway widths and surrounding land uses, as well as, the access points at each end. There are thirteen cross streets as shown in Figure 2.1. At the southernmost end of the study area is SR 226/Airport Road. Airport Road is a two lane road with primarily residential land uses. Once SR 128 is reconstructed, it is anticipated that more trucks from Clayton Homes and from the Industrial Park will use SR 128 instead of SR 69.

Cross access between the corridors is lacking near the Industrial Park. Dodd Road off SR 128 connects to Discount Drive at the Industrial Park entrance. Dodd Drive is very narrow, has rough pavement conditions, adjacent ditches, and two ninety degree horizontal turns. It is difficult for cars to pass one another on this road and impossible for trucks to pass any other vehicles. While there is no direct access to the Industrial Park from Dodd Road, the layout of the Industrial Park would allow for additional access points to be developed here relatively easy. In fact, it appears that some vehicles may have previously accessed the road by crossing the unpaved shoulder.

The next connector is One Stop Drive. This two lane roadway provides very good access between SR 128 and SR 69. One Stop Drive primarily serves residential traffic, but is also used as a through route for trucks likely coming from the Industrial Park. Just north of One Stop is Walkertown Drive. It is also two lanes and serves residential traffic.

To the north of Walkertown Drive is Higgins Road. East Hardin Elementary School is located on the southeast corner of SR 69 and Higgins Road. This road is lined with homes and serves residential and school traffic. A signalized intersection at Higgins makes this an attractive connector for those drivers coming from SR 128. The road is also relatively short and straight.

Eureka Street is the next connector. This is a popular connector for those wishing to access the schools on SR 128, as well as, the Hardin County Library. It is located just north of Parris Elementary School and Hardin County Middle School and just south of Hardin County High School. This road is heavily used by school traffic. Ranch Street is also a popular connector for school traffic. It is located directly across from the High School. During the morning school arrivals and afternoon departure this road is very busy and experiences major backups at both intersections. Neither intersection is signalized. Visibility is not good for vehicles turning left from Ranch Street onto SR 128 or SR 69. Poor access management at this location leads to vehicles cutting across the gas station's lot. In addition, the lot blends with the intersection. Overhead utility lines running along the road, a utility power pole on the corner, and a gas station at the SR 69 intersection may make any improvements difficult or expensive.

To the north of Ranch Street are Lewis and Hickory Streets, which also provide access to Kroger and the Tennessee Valley Electric Co-Op. To the north of these streets is Malcomb Street. Malcomb Street is a popular connector since it also connects to Pinhook Drive/SR 203 and, therefore, provides access to east Savannah. Neither end is signalized despite the volume of cross traffic at SR 69.

Water Street is the next connector and provides access to a major shopping center, to Wayne Street and to north Savannah. Water Street is the designated truck route used to keep heavy vehicles off of Main Street. It has signalized intersections with both SR 128, Wayne Street and SR 69. The grade at SR 128 impacts the effectiveness of the signal at that intersection when heavy trucks are present. Water Street has some sidewalks although there are gaps.

Figure 2.1 Corridor Connectors

The final connector in the study area is SR 15/Main Street. This is a popular destination since City Hall, Veterans Park, and several fast food restaurants are located on this road. The road has two lanes in each direction and left turn lanes. SR 15/Main Street has sidewalks in some locations, but they are not compliant with the Americans with Disability Act (ADA) requirements. Given the attractiveness of the downtown shopping district immediately west of this area, having accessible sidewalks and ramps would allow more shoppers to visit the restaurants and other stores in the study area and provide better access to City Hall.

2.3 Existing Traffic Conditions

In order to assess and confirm traffic conditions within the study area, traffic counts were conducted in the hours of 7:00-9:00 AM and 4:00-7:00 PM on February 16 and February 17, 2015. The count data was conducted using video cameras and processed in the office manually. The counts included passenger vehicles, heavy trucks and buses, pedestrians and cyclists. The traffic count data was also used to determine the peak hour of travel in both the morning and evening and to calculate truck percentages. The locations of the counts are shown in Figure 2.2. The traffic data was recorded on site and manual counts were performed using the footage. The counts are included in Appendix B.

TDOT provided the Study Team with Average Daily Traffic for the base year (2016) as well as the future year existing plus committed traffic (2040). The existing plus committed network includes funded projects. These are shown in Figure 2.3 and Figure 2.4. Based on this information traffic on SR 128 is not expected to grow south of Walkertown Drive and is expected to grow 2.10% north of Walkertown Drive. On SR 69 traffic is expected to grow 4.94\% south of Walkertown Drive and 3.25 \% north of Walkertown Drive. Traffic analyses are included in Chapter 3.

Figure 2.2 Traffic Count Locations

Figure 2.3 Base Year (2016) Average Daily Traffic Volumes

Figure 2.4 Future (2040) Existing + Committed Average Daily Traffic Volumes

2.4 Crash Data

The next type of data collected was crash information for the study area. This involved crashes on both SR 128 and SR 69, and other locations within the boundaries of the study area. Crash locations are shown in Figure 2.5. Fatal crash locations are shown in Figure 2.6. While fatal crashes do not necessarily indicate a roadway concern, they often give insight into the public's perception regarding a given roadway. This crash data includes all reported crashes that occurred over a three year period between January 1, 2013 and December 31, 2015 based on data provided by TDOT. The crash analysis is included in Chapter 3.

2.5 Multimodal Opportunities

Based on conversations with the Study Team, bike lanes and pedestrian facilities are desired in the area to make it more attractive to tourists and residents however there are not many current users. Completed peak period traffic counts (AM and PM) indicated that some pedestrians are present during those hours. Table 2.3 is a list of the pedestrian counts that indicates which side of the intersection they were crossing. There were very few pedestrians noted except at the High School and most of those (68) were in the PM Peak coinciding with school dismissal. There was only one bicycle counted in the entire study area. These pedestrian and bicycle counts were also consistent with the Study Team's field observations. Pedestrians were noted walking on shoulders or in areas adjacent to the roadways including through parking lots. The current design plans for SR-128/Pickwick Street will provide accommodations for pedestrians (sidewalks) and bikes (shoulders), but will not include any new pedestrian signals with crosswalks.

The Hardin County School District and the City have both expressed an interest in the addition of a traffic signal in the area of the High School that would provide for safer pedestrian crossings and allow drivers to safely turn out of the side roads or driveways. Both crossing the street and making safe turns will be a bigger concern when the road is widened to five lanes.

SR-69/Florence lacks any bike or pedestrian amenities. Because the corridor has many driveways with full access across the frontages it is not considered safe for pedestrians and the travel speeds and very narrow shoulders make the corridor not suitable for cyclists as well. Neither the City nor the County has a Bike and Pedestrian Master Plan.

Figure 2.5 Crash Locations

Figure 2.6 Fatal Crash Locations

Table 2.3 Pedestrian Crossings by Location

Intersection	Number of Pedestrians	Crossing Location (Side of Intersection)
SR-128/Eureka Street	2	East
SR-128/Water Street	1	South
SR-128/Main Street	1	South
SR-69/Pinhook Drive	2	South
SR-69/Water Street	3	North
SR-69/Ranch Street	1	North
SR-69/Eureka Street	3	East
SR-128/Elementary School	1	East
Drive-Parris Drive	11	West
SR-128/Hardin County High	71	South
School Drive \#1	2	West
SR-128/Hardin County High	1	North
School Drive \#2	2	South
SR-128/Hardin County High	1	North
School Drive \#3	2	West
SR-128/ Stadium Drive	1	West
SR-128/ Ranch Street		
SR-128/ Sevier Street		
SR-128/ Malcomb Street		

2.6 Existing Land Use and Zoning

The City does have a current Land Use and Zoning Map. It was recently updated and is shown in Figure 2.7. The land use map is used by transportation planners to determine which areas may be more likely to develop and need transportation infrastructure support for the growth. Coupled with other statistics such as population growth, a picture of how likely growth is to occur develops. Savannah's population has grown 2\% since 2000. AS shown in Figure 2.8 the City's growth has been rather flat which is also reflected in the low traffic growth rates.

Savannah/Hardin County Industrial Park has room for expansion with nine acres of land and two buildings available. In addition, there is another property on SR 69 that was briefly considered for a major manufacturing facility that chose to locate elsewhere. A final key element to growth is the presence of utilities. Sewers exist within the City limits and in the industrial park. An analysis of land use and its impacts on transportation alternatives is included in Chapter 3.

Figure 2.7 Land Use and Zoning Map

Figure 2.8: Savannah Historic Population Growth

Source: City-Data.com

2.7 Planned Developments

At the onset of the study, development plans were provided to the Study Team. These consisted of several redevelopment projects that would add little or no additional traffic to the corridors, as well as, alternatives developed as part of a bypass study. These are shown in Figure 2.9.

The bypass is an unfunded project and not expected to develop into a construction project. As shown in Figure 2.9, two different locations were considered for the bypass. Either project, if funded and constructed, would have impacted traffic on both SR 128 and SR 69.

Of more consequence to this study are the industrial parcels discussed in the previous section. Development at these locations could impact truck volumes and cross connectivity between the corridors as a newly widened SR 128 may attract more truck traffic. In addition, the shopping center at Water Street is in a prime location for redevelopment, potentially attracting a "big-box" retailer. Should this happen, it could significantly impact both corridors, as well as, SR 15, Water Street and Wayne Street.

Figure 2.9: Savannah Potential Growth Areas

2.8 School Access

School traffic is generally a problem in most cities given the ever increasing trend of parents electing not to use school bus transportation. The result is congestion on the effected corridors, increases in crashes and more conflicts between vehicles and pedestrians. Exacerbating the situation in Savannah are the facts that three of the schools, Hardin County High School, Hardin County Middle School, and Parris South Elementary School are located in very close proximity along SR 128 and that the schools' start and dismissal times are only separated by minutes. The corridor does contain flashing reduced speed school traffic signs that are somewhat effective. A full understanding of the each school's traffic plans is necessary in order to development any recommendations for this traffic issue. However, internal circulation is beyond the scope of this study. Recommendations for external school access as it affects the corridors is included in Chapter 5.

Hardin County High School (HCHS)

HCHS is the northern most school campus and includes the main building, several parking lots and athletic facilities. The School District would like to add baseball/soccer/softball fields to the campus in the future. Student parking is located in the northern lot. Student drop offs/pick-ups takes place at the main entrance. Due to limited on-site storage, vehicles line SR 128, primarily on the shoulder, to wait their turn in the pick-up line. Teachers park in the south lot and can leave from a driveway at that location or at Stadium Drive. Buses load and unload students near the gym location and exit onto Stadium Drive. None of the driveways at the school are signalized and there are no crossing guards to assist with traffic control. Some parents opt not to follow school policy and pick up their students from the Savannah Church of Christ parking lot directly across from the school. When available, the security guard does assist the student with crossing, but the guard is neither attired in reflective clothing nor does he carry signs and wands to assist in stopping traffic. Figure $\mathbf{2 . 1 0}$ shows the traffic patterns at HCHS.

Figure 2.10 HCHS Existing Traffic Plan

Parents wishing to transport their children to and from HCMS or Parris South Elementary School access the schools via Lacefield Drive. The parents then drive around the school to pick up or drop off their children and exit at the driveway just south of Lacefield Drive. Previously this location had a crossing guard to assist with traffic control. Due to the widening of the corridor the City no longer felt they could safely control this intersection with a crossing guard. Figure 2.11 shows the traffic patterns at HCMS.
Recommendations for traffic improvements at both schools are discussed in Chapter 5.

Figure 2.11 HCMS/Parris Elementary School Existing Traffic Plan

3. EXISTING CONDITIONS

3.1 Traffic Analysis

To determine how well the intersections within the study area were operating, Highway Capacity Software was used to determine intersection delay and the corresponding level of service (LOS). The image to the right shows how delay corresponds to LOS at intersections that are signalized (traffic lights) and un-signalized (stop signs). Intersection LOS range from A to F. Ranges A through C represent free flowing conditions and are considered desirable LOS. Under LOS D, congestion is occurring, but considered tolerable.

	Traffic lights	Stop signs /roundabout
Level of service	Delay (s/veh)	Delay (s/veh)
A	$0-10$	$0-10$
B	$10-20$	$10-15$
C	$21-35$	$16-25$
D	$36-55$	$26-35$
E	$56-80$	$36-50$
F	>80	>50

HCS intersection analyses were completed for 27 locations, including seven signalized intersection and 20 un-signalized locations. Figures 3.1 and 3.2 show the LOS for each intersection in the AM and PM peaks respectively for which traffic counts were obtained. Because most of SR 128 was under construction during the course of the study, the analysis for existing LOS was conducted using proposed lane configurations from the widening project.

Growth rates were obtained from TDOT based upon their traffic model. On SR 128 the maximum growth between 2016 and 2040 was
 2.10% over 24 years. This growth is expected to occur north of Walkertown Road. South of Walkertown Road no growth was projected. On SR 69 between Airport Road and Walkertown Drive a growth rate of 4.94% was calculated and between Walkertown Drive and Main Street the growth rate dropped to 3.25%. These growth rates were used to determine Future (2040) LOS for each intersection. Figures 3.3 and 3.4 show the projected LOS for each peak respectively for the intersections on the corridors.

Figure 3.1 Existing (2015) Intersection Levels of Service - AM

Figure 3.2 Existing (2015) Intersection Levels of Service - PM

Figure 3.3 Future (2040) Intersection Levels of Service - AM

Figure 3.4 Future (2040) Intersection Levels of Service - PM

Traffic counts and intersection design-year (2040) forecasts indicate that at five (5) intersections the side streets are performing at an LOS of D or worse today. These are SR128/Parris South Drive (AM and PM), SR 128/Lacefield Drive (AM and PM), SR 128/Eureka Street (AM), SR 128/Sevier Street (AM), and SR 69/Eureka (AM). As of 2040, without further improvements, the same five intersections in the corridors will be performing poorly. More discussion about these intersections is in Section 5.3.

3.2 Crash Analysis

An extensive review of the crash data, including field reviews with crash information in hand, was completed as part of this study. The tables on the following pages reflect the findings of the analysis. The data represents three years of crash data history (2013-2015).

Table 3.1 shows total crashes by severity for both the study area and for Hardin County, and Table 3.2 shows the number of total injuries/severities. The numbers in these tables are not identical since one crash resulted in more than one incapacitating injury. The crash severity data resonates most with the public as crashes resulting in fatalities and serious injuries are more memorable. Roadway geometrics did not appear to be a contributing factor in either of the fatality crashes. One occurred on Main Street and one occurred on SR 226/Airport Road. In the six crashes involving incapacitating injuries, three occurred at signalized intersections. The other three occurred on SR 128/Pickwick Street in the area being reconstructed in 2016.

Table 3.1 Crash Severity Events

Level of Severity	Number Of Crashes in Study Area	Crash by Type for Hardin County
Fatal	2	6
Incapacitating Injury	6	
Non-Incapacitating Injury	110	517^{*}
Prop Damage	419	1418
TOTAL	537	1941

*Includes both incapacitating and non-incapacitating injury crashes

Table 3.2 Crash Severities

Total Killed	Total with Incapacitating Injuries	Total Other Injuries
2	7	162

The next part of the analysis involved looking at crashes by type. Given the comments received through the public outreach efforts (see Chapter 4) about the difficulties in making turns onto SR 128 and SR 69, as well as, the impacts of vehicles turning left on both streets, it is not surprising that the majority of the crashes (237) involved rear end accidents. The second highest type was angle (124) crashes. The third most prominent type of crash was "No Collision with Vehicle, " which are generally single vehicle accidents that are often the results of driver inattention, speeding and animals in the roadway such as deer. The fourth most common type of crash is the sideswipe crash. The same direction sideswipes crashes usually occur when a vehicle is changing lanes although it may also occur with passing vehicles. Both types of behaviors contribute to crashes in the study area although the crashes due to changing lanes are more prominent in the downtown area where there are two lanes in each direction and turning lanes.

Table 3.3 Crashes by Type

Type	Number of Crashes	Percentage
Angle	124	23.09%
Head-On	10	1.86%
No Collision W/ Vehicle	82	15.27%
Other	12	2.23%
Rear-End	237	44.13%
Rear To Rear	2	0.37%
Rear To Side	2	0.37%
Sideswipe, Opposite Direction	16	2.98%
Sideswipe, Same Direction	32	5.96%
Unknown	2	0.37%
Not Specified	18	3.35%
TOTAL	537	

Specific countermeasures should be considered for each type of crash and are reflected in the recommendations section of the report. Table 3.4 on the following pages reflects countermeasure guidance provided by the American Association of State Highway and Transportation Officials (AASHTO). To reduce rear end and
angle crashes at signalized intersections improvements to the signal timings and the visibility of the traffic signals can be an effective tool. In areas where there are no signals, but significant rear end and angle crashes, adding turn lanes and improving curb radii can be effective in reducing crashes. Advanced warning of signalized intersections, overhead signs and better pavement markings may help in channeling vehicles to the proper lanes and reduce sideswipe crashes in signalized intersection areas.

Specific recommendations are also provided in Table 3.4 for light conditions and weather conditions. However, since 85.6% of all crashes occur in either daylight or lighted conditions, this does not appear to be a factor in crashes in the study area. (See Table 3.5.) Wet or foggy conditions were present for 14.2% of crashes. While this number seems significant, the crashes were not clustered in specific areas signifying that poor or slippery pavement conditions did not likely play a role in the number of crashes. The exception to this was Airport Road (SR 226) where four of the ten reported crashes occurred during rainy conditions. However, even in this location crashes were not concentrated in one specific area.
The concentration of crashes in the downtown area along Main Street are the most prominent in the study area. This also represents the most congested part of the study area. Improvements to the signal timings will help congestion and could reduce crashes.
Over half of the crashes on SR 128/Pickwick Street are rear-end crashes caused mostly by turning vehicles. The current construction project on SR 128 should diminish the number of these crashes on the corridor in the area to be widened. The new two-way left turning lane will also help to reduce angle crashes. However, it should be noted that it may be more difficult for drivers to cross SR 128 with the additional lanes and this could increase some types of crashes.
SR 69/Florence Road also experiences many rear end crashes. Over half of all crashes on this road are rear-end crashes and a quarter are angle crashes. Additional turn lanes and a center turning lane through the developed area of the corridor could reduce these types of crashes.

Table 3.4 Crash Countermeasures*

Crash Pattern	Probable Cause	General Countermeasure
Right-angle collisions at unsignalized intersections	Restricted sight distance	Remove sight obstructions Restrict parking near corners Install stop signs (see MUTCD) Install warning signs (see MUTCD) Install/improve street lighting Reduce speed limit on approaches* Install signals (see MUTCD) Channelize intersection
	Large total intersection volume	Install signals (see MUTCD)
	High approach speed	Reduce speed limit on approaches* Install rumble strips
Right-angle collisions at signalized intersections	Poor visibility of signals	Install advanced warning devices (see MUTCD Install 12-in. signal lenses (see MUTCD) Install overhead signals Install visors Install back plates Improve location of signal heads Add additional signal heads Reduce speed limit on approaches*
	Inadequate signal timing	Adjust Change interval Provide all-red clearance interval Install signal actuation Retime signals Provide progression through a set of signalized intersections
Rear-end collisions at unsignalized intersections	Driver not aware of intersection	Install/improve warning signs
	Slippery surface	Overlay pavement Provide adequate drainage Groove pavement Reduce speed limit on approaches* Provide "SLIPPERY WHEN WET" signs
	Large numbers of turning vehicles	Create left-or right-turn lanes Prohibit turns Increase curb radii

[^0]Table 3.4 Crash Countermeasures (cont.)*

Crash Pattern	Probable Cause	General Countermeasure
Rear-end collisions at signalized intersections	Poor visibility of signals	Install/improve advance warning devices Install overhead signals Install 12 in. signal lenses (see MUTCD) Install visors Install back plates Relocate signals Add additional signal heads Remove obstacles Reduce speed limits on approaches*
		Adjust change interval Provide progression through a set of signalized intersections
	Inadequate signal timing	

Table 3.4 Crash Countermeasures (cont.)*

Crash Pattern	Probable Cause	General Countermeasure
Fixed-object collisions and/or vehicles running off roadway	Slippery pavement	Overlay existing pavement Provide adequate drainage Groove existing pavement Reduce speed limit* Provide "SLIPPERY WHEN WET" signs
	Roadway design inadequate for traffic conditions	Widen lanes Relocate islands Close curb lane
	Poor delineation	Improve/install pavement markings Install roadside delineators Install advance warning signs (e.g., curves)
Sideswipe collisions between vehicles traveling in opposite directions or head-on collisions	Roadway design inadequate for traffic conditions	Install/improve pavement markings Channelize intersections Create one-way streets Install median divider Widen lanes
Collisions between vehicles traveling in same direction such as sideswipe, turning or lane changing	Roadway design inadequate for traffic conditions	Widen lanes Channelize intersections Provide turning bays Install advance route or street signs Install/improve pavement lane lines Remove parking Reduce speed limit*

[^1]Table 3.4 Crash Countermeasures (cont.)*

Crash Pattern	Probable Cause	General Countermeasure
Collisions at driveways	Left-turning vehicles	Install median divider Install two-way left-turn lanes
	Improperly located driveway	Regulate minimum spacing of driveways Regulate minimum corner clearance Move driveway to side street Install curbing to define driveway location Consolidate adjacent driveways
	Right-turning vehicles	Provide right-turn lanes Restrict parking near driveways Increase the width of the driveway Widen through lanes Increase curb radii
	Large volume of through traffic	Move driveway to side street Construct a local service road Reroute through traffic
	Large volume of driveway traffic	Signalize driveway Provide acceleration and deceleration lanes Channelize driveway
	Restricted sight distance	Remove sight obstructions Restrict parking near driveway Install/improve street lighting Reduce speed limit*
Night accidents	Poor visibility	Install/improve street lighting Install/improve delineation markings Install/improve warning signs
Wet pavement accidents	Slippery pavement	Overlay existing pavement Provide adequate drainage Groove existing pavement Reduce speed limit* Provide "SLIPPERY WHEN WET" signs

* Spot speed study should be conducted to justify speed limit reduction.

[^2]Table 3.5 Crashes by Light Conditions

Light Condition	Number	Percent
Daylight	410	76.4%
Dark-Not Lighted	45	8.38%
Dark-Lighted	50	9.31%
Dawn	5	0.93%
Dusk	8	1.49%
Not Specified	19	3.54%
TOTAL	537	

Table 3.6 Crashes by Weather Conditions

Weather Condition	Number	Percent
Not Specified	20	22.36%
Rain	71	13.22%
Clear	338	62.94%
Cloudy	102	18.99%
Sleet/Hail	2	0.37%
Fog	3	0.56%
Unknown	1	0.19%
TOTAL	537	

3.3 Environmental Overview

A preliminary environmental screening for areas of land along the study corridors was conducted on a planning level to identify potential environmental constraints within the project area.
Potential wetlands exist along streams and in low-lying areas within the proposed project corridor. Current and potential historic architectural structures and districts, as well as, hazardous sites were also identified within the proposed project corridor. Endangered and sensitive species could potentially be located within or near the proposed project corridor and could be impacted by proposed activities. As part of the project development for any proposed improvements in Chapter 5, appropriate environmental reviews through state and federal agencies should be performed to ensure these sensitive resources will not be affected as a result of construction activities.

Maps of the environmental review are included in the Appendix C.

Right-Of-Way

The amount of land to be acquired as a result of any proposed improvements has not yet been determined. The potential for the acquisition of more than one acre of right-of-way and/or the displacement of any commercial or residential occupants is still under review. Once the project limits have been determined, these criteria along with temporary easement locations should be presented to the Tennessee Department of Transportation (TDOT) point of contact (POC) for further recommendations.

Streams/Wetlands

According to the United States Fish and Wildlife Service (USFWS) National Wetlands Inventory (NWI) Digital Wetlands Mapper, no wetlands exist within the proposed project area corridor. However, the potential exists for the presence of wetland indicators along existing streams and in low-lying areas throughout the project corridor.

The following streams should be evaluated for the presence of potential wetlands:

- Town Branch (SR-128, SR-15, and Water Street crossings)
- Hima Branch (SR-69 crossing)
- Ross Branch (SR-69 crossing)
- Barnhill Branch (SR-69 crossing), and
- \quad Six unnamed tributaries (SR-128 and SR-69 crossings).

Hima Branch, Ross Branch, and Barnhill Branch flow into Horse Creek located to the east of the study area and SR-69. Town Branch flows directly into the Tennessee River located approximately 3,500 feet west of SR-128. The

Tennessee River is designated as a navigable waterway by the United States Army Corps of Engineers (USACE) Nashville District. Obstructions to Town Branch, as well as other crossings and low-lying areas within the project corridor, could be subject to regulations in accordance with the Rivers and Harbors Act of 1899 and Section 404 of the Clean Water Act. The USACE Nashville District should be consulted prior to proposed corridor actions.

The study area is located in the Lower Tennessee-Beech watershed, U.S. Geological Service (USGS) hydrologic unit code (HUC) 06040001. The Lower Tennessee-Beech watershed is a subbasin of the Lower Tennessee basin, HUC 060400.

Endangered Species

The Tennessee Department of Environment and Conservation (TDEC) maintains an online database of federal and state-listed rare, threatened, and endangered species. The results of the database search are show in Table 3.7. The USFWS and TDEC should be contacted prior to work along the corridor for a determination of the presence of listed species along the corridor and the impact to those species in accordance with the Clean Water Act, the Endangered Species Act, Fish and Wildlife coordination Act, Executive Order 11988, Floodplain Management, Executive Order 11990, Protection of Wetlands, Tennessee Non-game and Endangered or Threatened Wildlife Species Conservation Act of 1974, Tennessee Rare Plant Protection and Conservation Act of 1985, and the Tennessee Water Quality Control Act of 1977.

Table 3.7 State and Federally Listed Rare, Threatened, or Endangered Species

Scientific Name	Common Name	Federal Ranking	State Ranking
Myotis grisescens	Gray Myotis Bat	Listed Endangered	Endangered
Orconectes wright	Hardin Crayfish		Endangered
Noturus fasciatus	Saddled Madtom		Threatened
Pleurobema clava	Clubshell	Listed Endangered	Endangered
Etheostoma Tuscumbia	Tuscumbia Darter		Deemed In Need of Management
Clycleptus elongates	Blue Sucker		Threatened
Acris gryllus	Southern Cricket Frog		Status Not Listed
Heron rookery	Heron Rookery		Status Not Listed
Apios priceana	Price's Potatobean	Listed Threatened	Endangered
Hemistena lata	Cracking Pearlymussel	Listed Endangered	Endangered
Zapatus hudsonius	Meadow Jumping Mouse		Deemed In Need of Management
Sorex longirostris	Southeastern Shrew		Deemed In Need of Management
Notorus gladiator	Piebald Madtom		Deemed In Need of Management
Thryomanes bewickii	Bewick's Wren		Endangered
Haliaeetus leucocephatus	Bald Eagle		Deemed In Need of Management
Silene ovata	Ovate Catchfly		Endangered

Table 3.7 State and Federally Listed Rare, Threatened, or Endangered Species (cont.)

Scientific Name	Common Name	Federal Ranking	State Ranking
Ophiogomphus acumiatus	Acuminate Snaketail		Status Not Listed
Sisturus milarius streckeri	Western Pygmy Rattlesnake		Threatened
Melanthium virginicum	Virginia Bunchflower		Endangered
Pleurobema plenum	Rough Pigtoe		Endangered
Orconectes alabamensis	Alabama Crayfish		Deemed In Need of Management
Typhlichthys subterraneus	Southern Cavefish		Deemed In Need of Management
Egretta caerulea	Little Blue Heron		Deemed In Need of Management
Erythronium rostratum	Beaked Trout-lily		Special Concern
Symplocos tinctoria	Horse-sugar		Special Concern
Polygala mariana	Maryland Milkwort		Special Concern
Carex lacustris	Lake-bank Sedge		Threatened
Didplis diandra	Water-purslane		Threatened
Plethobasus cyphyrus	Sheepnose	Listed Endangered	Status Not Listed
Lampsilis abrupta	Pink Mucket	Listed Endangered	Endangered
Cumberlandia monodonta	Spectaclecase	Listed Endangered	Status Not Listed
Carpiodes velifer	Highfin Carpsucker		Deemed In Need of Management
Chondestes grammacus	Lark Sparrow		Threatened

Table 3.7 State and Federally Listed Rare, Threatened, or Endangered Species (cont.)

Scientific Name	Common Name	Federal Ranking	State Ranking
Limnothlypis swainsonii	Swainson's Warbler		Deemed In Need of Management
Myotis sodalis	Indiana bat	Endangered	Endangered
Myotis septentrionalis	Northern Long- eared bat	Endangered	Endangered
Hottonia inflate	Featherfoil		Special Concern
Lithasia salebrosa	Muddy Rocksnail		Status Not Listed
Hemitremia flammea	Flame Chub	Deemed In Need of Management	
Ichthyomyzon gagel	Southern Brook Lamprey	Herlbender	Deemed In Need of Management
Cryptobranchus alleganiensis	Rabbitsfoot	Listed Threatened	Status Not Listed
Quadrula cylindrical	Management		
Iris brevicaulis	Lamance Iris		Endangered
Lysimachia fraseri	Fraser's Loosestrife	Blue Sage	Endangered Salvia azurea var grandiflora Panax quinquefolius Plethobasus cooperianus American Ginseng Pimpleback
Listed Endangered - Non-essential Experimental Population in Portion of Range	Endangered		

Table 3.7 State and Federally Listed Rare, Threatened, or Endangered Species (cont.)

Scientific Name	Common Name	Federal Ranking	State Ranking
Plethobasus cicatricosus	White Wartyback	Listed Endangered - Non-essential Experimental Population in Portion of Range	Endangered
Obovaria refusa	Ring Pink	Listed Endangered - Non-essential Experimental Population in Portion of Range	Endangered
Cyprogenia stegaria	Fanshell	Listed Endangered	Endangered
Orconectes wright	Hardin Crayfish		Endangered

Floodplain/Floodway

Portions of SR-128, SR-15/Main Street, and Water Street were located in the 100 year floodplain of Town Branch according to the Federal Emergency Management Agency (FEMA) Flood Insurance Rate Map (FIRM). The USACE Nashville District and TDOT POC should be contacted for direction prior to work being performed within the corridor.

Farmland

The Natural Resources Conservation Service (NRCS) Web Soil Survey indicated soil units of prime farmland throughout the project corridor. During the site reconnaissance, no areas of cultivated land were identified within the project corridor buffer. The majority of soil units suitable for prime farm land and indicated on the soil maps within the project area have previously been developed by roadway, residential, commercial, or industrial construction.

Wild and Scenic Rivers

The Tennessee Wildlife Resources Agency (TWRA) and TDEC maintain a list of state and federal-listed scenic rivers located throughout Tennessee. Wild and Scenic Rivers were not identified within the proposed corridor buffer.

Air Quality

An air quality analysis will be conducted upon the release of proposed corridor plans. The air quality analysis should include transportation conformity and Mobile Source Air Toxics (MSATs) for all projects, and pertinent information provided to the POC.

Noise

A noise study and abatement measures analysis will be conducted upon the release of proposed corridor plans, if required.

Cultural and Historic Resources

The National Park Service (NPS) maintains an online database of registered historic archaeological and architectural resources. One architectural structure, the Graham James House, is located adjacent to, and southeast of, the intersection of SR-226 (Airport Road) and SR-69. The Savannah Historic District, listed on the National Register of Historic Places, is located adjacent to the north of the proposed corridor along Main Street. The Trail of Tears National Historic Trail is also indicated as being a part of SR-15/Main Street within the proposed project corridor.

Numerous architectural resources with potential for listing on the National Register are located within, and adjacent to, the proposed project corridor buffer. These resources include the Savannah Cemetery, located adjacent to the proposed project corridor buffer east of SR-128, and a historic district designated by the City of Savannah as shown on Figure 3.6, encompassing the nationally registered Savannah Historic District. Hardin County Schools Annex and Barnhill United Methodist Church are located further south along SR-128 and appear to potentially be eligible for listing in the National Register. The City of Savannah, the Tennessee Historical Commission, and the NPS should be contacted prior to work performed along the corridor area to identify any potential or unrecorded historic properties that could be affected by construction or for any undesired impacts to known resources. An assessment of architectural structures located within and adjacent to the proposed project area will most likely be required to determine the current National Register eligibility of these resources and to update records at the Tennessee Historical Commission.

Parks or Recreational Resources

One park, Veteran's Park, was identified on SR-64 between Main Street and Water Street. The boundaries of this park were within the 100 foot buffer area of both streets along the northern portion of the corridor study. The location of Veteran's Park is shown on Figure 3.7. No wildlife refugees were located within the project area. The TDEC Recreational Educational Services Division, Grants Program Office should be contacted prior to construction activities for a potential impact analysis of the proposed work.

Native American Coordination

Native American coordination will be required if the project involves acquisition of new ROW on previously undisturbed land. This coordination will most likely involve a cultural resources assessment conducted by an archaeologist meeting the Secretary of the Interior's requirements. Consultation with the TDOT POC should be conducted once the proposed project plans are available to determine if any undisturbed ROW will be impacted.

Hazardous Materials

Numerous businesses with underground storage tanks (USTs) and bulk storage, or businesses that use or transport hazardous materials are located within the 100 foot buffer of, or adjacent to, the project corridor. The Former Rick's Quick Stop, located at 128 Main Street, was present on the TDEC list of UST facilities as "closure monitoring." This facility is the only facility identified as currently being monitored within the proposed project corridor. However, the exact location of this site could not be identified. The general location of this site is shown in the maps in Appendix C. The Savannah Hardin County Industrial Park is located along the southern end of the SR-69 corridor.

No National Priorities List (NPL), proposed NPL, Comprehensive Environmental Response, Compensation, and Liability Information System (CERCLIS), CERCLIS - No Further Remedial Action Planned (NFRAP), or Solid Waste Landfill (SWLF) sites were identified as being located within the proposed project corridor buffer area through desktop applications. Several commercial and industrial sites were observed along the proposed corridor route during site reconnaissance, in addition to the current and abandoned UST sites stated above.

The sites listed in Table 3.8 were listed on the Environmental Protection Agency's (EPA's) website as being located within one mile of the proposed project corridor as having generated, handled, or transported hazardous materials/waste (RCRA) or other toxic releases.

Prior to work within the study area, a thorough Phase I Environmental Site Assessment should be conducted to identify any hazardous sites through
documents and avenues not readily available through the preliminary screening process that could potentially impact or have previously impacted the project area.

Environmental Justice

The majority of the project area is located along business routes and would primarily impact businesses and single family residences. The project will not have significant impacts to minority and low-income populations.

Environmental Summary

In conclusion, NSI has performed this preliminary environmental screening of the proposed project corridors to identify any sensitive resources that could be impacted by construction activities. Potential wetlands, historic architectural structures and districts, a national trail, and sites with hazardous materials utilization and storage are located within the proposed project area buffer area and adjacent to the buffer area. Prior to development of the proposed roadway project, thorough assessments and review of sensitive resources in the area are recommended to ensure these resources will not be affected by proposed construction activities.

Figure 3.6 Historic District

Figure 3.7 Parks and Recreational Areas

Table 3.8 Facilities with Hazardous Materials Located Within One Mile of the Corridor

Facility Name	Address	Lat/Long	Designation
Former Rick's Quick Stop	128 Main Street	Not Available	LUST
Brown Shoe Co.	160 Brown Circle	Lat: 35.22328 Long: -88.23544	RCRA
Custom Production	Address Not Available	Lat: 35.227399 Long:- 88.233162	RCRA
CVS Pharmacy \#10072855	Wayne Road	Lat: 35.22785 Long: -88.23167	RCRA
Design Team Sign Company, LLC	350 Pinhook Drive	Lat: 35.21886 Long: -88.23791	RCRA
Jones Motor Co, Inc.	508 Florence Road	Lat: 35.2166 Long: -88.23947	RCRA
Parris Manufacturing Co., Inc.	128 South	Lat: 35.219742 Long: - 88.246277	AFS, TRI
Savannah, Hardin County Landfill	808 Shell Street	Lat: 35.231534 Long: -88.23348	AFS, TRI
South Central Bell	106 N. Pickwick Street	Lat: 35.225347 Long: - 88.246246	RCRA
Tractor Supply Company \#138195	Water Street, Ste. A	Lat: 35.22221 Long: -88.2434	RCRA
William's Cabinet Shop, Inc.	Industrial Road	Not Available	RCRA
Praxis Industries LLC	Industrial Road	Not Available	RCRA

[^3]
4. PUBLIC INVOLVEMENT

4.1 Public Meeting \#1

An Action Plan for the first public meeting was developed in order to effectively and efficiently disseminate information to the general public, as well as, solicit valuable feedback. The target audience was determined to be area residents, area businesses, local elected officials, emergency service providers, and school officials. The objective of the first public meeting was to determine local needs and concerns within the study area. For this purpose, a Comment Form was developed in both English and Spanish. The meeting was held on May 12, 2016 at the Savannah City Hall in conjunction with the Planning Commission Meeting.

The Comment Form was handed out at the first public meeting and placed on the City's website. Comments were accepted up to one month after the meeting. Twenty-Four (24) comment forms were collected. Figure 4.1 shows the English version of the Comment Form and Figure 4.2 shows the Spanish version of the Comment Form. Of the comments received 54.2% of the responders stated that they work along the corridors and 54.2\% use other facilities along the corridors. In addition, 41.7% are on these corridors daily. Respondents were asked to rank the items shows in Table 4.1 in order of importance with a 1 being of low importance and a 10 being of high importance. Their scores were then averaged.

Table 4.1 Public Meeting \#1 Comments Summary

Truck						
Traffic						
School	Intersection	Roadway Congestion Congestion	Bicyclist Safety	Pedestrian Safety	Number of Driveways	
4.8	7.1	7.6	7.9	6.2	7.0	4.8

Based on the rankings above, roadway congestion is of the greatest concern followed closely by intersection congestion. School traffic and pedestrian safety also received high rankings. Of lesser concern were truck traffic, bicyclist safety and number of driveways. However, it should be noted that some respondents gave these a ranking of 10 meaning they are of high importance to some people.

Respondents were also given the opportunity to share what they perceive to be challenges along the corridors and other information they wished the Study Team to know. Those comments are summarized below. Comments not pertinent to the study, such as those regarding the construction issues on SR 128 were omitted from this list.

- Hickory/Lewis - need signal to help Electric Co-op trucks and Kroger Delivery trucks to safely pull onto SR 69
- Encourage walking and cycling with improvements
- Need more sidewalks
- Too much stopping and starting in traffic
- Synchronize signals better
- Pedestrian safety at intersections an issue on Main Street
- Florence Road needs left turn lanes
- Ranch Street is problematic during school arrival/dismissal hours
- Congestion on Florence Street a problem for emergency vehicles
- Difficult to pull out of Stout Street
- Difficult to pull out of Tennessee Valley Electric Co-op
- Traffic flow is heavy during school opening and closing hours at the schools
- There are not enough passing lanes
- It is not safe for people to walk
- Sight distance is poor on side roads
- Difficult to pull out of side roads due to congestion
- The intersection of Pinhook and SR 69 is congested during noon hours.
- Difficult for people in wheelchairs to get around
- Slow moving cars are a problem in some areas
- Congestion and backups at signals

City Hall was selected as the meeting place due to its familiar location and ability to accommodate a large group. Notice of the meeting was published in the Savannah Newspaper, The Courier. Approximately twelve (12) people attended the meeting including the Planning Commission members. Citizens in attendance voiced many concerns and suggestions for the project study corridor. Safety was the number one concern expressed by the participants in regards to school traffic.

Figure 4.1 Comment Form (English)

COMMENT FORM

Thank you for your interest in the SR 69 (Florence Road)/SR 128 (Pickwick Street) Corridor Study. We appreciate your comments.

1. What do you primarily use the corridors for?
\square Live along the corridors

- Work along the corridors
- Attend school or take children to school
- Use of other facilities

2. How often do you travel through the corridors?

ㅁ Multiple times throughout the day

- Twice daily

ㅁ Couple of times a week
ㅁ Once a week

- Less than once a week

3. What challenges, if any, do you encounter while on the corridors?
\qquad
\qquad

4. Please rank each of the following factors in order of importance on a scale of $1-10(1=$ lower importance, $10=$ higher importance).
\qquad Truck Traffic
_ Bicyclist Safety
School Traffic
Pedestrian Safety
Intersection Congestion \quad-_ Number of Driveway
Roadway Congestion
5. Is there anything else that you would like to share with our team or are there any unique considerations about the corridors that our team should be aware of? Please provide your complete contact information (optional) so that we may remain in contact with you throughout the study:
\qquad
\qquad

Name	
Street	
City, Zip	
Email	
Phone	

Thank you for your interest
and participation!
FOR MORE INFORMATION
CONTACT STUDY TEAM LEADER
TOM SMITH:
(731) $925-3300$ ext. 156
tsmith@cityofsavannah.org

Figure 4.2 Comment Form (Spanish)

COMENTARIOS

SAVANNAH

Gracias por su interés en el estudio del corredor de la SR 69 (Carretera Florencia) /SR 128 (Calle Pickwick). Apreciamos sus comentarios.

1. ¿Para qué principalmente usa estas carreteras?

ㅁ Vivo a lo largo de las carreteras
ㅁ Trabajo a lo largo de las carreteras

- Asistir a la escuela o llevar a los niños a la escuela
\square El uso de otras instalaciones

2. ¿Con qué frecuencia viaja por estas carreteras?

- Varias veces durante el día
\square Dos veces diarias
\square Par de veces a la semana
- Una vez a la semana
- Menos de una vez por semana

3. ¿Qué desafios, si alguno, ha encontrado mientras esta a lo largo de estas carreteras?
\qquad

4. Por favor, a cada uno de los siguientes factores asigne el orden de importancia en una escala de 1-10 (1 = baja importancia, $10=$ mayor importancia).

	Tráfico de Camiones		
Tráfico de Escuela		\quad	Seguridad ciclista
:---			
Ceguridad de los Peatones			

5. ¿Existe cualquier otra cosa que le gustaría compartir con nuestro equipo o hay consideraciones únicas sobre las carreteras que nuestro equipo debe tener en cuenta? Proporcione la información completa de contacto (opcional) para que podamos permanecer en contacto con usted durante todo el estudio:
\qquad
\qquad

Nombre	
Calle	
Ciudad, Zip	
Correo electrónico	
Teléfono	

iGracias por su interés y
participación!
PARA MÁS INFORMACIÓN
COMUNIQUESTE CON EL LÍDER
DEL ESTUDIO TOM SMITH:
(731) 925-3300 ext. 156
tsmith@cityofsavannah.org

4.2 Local Officials Meeting

Prior to the second public meeting the Study Team met with the Planning Commission to present the findings of the study and to obtain input into the periodization of the recommendations. The meeting was open to the public. Projects were prioritized in low, medium and high categories. This is explained more in Section 5.7. The handout used is shown in Figure 4.3 and Figure 4.4. For the most part, the Study Team's recommendations for prioritization were accepted. Three projects had their priorities raised from medium to high.

4.3 Public Meeting \#2

The second public meeting was held on November 7, 2016 at the Savannah City Hall in conjunction with the City Commission Meeting. It was immediately preceded by an Open House format meeting during which the public and elected officials could review maps of the proposed recommendations and ask questions of the Study Team. During the City Commission meeting the Study Team made a presentation of the study
 including the recommendations. Seventeen participants were present at the meeting in addition to the Study Team. At the conclusion of the meeting, the City Commission was asked to support a resolution accepting the study results. This is shown on Page 3 of this report. It was then signed by the Mayor of Savannah.

Advertisement of the meetings and presentations made at each meeting are included in Appendix D.

Figure 4.2 Prioritization Exercise Front Page

Thank you for your interest in the SR 69 (Florence Road)/SR 128 (Pickwick Street) Corridor Study. We appreciate your comments. The build recommendations are included on the back of this form. The priorities used were low, medium and high. "Low" priorities reflect long range projects to be completed 10 or more years in the future. "Medium" priority projects are those that should be completed in the next 5 to 10 years. "High" priority projects are those that should be accomplished in the next five years. Please use the last column to tell us how you think the projects should be prioritized. If you do not feel a project should be included, write "None" in the square.

Improvement Project	Estimated Project Costs	Recommended Priority	Your Recommended Priority
Spot Improvements			
SR 128/Dodd Road	\$ 70,000	Medium	
SR 128/Sevier Street Signal	\$ 220,000	High	
SR 15/Main Street and Water Street Interconnect, Coordinate and Retime Downtown Signals	\$ 530,000	High	
SR 69/SR 15 Realignment	\$ 550,000	Medium	
SR 69/SR 203 (Pinhook) Realignment	\$ 630,000	High	
SR 69/Malcomb Street	\$ 70,000	High	
SR 69/Lewis Street	\$ 70,000	High	
SR 69/Ranch Street	\$ 70,000	High	
SR 69/Austin Street	\$ 70,000	High	
SR 69/One Stop Drive	\$ 100,000	High	
SR 69 Curve Improvement South of One Stop Drive	\$ 550,000	Medium	
SR 69/SR 226 (Airport Drive)	\$ 10,000	High	
SR 226 (Airport Drive)/Discount Drive	\$ 10,000	HIgh	
Multimodal Improvements			
Main Street	\$ 220,000	Medium	
Water Street	\$ 180,000	Low	
Malcomb Street	\$ 470,000	Low	
Hickory Street	\$ 430,000	Low	
Lewis Street	\$ 380,000	Low	
Ranch Street	\$ 410,000	Low	
Eureka Lane	\$ 420,000	Low	
Higgins Drive + North to Opel Loop	\$ 500,000	Low	
Connectivity Improvements			
Sevier to Stout Connector	\$ 1,540,000	Medium	
Dodd/Discount Drive Connector	\$ 2,090,000	Medium	
School Access Improvements			
South Street Improvement	\$ 220,000	High	
Driveway/Storage Lane Improvements	\$ 70,000	Medium	
Corridor Improvements			
SR 69 Higgins to Main Street	\$ 10,920,000	Medium	
Thank you for your interest and participation! FOR MORE INFORMATION CONTACT STUDY TEAM LEADER TOM SMITH: (731)925-3300 ext. 156 tsmith@cityofsavarnnah.org			

Figure 4.2 Prioritization Exercise Back Page

5.0 RECOMMENDATIONS

The Community Transportation and Planning Grant specifically called for recommendations that would address land use and access management, identify transportation improvements, and serve as an overall guide for future implementation. The following sections include land use planning suggestions to guide zoning and land development decisions including access management policies for new development as well as for retrofitting existing access; spot improvement plans to address specific safety and/or operational issues; and, new connectors and corridor projects, which require right-of-way acquisition and more extensive construction.

In addition to the discussion of the recommendations, priorities for each of the improvements, as well as probable costs, are included in this Chapter. The project priorities are based on the transportation needs of the corridors according to the traffic and crash analysis as well as public input. This information is intended to assist the City in in scheduling the improvements and seeking necessary funds.

It should be noted again that most of the study area operates at good levels of service throughout the day. The peak period of congestion on the corridors is relatively short and impacted by school traffic. Any recommendations that improve traffic flow associated with the schools will help overall operations on both SR 128 and SR 69.

5.1 Land Use Planning

Adequate land use policies and controls can prevent congestion along arterials, increase levels of service, reduce difficult left turns and improve sight clearance at corners. When combined successfully, these policies and controls can reduce the need for costly retrofitting measures. As areas grow, traffic will increase and improvements may be needed as shown in this Chapter.

The City of Savannah does not currently have a Land Use Plan, although the City recently updated its Zoning Map (shown in Figure 2.7). This section of the recommendations provides guidance to the City for the development of formal land use policies that can be adopted by the Planning Commission and be incorporated into the City's Municipal Code. The land use recommendations below support the recommendations of the study and can guide the form and pattern of future development. Land use policies are to be used as reference guides when considering rezonings, annexations, subdivisions and site plans. They also support public infrastructure investments
 and aid decisions for private sector investment.

The land use recommendations section is divided into short, mid and long-term actions. The recommendations are presented with the aim of encouraging residential, commercial and light industrial growth in Savannah, while providing regulatory guidance that ensures that the future growth is compatible with the quality of life the community desires. Additionally, the recommendations promote pedestrian-friendly connectivity and neighborhoods connected by pedestrian walkways to the commercial and school areas.

Beyond the desire for new residential and commercial growth, two land use/transportation issues rose to the top as concerns along the corridors in Savannah. First is the issue of pedestrian connectivity and the need for safe and accessible sidewalks, especially in the areas north of Higgins Road. And second, the issue of traffic impacts due to off-site circulation from light-industrial uses along the corridors.

The land use recommendations presented here are meant to work hand-in-hand with the traffic and connectivity recommendations presented later in this chapter.

Short-Term: Use Access Management as a Land Use Strategy

Access management is essential to successful land use and transportation strategies along the corridors. Access management supports dense development patterns, efficient travel and safe access to and from developments for all modes of transportation. Access management is a broad term that can consist of many of traffic measures, including

- Promoting internal cross access connections between adjacent land uses;
- Requirements for developments to be designed with onsite circulation;
- Pedestrian circulation plans for new developments or redevelopments ensuring safe access to and around a site;
- Coordinated road improvements to alleviate congestion and limit access onto the main Corridors;
- Policies and guidelines relative to nontraversable medians and median opening spacing standards; and
- Requirements for driveway consolidation and unified access.

Access Control is addressed in Section 11-310 of the Savannah Zoning Ordinance and Chapter 14, Section 311 of the Savannah Municipal Code. Additional access and circulation regulations are also addressed within the Zoning Ordinance and the Municipal Code.

The existing Ordinance as well as suggested revisions to Savannah's Access Control sections of the Zoning Ordinance and Municipal Code are included in Appendix E of this report.

Short-Term: Adopt Traffic Impact Analysis Requirements

Traffic impact analysis is a study of the effects a proposed development will have on transportation needs and traffic on the current and future transportation network. Traffic impact analyses work with access controls to promote safety and minimize congestion. Regulations would define a development threshold for when a traffic impact analysis would be required and suggest when developer contributions to road improvements are appropriate. Large developments, rezonings or annexations that will generate more than 100 new peak hour vehicle trips may benefit from the requirement (Williams and Marshall).
Savannah's Municipal Code ordinance should be amended to require large developments to perform traffic impact analysis to determine if improvements are needed to the transportation network as a result of the development.

Mid Term Action: Adopt Subdivision Regulations

The City of Savannah anticipates residential growth over the next twenty years. As this growth occurs, thought is needed in terms of where and how new residential development happens.
The creation of subdivision regulations can guide proper layout of internal streets, adequate space for emergency access and utility infrastructure and appropriate site design. As properties subdivide the number of access points increases and lots may be created that cannot meet regulatory requirements for development such as sufficient width or access to roadways. Undesirable lots, such as flag lots or lots with environmental constraints are also an issue (lots with limited road frontage that widen after a long distance from a roadway are called flag lots). Subdivision regulations set a threshold for when review is needed, for example the
creation of 5 or more lots could require a review. The regulations then determines what the review process entails.
The following list of issues should be addressed during the subdivision review process (Listokin and Walker, 1989):

- Is the road system designed to meet the projected traffic demand and does the road network consist of hierarchy of roads designed according to function?
- Is access properly placed in relation to sight distance, driveway spacing and other related considerations?
- Do units front on residential access streets rather than major roadways?
- Does the project avoid areas unsuitable for development?
- Does the pedestrian path system link buildings with parking areas, entrances to the development, open space, and recreational and other community facilities?
- Have utilities been properly placed?

Mid-Term Action: Adopt goals to guide all land use decisions

To guide and strengthen Savannah's existing zoning and land use regulations, the Purpose Section (14-203) of the Municipal Code should be expanded to include a set of goals that will guide future land use decisions. The goals should be developed by the Planning Commission with community input.
The following are examples of goals that support compatible land uses:

- Preserve and maintain the City's attractive visual appearance for residents and visitors;
- Preserve the City's environmental resources and provide access to outdoor recreational opportunities;
- Manage City's growth and development to maintain and enhance Savannah's high quality of life;
- Provide adequate, high quality, and well-maintained public services, amenities, and facilities;
- Provide a comprehensive multi-modal transportation system for Savannah including bicycle, pedestrian, public transportation and vehicular transportation amenities;
- Support balanced, appropriate economic development and provide infrastructure support that encourages businesses and residents to flourish;
- Promote and sustain a progressive and positive planning process for Savannah;
- Balance maintenance of existing infrastructure and with support for future growth areas; and
- Increase safety and accessibility.

Long-Term: Adopt a Comprehensive Plan

A comprehensive plan "[guides] the physical, social, and economic development, both private and public for the development of the community" (Tennessee Planning Commissioner Handbook). When it is the first step in the planning process, it provides a strong foundation for future plans. Because a comprehensive plan is based on community determined goals and objectives and quantitative data it serves as a tool for decision making for future developments and capital improvements. Those decisions have more buy in and support from the community and have a stronger legal foundation when challenged.

As part of the comprehensive plan, future desired land use patterns should be mapped and used as a basis for transportation plans. Most comprehensive plans also contain a section outlining transportation goals and objectives which identify strategies appropriate for the community and pinpoint areas that may need additional attention. For example, the Land Use and Transportation section can define redevelopment nodes which support compact growth and serve as a basis for policy implementation and inclusion in the public improvements program.
A comprehensive plan usually contains:

- Introduction
- Background for Planning
- Economy and Population
- Land Use and Transportation Plan
- Community Facilities Plan
- Public Improvements Program

Current efforts by the Savannah Industrial Development Corporation and the Hardin County Chamber of Commerce to attract businesses to the industrial park at the southern end of the study area could also be supported by a future land use plan. If the plan identifies the area as an industrial node, infrastructure could then be planned for heavy truck traffic in the area.

5.2 Spot Improvements

Through the process of discussing the corridor with City Officials, reviewing comments from the public, and analyzing traffic and crash data, improvement options have been identified. The first group of improvements are spot improvements, which are generally localized to a small segment of roadway or an
intersection and intended to address a specific operational or safety issue. They could also be low costs improvements that are spread out over an area. The list below includes a brief description of the improvement projects recommended as part of this study. More detailed plan information about these projects is included in Appendix F.

SR 128/Dodd Road

This intersection works well operationally with a LOS of A in the AM and a LOS of B in the PM. However, sight distance is poor from Dodd Road looking south. This has been a location of several accidents. It is recommended that the intersection be reconstructed to improve sight distance. This improvement project could be a stand-alone project or could be completed as part of a realignment and widening project for Dodd Road, which is discussed in the next section.

SR 128/Parris South Drive

This intersection is problematic for school traffic and operates at a very poor LOS of E during the morning and afternoon peaks. While the School Board would like for this intersection to be signalized, it does not meet MUTCD signal warrants and would only assist traffic for about one hour each day. As part of the school access plan discussed in the following pages, it is recommended that this road be a right-in/right-in only entrance, at least during peak periods. In order for this to work, additional improvements along South Street and Sevier Street are needed and are discussed in the next sections. These additional improvement would allow drivers wishing to travel north on SR 128 a safer alternative for making left turns.

South Street/Stadium Drive

South Street runs parallel to SR 128 for a portion of the corridor. It also runs behind Hardin County High School. The road is used by school traffic from the Parris South Elementary School and the Hardin County Middle School. To improve the traffic flow and support the school access plan discussed later in this chapter, it is recommended that the offset intersections on Stadium Drive with Sharon Street and South Street be aligned. In addition, South Street should be widened to better accommodate the increased traffic. A figure of this improvement project is shown in Appendix F.

The SR 128/Lacefield Drive intersection is also problematic during school dismissal hours and operates at a poor LOS of D during the afternoon peak. By diverting school traffic to South Street and Sevier Street as discussed above, the traffic operations at this location should improve.

During the AM peak the SR 128/Eureka Street intersection operates at a LOS D, which may worsen to an LOS of E by 2040. However, this intersection also does not meet the MUTCD warrant for a signal. An additional turn lane would only slightly improve operations at this location. A new connector at Sevier Street (discussed later) would give drivers on Eureka Street an alternative to reach destinations north on SR 128 and would also provide better access to Hardin County High School.

SR 128/Sevier Street

This intersection is also problematic for school traffic and operates at a poor LOS of D during the morning peak and will decrease to a LOS of E by 2040. All of the other driveways and streets in the vicinity of the High School operate at a LOS of C or better during AM and PM peaks both during the current year and in 2040. Traffic signal warrants are not met at the Sevier Street intersection with current traffic patterns under present or future conditions, however signalization is recommended in conjunction with the modification of school traffic access and development of the Sevier Street connector discussed later. The signal would provide for better traffic flow in this area and would enhance school access measures discussed later in this Chapter. It would also support the new Sevier Street connector recommendation discussed later.

SR 15/Main Street and Water Street Area

This area experiences poor LOS and severe congestion due to the signals and short turning lanes. Geometric improvements are not feasible at this location but the area should be retimed to optimize efficiency. This should include implementation of interconnected signals (preferably fiber optic), coordination for all signals in the downtown area, upgrading pedestrian displays and pushbuttons to current standards, adding pedestrian features where lacking, and repairing or replacing failed detection loops.

SR 69/Pinhook/Main Street

This area experiences congestion because multiple corridors meet at this location. To maximize traffic flow, the intersection should be reconstructed as two distinct intersections. The eastern approach SR 15/Main Street should be reconstructed to join SR 69 at a right angle to allow for better sight distance for left turning vehicles. To reduce the number of approaches, SR 203/Pinhook Road should be relocated to connect to SR 69 at the existing Water Street intersection. A roundabout was also considered at this location, but was rejected for several reasons. The impacts on adjacent properties and the right-of-way costs would be high for a roundabout. This configuration would not work well with the high volume of trucks on this road and would require a plan to re-route trucks onto Water Street to avoid the roundabout. A figure of this improvement project is shown in Appendix F.

SR 69/Malcomb, Lewis, Ranch and Austin Streets

Throughout the northern portion of SR 69/Florence Road, many of the side streets share common characteristics that impact traffic flow on the corridor. The entrances to these side streets are narrow, have tight radii, and have deep ditches on either side of the roadway. This causes drivers on SR 69 to slow or even come to a complete stop prior to turning onto side streets. At each of these four locations, the entrances should be widened to allow for safer, swifter turning movements. The intersection projects could be designed to support the SR 69 widening project discussed later in this Chapter or as part of the widening project. These improvement are shown in Appendix F.

SR 69/One Stop Drive

This intersection appears to be used by trucks coming from the Industrial Park resulting in northbound left turns at the intersection. The intersection is located just north of a horizontal curve and vehicles cannot see stopped vehicles until they are nearly past the curve. A left turn lane would reduce the collisions between northbound through vehicles and waiting northbound left turning vehicles. A figure of this improvement project is shown in Appendix F.

SR 69/Curve South of One Stop Drive

This curve has been the location of several major crashes. It is recommended that the curve be upgraded immediately with improved horizontal curve signing. A second improvement project would be to reconstruct the curve to reduce the degree of curvature and improve the shoulders. A figure of this improvement project is shown in Appendix F.

SR 69/SR 226 (Airport Drive)

This intersection is well signed, but, despite these efforts, there are many crashes at this location each year. Additional safety measures that could be added include updating the stop signs with red flashing lights and re-grading the approaches on the south to increase visibility of approaching vehicles that may not stop at the intersection.

SR 226 (Airport Drive)/Discount Drive
Although sight distance appears to be adequate at this location, it has been the site for several crashes. It is recommended that the stop sign on Discount Drive be updated to a larger sign and an advanced warning sign be added on Discount Drive.

5.3 Multimodal Improvements

One of the goals of the project, as well as a need cited by the public, includes improving multimodal options in Savannah. Currently there are few sidewalks available outside of Main Street and Water Streets. The reconstruction of SR 128 will include sidewalks and will have shoulders that may be used by experienced cyclists. There are no bike lanes or trails within the study area.

The vision for the multimodal recommendation is to create a loop around the northern study area that will provide citizens many options for accessing schools, commercial areas, government buildings, churches and other sites by foot or bicycle. The following multimodal improvements should be made to implement the vision:

- Main Street - update the existing sidewalks to meet ADA standards and add new sidewalks connections and crosswalks to allow pedestrian access to the commercial areas along Main Street, Veteran's Park and area restaurants.
- Water Street - add new sidewalk connections where sidewalks are missing or do not meet ADA standards and install crosswalks to allow safer pedestrian access.
- Malcomb Street - add sidewalk or multi-use trail to accommodate pedestrians and cyclists.
- Hickory Street - add sidewalk or multi-use trail to accommodate pedestrians and cyclists.
- Lewis Street - add sidewalk or multi-use trail to accommodate pedestrians and cyclists.
- Ranch Street - add sidewalk or multi-use trail to accommodate pedestrians and cyclists.
- Eureka Street - add sidewalk or multi-use trail to accommodate pedestrians and cyclists.
- Higgins Street - add sidewalk or multi-use trail to accommodate pedestrians and cyclists along Higgins and connect to sidewalk being installed as part of the TDOT improvements along SR 128.

More details on these improvement projects are shown in Appendix F.

5.4 Connectivity Improvements

Although there are many existing connector roads between SR 128 and SR 69, the addition of two more would address important needs in the study.

Sevier Street Connector

This connection would go from Sevier Street on SR 128 and connect with Stout Street on SR 69. The Stout Street intersection was identified by City officials as a problematic location. It frequently backs up due to the high volume of left-turning vehicles. It is recommended that a two lane connector be constructed that would join both streets and would accommodate pedestrians and cyclists. The connector should be signalized on both ends to provide for safer turning movements. A figure of this improvement project is shown in Appendix F.

Dodd Road Connector

This improvement project supports future growth at the Industrial Park. Currently, truck drivers that leave the Industrial Park, who wish to access SR 128, either take SR 226 (Airport Road) or One Stop Drive. The existing Dodd Lane is very narrow, has deep ditches, and has two sharp horizontal curves. It is not a viable route for truck traffic. A figure of this improvement project is shown in Appendix F.

5.5 School Access Improvements

Many of the school access improvements have been discussed in the previous sections. One of the biggest impediments to school traffic flow is the school start and dismissal times. Increasing the amount of time between the Elementary School/Middle School and the High School arrival and dismissal hours by at least 15 minutes could reduce traffic congestion significantly. Providing drivers an alternative to turning left at un-signalized intersections on SR 128, such as Parris Drive, Lacefield Drive, Stadium Drive, the school entrances and Sevier Street would also improve traffic flow in the area. Left turns at these locations could be discouraged with either geometric changes at the intersections (creating right inright out approaches) or by using temporary measures (cones and/or signs) during school hours. Traffic currently using these locations to make left turns would be
redirected to the proposed signalized intersection at Sevier Street through improvement of South Street. Finally, improving the stacking or storage area for those motorists, who are either dropping students off or picking those student up at the High School, could improve the safety in the area. Currently, vehicles wait on the shoulder of SR 128 to turn into the school lot. Oftentimes students walk along the shoulder to find the vehicle picking them up. Connecting the northernmost school driveway with the drive lanes in front of the school and closing the second driveway from the north would add valuable stacking area. These school access improvement are shown in Appendix F.

5.6 Corridor Improvements

One of the more common complaints during the course of the study was congestion on SR 69/Florence Road primarily due to the difficulties in turning onto the road and the congestion caused by left turning vehicles on the corridor. The crash analysis also indicated that crashes are an issue, particularly rear end crashes. For these reasons, it is recommended that the corridor be widened to a three lane section with sidewalks and bike lanes from SR-203/Pinhook to Higgins Drive. A typical cross section for this improvement is show in Figure 6.1.

Figure 6.1 Proposed SR 69 Cross Section

5.7 Cost Estimates and Project Prioritization

All of the recommendations included in this Chapter are listed in Table 6.1 and shown in Figure 6.2. The priorities used were low, medium and high. Low priorities reflect long range projects to be completed 10 or more years in the future. Medium priority projects are those that should be completed in the next 5 to 10 years. High priority projects are those that should be accomplished in the next five years.
The construction costs include planning level design, right-of-way and construction estimates. These estimates reflect 2016 probable costs regardless of their implementation priority schedule.

Figure 6.2 Recommended Improvements

Table 6.1 Improvement Recommendation Priorities and Costs

Improvement Project	Estimated Project Costs		Recommended Priority
SR 128/Dodd Road	\$	70,000	Medium
SR 128/Sevier Street Signal	\$	220,000	High
SR 15/Main Street and Water Street Interconnect, Coordinate and Retime Downtown			
Signals	\$	530,000	High
SR 69/SR 15 Realignment	\$	550,000	Medium
SR 69/SR 203 (Pinhook) Realignment	\$	630,000	High
SR 69/Malcomb Street	\$	70,000	High
SR 69/Lewis Street	\$	70,000	High
SR 69/Ranch Street	\$	70,000	High
SR 69/Austin Street	\$	70,000	High
SR 69/One Stop Drive	\$	100,000	High
SR 69 Curve Improvement South of One Stop			
Drive	\$	550,000	High
SR 69/SR 226 (Airport Drive)	\$	10,000	High
SR 226 (Airport Drive)/Discount Drive	\$	10,000	High
Main Street	\$	220,000	Medium
Water Street	\$	180,000	Low
Malcomb Street	\$	470,000	Low
Hickory Street	\$	430,000	Low
Lewis Street	\$	380,000	Low
Ranch Street	\$	410,000	Low
Eureka Lane	\$	420,000	Low
Higgins Drive + North to Opel Loop	\$	500,000	Low
Sevier to Stout Connector	\$	1,540,000	High
Dodd/Discount Drive Connector	\$	2,090,000	Medium
South Street Improvement	\$	220,000	High
Driveway/Storage Lane Improvements	\$	70,000	Medium
SR 69 Higgins to Main Street	\$	10,920,000	Medium

5.8 Funding Opportunities

Funding of the projects in Section 4.7 will require a combination of federal, state and local funds. The table below shows some of the funding sources that may be available to the City of Savannah or Hardin County for implementation of the projects. It should be noted that federal and state funds require a matching ratio to be provided by the City or County. Other than the options below and local funds, funding of the recommended improvements would fall to regular TDOT project funding sources for any projects on state routes.

Table 6.1 Funding Sources

Fund	Description	Match
National Highway Performance Program	Combines former funding programs for Interstate Maintenance (IM), National Highway System (NHS) and the portion of the Bridge Replacement \& Rehabilitation (BRR). Provides funding for construction, reconstruction, resurfacing, restoration, rehabilitation, preservation, or operational improvement of segments of the National Highway System. This includes Interstate highways and bridges on the NHS. Projects must support progress toward national goals for the condition and performance of the system.	80% Federal 20% Non Federal 90 to 95\% Federal match available for certain freight projects.
Surface Transportation Program (STP or S STP)	Provides funding for roads functionally classified as rural major collector and above. Funds may be utilized on projects in Rural Areas, Urbanized Areas, Small Urban Areas, Enhancement, Safety and Rail Highway Crossings. Also funds bridge replacement \& rehabilitation on non federal aid routes (activities previously under the BRR local program).	Federal 20% Federal
Transportation Alternatives (set aside of STP)	Combines former funding programs for Enhancements, Safe Routes to Schools, Scenic Byways, and Recreational Trails. Eligible activities include bicycle and pedestrian facilities, sidewalks near elementary and middle schools, main street and boulevard projects, and environmental mitigation to address impacts of the transportation system.	80% Federal 20% Non
Federal		

[^4]
APPENDIX A: ENLARGED FIGURES

Crash Map

Crash Map

Historic Main Street

Proposed Improvements- DRAFT

APPENDIX B: TRAFFIC DATA

HCS 2010 Two-Way Stop Control Summary Report

General Information		Site Information	
Analyst	PWahl	Intersection	SR 128/SR 226 Airport Rd.
Agency/Co.	Neel-Schaffer	Jurisdiction	
Date Performed	$9 / 6 / 2016$	East/West Street	SR 226 Airport Road
Analysis Year	2016	North/South Street	SR 128
Time Analyzed	AM Peak (7:00-8:00)	Peak Hour Factor	0.82
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25
Project Description	Savannah CTPG		

Lanes

Vehicle Volumes and Adjustments

Delay, Queue Length, and Level of Service

HCS 2010 Two-Way Stop Control Summary Report

General Information		Site Information	
Analyst	PWahl	Intersection	SR 128/SR 226 Airport Rd.
Agency/Co.	Neel-Schaffer	Jurisdiction	
Date Performed	$9 / 6 / 2016$	East/West Street	SR 226 Airport Road
Analysis Year	2040	North/South Street	SR 128
Time Analyzed	AM Peak	Peak Hour Factor	0.82
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25
Project Description	Savannah CTPG		

Lanes

Vehicle Volumes and Adjustments

Delay, Queue Length, and Level of Service

HCS 2010 Two-Way Stop Control Summary Report

General Information		Site Information	
Analyst	PWahl	Intersection	SR 128/SR 226 Airport Rd.
Agency/Co.	Neel-Schaffer	Jurisdiction	
Date Performed	$9 / 6 / 2016$	East/West Street	SR 226 Airport Road
Analysis Year	2016	North/South Street	SR 128
Time Analyzed	PM Peak (4:00-5:00)	Peak Hour Factor	0.87
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25
Project Description	Savannah CTPG		

Lanes

Vehicle Volumes and Adjustments

Delay, Queue Length, and Level of Service

HCS 2010 Two-Way Stop Control Summary Report

General Information		Site Information	
Analyst	PWahl	Intersection	SR 128/SR 226 Airport Rd.
Agency/Co.	Neel-Schaffer	Jurisdiction	
Date Performed	$9 / 6 / 2016$	East/West Street	SR 226 Airport Road
Analysis Year	2040	North/South Street	SR 128
Time Analyzed	PM Peak	Peak Hour Factor	0.87
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25
Project Description	Savannah CTPG		

Lanes

Vehicle Volumes and Adjustments

Delay, Queue Length, and Level of Service

HCS 2010 Two-Way Stop Control Summary Report

General Information		Site Information	
Analyst	PWahl	Intersection	SR 128/Dodd Drive
Agency/Co.	Neel-Schaffer	Jurisdiction	
Date Performed	$9 / 6 / 2016$	East/West Street	Dodd Drive
Analysis Year	2016	North/South Street	SR 128
Time Analyzed	AM Peak (7:00-8:00)	Peak Hour Factor	0.71
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25
Project Description	Savannah CTPG		

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority		10	11	12		7	8	9	1 U	1	2	3	4 U	4	5	6
Number of Lanes		0	0	0		0	0	0	0	0	1	0	0	0	1	0
Configuration							LR					TR		LT		
Volume (veh/h)						0		15			255	10		15	97	
Percent Heavy Vehicles						0		0						73		
Proportion Time Blocked																
Right Turn Channelized	No															
Median Type	Undivided															
Median Storage																

Delay, Queue Length, and Level of Service

HCS 2010 Two-Way Stop Control Summary Report

General Information		Site Information	
Analyst	PWahl	Intersection	SR 128/Dodd Drive
Agency/Co.	Neel-Schaffer	Jurisdiction	
Date Performed	$9 / 6 / 2016$	East/West Street	Dodd Drive
Analysis Year	2040	North/South Street	SR 128
Time Analyzed	AM Peak	Peak Hour Factor	0.71
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25
Project Description	Savannah CTPG		

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority		10	11	12		7	8	9	1 U	1	2	3	4 U	4	5	6
Number of Lanes		0	0	0		0	0	0	0	0	1	0	0	0	1	0
Configuration							LR					TR		LT		
Volume (veh/h)						0		15			255	10		15	97	
Percent Heavy Vehicles						0		0						73		
Proportion Time Blocked																
Right Turn Channelized	No															
Median Type	Undivided															
Median Storage																

Delay, Queue Length, and Level of Service

HCS 2010 Two-Way Stop Control Summary Report

General Information		Site Information	
Analyst	PWahl	Intersection	SR 128/Dodd Drive
Agency/Co.	Neel-Schaffer	Jurisdiction	
Date Performed	$9 / 6 / 2016$	East/West Street	Dodd Drive
Analysis Year	2016	North/South Street	SR 128
Time Analyzed	PM Peak (4:15-5:15)	Peak Hour Factor	0.87
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25
Project Description	Savannah CTPG		

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority		10	11	12		7	8	9	1 U	1	2	3	4 U	4	5	6
Number of Lanes		0	0	0		0	0	0	0	0	1	0	0	0	1	0
Configuration							LR					TR		LT		
Volume (veh/h)						0		2			144	6		8	158	
Percent Heavy Vehicles						0		0						25		
Proportion Time Blocked																
Right Turn Channelized	No															
Median Type	Undivided															
Median Storage																

Delay, Queue Length, and Level of Service

HCS 2010 Two-Way Stop Control Summary Report

General Information		Site Information	
Analyst	PWahl	Intersection	SR 128/Dodd Drive
Agency/Co.	Neel-Schaffer	Jurisdiction	
Date Performed	$9 / 6 / 2016$	East/West Street	Dodd Drive
Analysis Year	2040	North/South Street	SR 128
Time Analyzed	PM Peak	Peak Hour Factor	0.87
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25
Project Description	Savannah CTPG		

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority		10	11	12		7	8	9	1 U	1	2	3	4 U	4	5	6
Number of Lanes		0	0	0		0	0	0	0	0	1	0	0	0	1	0
Configuration							LR					TR		LT		
Volume (veh/h)						0		2			144	6		8	158	
Percent Heavy Vehicles						0		0						25		
Proportion Time Blocked																
Right Turn Channelized	No															
Median Type	Undivided															
Median Storage																

Delay, Queue Length, and Level of Service

HCS 2010 Two-Way Stop Control Summary Report

General Information		Site Information	
Analyst	PWahl	Intersection	SR 128/Eureka St
Agency/Co.	Neel-Schaffer	Jurisdiction	
Date Performed	$9 / 6 / 2016$	East/West Street	Eureka Street
Analysis Year	2016	North/South Street	SR 128
Time Analyzed	AM Peak (7:15-8:15)	Peak Hour Factor	0.76
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25
Project Description	Savannah CTPG		

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority		10	11	12		7	8	9	1 U	1	2	3	4 U	4	5	6
Number of Lanes		0	1	0		0	1	0	0	1	2	0	0	1	2	0
Configuration			LTR				LTR			L	T	TR		L	T	TR
Volume (veh/h)		0	0	0		59	0	36		1	535	70		35	444	11
Percent Heavy Vehicles		0	0	0		3	0	6		0				29		
Proportion Time Blocked																
Right Turn Channelized	No															
Median Type	Undivided															
Median Storage																

Delay, Queue Length, and Level of Service

HCS 2010 Two-Way Stop Control Summary Report

General Information		Site Information	
Analyst	PWahl	Intersection	SR 128/Eureka St
Agency/Co.	Neel-Schaffer	Jurisdiction	
Date Performed	$9 / 6 / 2016$	East/West Street	Eureka Street
Analysis Year	2040	North/South Street	SR 128
Time Analyzed	AM Peak	Peak Hour Factor	0.76
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25
Project Description	Savannah CTPG		

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority		10	11	12		7	8	9	1 U	1	2	3	4 U	4	5	6
Number of Lanes		0	1	0		0	1	0	0	1	2	0	0	1	2	0
Configuration			LTR				LTR			L	T	TR		L	T	TR
Volume (veh/h)		0	0	0		60	0	37		1	546	71		36	453	11
Percent Heavy Vehicles		0	0	0		3	0	6		0				29		
Proportion Time Blocked																
Right Turn Channelized	No															
Median Type	Undivided															
Median Storage																

Delay, Queue Length, and Level of Service

HCS 2010 Two-Way Stop Control Summary Report

General Information		Site Information	
Analyst	PWahl	Intersection	SR 128/Eureka St
Agency/Co.	Neel-Schaffer	Jurisdiction	
Date Performed	$9 / 6 / 2016$	East/West Street	Eureka Street
Analysis Year	2016	North/South Street	SR 128
Time Analyzed	PM Peak (4:15-5:15)	Peak Hour Factor	0.94
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25
Project Description	Savannah CTPG		

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority		10	11	12		7	8	9	1 U	1	2	3	4 U	4	5	6
Number of Lanes		0	1	0		0	1	0	0	1	2	0	0	1	2	0
Configuration			LTR				LTR			L	T	TR		L	T	TR
Volume (veh/h)		8	0	0		33	0	30		0	266	25		28	278	3
Percent Heavy Vehicles		0	0	0		0	0	7		0				4		
Proportion Time Blocked																
Right Turn Channelized	No															
Median Type	Undivided															
Median Storage																

Delay, Queue Length, and Level of Service

HCS 2010 Two-Way Stop Control Summary Report

General Information		Site Information	
Analyst	PWahl	Intersection	SR 128/Eureka St
Agency/Co.	Neel-Schaffer	Jurisdiction	
Date Performed	$9 / 6 / 2016$	East/West Street	Eureka Street
Analysis Year	2040	North/South Street	SR 128
Time Analyzed	PM Peak	Peak Hour Factor	0.94
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25
Project Description	Savannah CTPG		

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority		10	11	12		7	8	9	1 U	1	2	3	4 U	4	5	6
Number of Lanes		0	1	0		0	1	0	0	1	2	0	0	1	2	0
Configuration			LTR				LTR			L	T	TR		L	T	TR
Volume (veh/h)		8	0	0		34	0	31		0	272	26		29	284	3
Percent Heavy Vehicles		0	0	0		0	0	7		0				4		
Proportion Time Blocked																
Right Turn Channelized	No															
Median Type	Undivided															
Median Storage																

Delay, Queue Length, and Level of Service

HCS 2010 Two-Way Stop Control Summary Report

General Information		Site Information	
Analyst	PWahl	Intersection	SR 128/HCHS Drive \#1
Agency/Co.	Neel-Schaffer	Jurisdiction	
Date Performed	$9 / 6 / 2016$	East/West Street	HCHS Drive \#1
Analysis Year	2016	North/South Street	SR 128
Time Analyzed	AM Peak (7:00-8:00)	Peak Hour Factor	0.74
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25
Project Description	Savannah CTPG		

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound					Northbound				Southbound			
Movement	U	L	T	R	U	L		T	R	U	L	T	R	U	L	T	R
Priority		10	11	12		7		8	9	1 U	1	2	3	4 U	4	5	6
Number of Lanes		0	0	0		0		0	0	0	1	2	0	0	0	2	0
Configuration			LR								L	T				T	TR
Volume (veh/h)		6		10							70	477				487	68
Percent Heavy Vehicles		0		0							1						
Proportion Time Blocked																	
Right Turn Channelized	No				No					No				No			
Median Type	Undivided																
Median Storage																	

Delay, Queue Length, and Level of Service

HCS 2010 Two-Way Stop Control Summary Report

General Information		Site Information	
Analyst	PWahl	Intersection	SR 128/HCHS Drive \#1
Agency/Co.	Neel-Schaffer	Jurisdiction	
Date Performed	$9 / 6 / 2016$	East/West Street	HCHS Drive \#1
Analysis Year	2040	North/South Street	SR 128
Time Analyzed	AM Peak	Peak Hour Factor	0.74
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25
Project Description	Savannah CTPG		

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound					Northbound				Southbound			
Movement	U	L	T	R	U	L		T	R	U	L	T	R	U	L	T	R
Priority		10	11	12		7		8	9	1 U	1	2	3	4 U	4	5	6
Number of Lanes		0	0	0		0		0	0	0	1	2	0	0	0	2	0
Configuration			LR								L	T				T	TR
Volume (veh/h)		6		10							71	487				497	69
Percent Heavy Vehicles		0		0							1						
Proportion Time Blocked																	
Right Turn Channelized	No				No					No				No			
Median Type	Undivided																
Median Storage																	

Delay, Queue Length, and Level of Service

HCS 2010 Two-Way Stop Control Summary Report

General Information		Site Information	
Analyst	PWahl	Intersection	SR 128/HCHS Drive \#1
Agency/Co.	Neel-Schaffer	Jurisdiction	
Date Performed	$9 / 6 / 2016$	East/West Street	HCHS Drive \#1
Analysis Year	2016	North/South Street	SR 128
Time Analyzed	PM Peak (3:00-4:00)	Peak Hour Factor	0.71
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25
Project Description	Savannah CTPG		

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound					Northbound				Southbound			
Movement	U	L	T	R	U	L		T	R	U	L	T	R	U	L	T	R
Priority		10	11	12		7		8	9	1 U	1	2	3	4 U	4	5	6
Number of Lanes		0	0	0		0		0	0	0	1	2	0	0	0	2	0
Configuration			LR								L	T				T	TR
Volume (veh/h)		29		39							13	580				353	13
Percent Heavy Vehicles		0		0							0						
Proportion Time Blocked																	
Right Turn Channelized	No				No					No				No			
Median Type	Undivided																
Median Storage																	

Delay, Queue Length, and Level of Service

HCS 2010 Two-Way Stop Control Summary Report

General Information		Site Information	
Analyst	PWahl	Intersection	SR 128/HCHS Drive \#1
Agency/Co.	Neel-Schaffer	Jurisdiction	
Date Performed	$9 / 6 / 2016$	East/West Street	HCHS Drive \#1
Analysis Year	2040	North/South Street	SR 128
Time Analyzed	PM Peak	Peak Hour Factor	0.71
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25
Project Description	Savannah CTPG		

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority		10	11	12		7	8	9	1 U	1	2	3	4 U	4	5	6
Number of Lanes		0	0	0		0	0	0	0	1	2	0	0	0	2	0
Configuration			LR							L	T				T	TR
Volume (veh/h)		30		40						13	592				360	13
Percent Heavy Vehicles		0		0						0						
Proportion Time Blocked																
Right Turn Channelized	No															
Median Type	Undivided															
Median Storage																

Delay, Queue Length, and Level of Service

HCS 2010 Two-Way Stop Control Summary Report

General Information		Site Information	
Analyst	PWahl	Intersection	SR 128/HCHS Drive \#2
Agency/Co.	Neel-Schaffer	Jurisdiction	
Date Performed	$9 / 6 / 2016$	East/West Street	HCHS Drive \#2
Analysis Year	2016	North/South Street	SR 128
Time Analyzed	AM Peak (7:00-8:00)	Peak Hour Factor	0.76
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25
Project Description	Savannah CTPG		

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound					Northbound				Southbound			
Movement	U	L	T	R	U	L		T	R	U	L	T	R	U	L	T	R
Priority		10	11	12		7		8	9	1 U	1	2	3	4 U	4	5	6
Number of Lanes		0	0	0		0		0	0	0	1	2	0	0	0	2	0
Configuration			LR								L	T				T	TR
Volume (veh/h)		47		74							0	520				410	0
Percent Heavy Vehicles		0		0							0						
Proportion Time Blocked																	
Right Turn Channelized	No				No					No				No			
Median Type	Undivided																
Median Storage																	

Delay, Queue Length, and Level of Service

HCS 2010 Two-Way Stop Control Summary Report

General Information		Site Information	
Analyst	PWahl	Intersection	SR 128/HCHS Drive \#2
Agency/Co.	Neel-Schaffer	Jurisdiction	
Date Performed	$9 / 6 / 2016$	East/West Street	HCHS Drive \#2
Analysis Year	2040	North/South Street	SR 128
Time Analyzed	AM Peak	Peak Hour Factor	0.76
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25
Project Description	Savannah CTPG		

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound					Northbound				Southbound			
Movement	U	L	T	R	U	L		T	R	U	L	T	R	U	L	T	R
Priority		10	11	12		7		8	9	1 U	1	2	3	4 U	4	5	6
Number of Lanes		0	0	0		0		0	0	0	1	2	0	0	0	2	0
Configuration			LR								L	T				T	TR
Volume (veh/h)		48		76							0	531				419	0
Percent Heavy Vehicles		0		0							0						
Proportion Time Blocked																	
Right Turn Channelized	No				No					No				No			
Median Type	Undivided																
Median Storage																	

Delay, Queue Length, and Level of Service

HCS 2010 Two-Way Stop Control Summary Report

General Information		Site Information	
Analyst	PWahl	Intersection	SR 128/HCHS Drive \#2
Agency/Co.	Neel-Schaffer	Jurisdiction	
Date Performed	$9 / 6 / 2016$	East/West Street	HCHS Drive \#2
Analysis Year	2016	North/South Street	SR 128
Time Analyzed	PM Peak (3:00-4:00)	Peak Hour Factor	0.72
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25
Project Description	Savannah CTPG		

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound					Northbound				Southbound			
Movement	U	L	T	R	U	L		T	R	U	L	T	R	U	L	T	R
Priority		10	11	12		7		8	9	1 U	1	2	3	4 U	4	5	6
Number of Lanes		0	0	0		0		0	0	0	1	2	0	0	0	2	0
Configuration			LR								L	T				T	TR
Volume (veh/h)		30		26							0	567				328	0
Percent Heavy Vehicles		0		0							0						
Proportion Time Blocked																	
Right Turn Channelized	No				No					No				No			
Median Type	Undivided																
Median Storage																	

Delay, Queue Length, and Level of Service

HCS 2010 Two-Way Stop Control Summary Report

General Information		Site Information	
Analyst	PWahl	Intersection	SR 128/HCHS Drive \#2
Agency/Co.	Neel-Schaffer	Jurisdiction	
Date Performed	$9 / 6 / 2016$	East/West Street	HCHS Drive \#2
Analysis Year	2040	North/South Street	SR 128
Time Analyzed	PM Peak	Peak Hour Factor	0.72
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25
Project Description	Savannah CTPG		

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound					Northbound				Southbound			
Movement	U	L	T	R	U	L		T	R	U	L	T	R	U	L	T	R
Priority		10	11	12		7		8	9	1 U	1	2	3	4 U	4	5	6
Number of Lanes		0	0	0		0		0	0	0	1	2	0	0	0	2	0
Configuration			LR								L	T				T	TR
Volume (veh/h)		31		27							0	579				335	0
Percent Heavy Vehicles		0		0							0						
Proportion Time Blocked																	
Right Turn Channelized	No				No					No				No			
Median Type	Undivided																
Median Storage																	

Delay, Queue Length, and Level of Service

HCS 2010 Two-Way Stop Control Summary Report

General Information		Site Information	
Analyst	PWahl	Intersection	SR 128/HCHS Drive \#3
Agency/Co.	Neel-Schaffer	Jurisdiction	
Date Performed	$9 / 6 / 2016$	East/West Street	HCHS Drive \#3
Analysis Year	2016	North/South Street	SR 128
Time Analyzed	AM Peak (7:00-8:00)	Peak Hour Factor	0.77
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25
Project Description	Savannah CTPG		

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound					Northbound				Southbound			
Movement	U	L	T	R	U	L		T	R	U	L	T	R	U	L	T	R
Priority		10	11	12		7		8	9	1 U	1	2	3	4 U	4	5	6
Number of Lanes		0	0	0		0		0	0	0	1	2	0	0	0	2	0
Configuration			LR								L	T				T	TR
Volume (veh/h)		0		0							16	510				464	28
Percent Heavy Vehicles		0		0							69						
Proportion Time Blocked																	
Right Turn Channelized	No				No					No				No			
Median Type	Undivided																
Median Storage																	

Delay, Queue Length, and Level of Service

HCS 2010 Two-Way Stop Control Summary Report

General Information		Site Information	
Analyst	PWahl	Intersection	SR 128/HCHS Drive \#3
Agency/Co.	Neel-Schaffer	Jurisdiction	
Date Performed	$9 / 6 / 2016$	East/West Street	HCHS Drive \#3
Analysis Year	2040	North/South Street	SR 128
Time Analyzed	AM Peak	Peak Hour Factor	0.77
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25
Project Description	Savannah CTPG		

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound					Northbound				Southbound			
Movement	U	L	T	R	U	L		T	R	U	L	T	R	U	L	T	R
Priority		10	11	12		7		8	9	1 U	1	2	3	4 U	4	5	6
Number of Lanes		0	0	0		0		0	0	0	1	2	0	0	0	2	0
Configuration			LR								L	T				T	TR
Volume (veh/h)		0		0							16	521				474	29
Percent Heavy Vehicles		0		0							69						
Proportion Time Blocked																	
Right Turn Channelized	No				No					No				No			
Median Type	Undivided																
Median Storage																	

Delay, Queue Length, and Level of Service

HCS 2010 Two-Way Stop Control Summary Report

General Information		Site Information	
Analyst	PWahl	Intersection	SR 128/HCHS Drive \#3
Agency/Co.	Neel-Schaffer	Jurisdiction	
Date Performed	$9 / 6 / 2016$	East/West Street	HCHS Drive \#3
Analysis Year	2016	North/South Street	SR 128
Time Analyzed	PM Peak (3:00-4:00)	Peak Hour Factor	0.75
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25
Project Description	Savannah CTPG		

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound					Northbound				Southbound			
Movement	U	L	T	R	U	L		T	R	U	L	T	R	U	L	T	R
Priority		10	11	12		7		8	9	1 U	1	2	3	4 U	4	5	6
Number of Lanes		0	0	0		0		0	0	0	1	2	0	0	0	2	0
Configuration			LR								L	T				T	TR
Volume (veh/h)		1		0							2	548				341	10
Percent Heavy Vehicles		0		0							0						
Proportion Time Blocked																	
Right Turn Channelized	No				No					No				No			
Median Type	Undivided																
Median Storage																	

Delay, Queue Length, and Level of Service

HCS 2010 Two-Way Stop Control Summary Report

General Information		Site Information	
Analyst	PWahl	Intersection	SR 128/HCHS Drive \#3
Agency/Co.	Neel-Schaffer	Jurisdiction	
Date Performed	$9 / 6 / 2016$	East/West Street	HCHS Drive \#3
Analysis Year	2040	North/South Street	SR 128
Time Analyzed	PM Peak	Peak Hour Factor	0.75
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25
Project Description	Savannah CTPG		

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority		10	11	12		7	8	9	1 U	1	2	3	4 U	4	5	6
Number of Lanes		0	0	0		0	0	0	0	1	2	0	0	0	2	0
Configuration			LR							L	T				T	TR
Volume (veh/h)		1		0						2	560				343	10
Percent Heavy Vehicles		0		0						0						
Proportion Time Blocked																
Right Turn Channelized	No															
Median Type	Undivided															
Median Storage																

Delay, Queue Length, and Level of Service

HCS 2010 Two-Way Stop Control Summary Report

General Information		Site Information	
Analyst	PWahl	Intersection	SR 128/HCHS Drive \#4
Agency/Co.	Neel-Schaffer	Jurisdiction	
Date Performed	$9 / 6 / 2016$	East/West Street	HCHS Drive \#4
Analysis Year	2016	North/South Street	SR 128
Time Analyzed	AM Peak (7:00-8:00)	Peak Hour Factor	0.76
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25
Project Description	Savannah CTPG		

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound					Northbound				Southbound			
Movement	U	L	T	R	U	L		T	R	U	L	T	R	U	L	T	R
Priority		10	11	12		7		8	9	1 L	1	2	3	4 U	4	5	6
Number of Lanes		0	0	0		0		0	0	0	1	2	0	0	0	2	0
Configuration			LR								L	T				T	TR
Volume (veh/h)		5		5							1	523				458	2
Percent Heavy Vehicles		60		20							0						
Proportion Time Blocked																	
Right Turn Channelized	No				No					No				No			
Median Type	Undivided																
Median Storage																	

Delay, Queue Length, and Level of Service

HCS 2010 Two-Way Stop Control Summary Report

General Information		Site Information	
Analyst	PWahl	Intersection	SR 128/HCHS Drive \#4
Agency/Co.	Neel-Schaffer	Jurisdiction	
Date Performed	$9 / 6 / 2016$	East/West Street	HCHS Drive \#4
Analysis Year	2040	North/South Street	SR 128
Time Analyzed	AM Peak	Peak Hour Factor	0.76
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25
Project Description	Savannah CTPG		

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound					Northbound				Southbound			
Movement	U	L	T	R	U	L		T	R	U	L	T	R	U	L	T	R
Priority		10	11	12		7		8	9	1 L	1	2	3	4 U	4	5	6
Number of Lanes		0	0	0		0		0	0	0	1	2	0	0	0	2	0
Configuration			LR								L	T				T	TR
Volume (veh/h)		5		5							1	534				468	2
Percent Heavy Vehicles		60		20							0						
Proportion Time Blocked																	
Right Turn Channelized	No				No					No				No			
Median Type	Undivided																
Median Storage																	

Delay, Queue Length, and Level of Service

HCS 2010 Two-Way Stop Control Summary Report

General Information		Site Information	
Analyst	PWahl	Intersection	SR 128/HCHS Drive \#4
Agency/Co.	Neel-Schaffer	Jurisdiction	
Date Performed	$9 / 6 / 2016$	East/West Street	HCHS Drive \#4
Analysis Year	2016	North/South Street	SR 128
Time Analyzed	PM Peak (3:00-4:00)	Peak Hour Factor	0.72
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25
Project Description	Savannah CTPG		

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound					Northbound				Southbound			
Movement	U	L	T	R	U	L		T	R	U	L	T	R	U	L	T	R
Priority		10	11	12		7		8	9	1 U	1	2	3	4 U	4	5	6
Number of Lanes		0	0	0		0		0	0	0	1	2	0	0	0	2	0
Configuration			LR								L	T				T	TR
Volume (veh/h)		24		24							2	526				337	4
Percent Heavy Vehicles		17		42							0						
Proportion Time Blocked																	
Right Turn Channelized	No				No					No				No			
Median Type	Undivided																
Median Storage																	

Delay, Queue Length, and Level of Service

HCS 2010 Two-Way Stop Control Summary Report

General Information		Site Information	
Analyst	PWahl	Intersection	SR 128/HCHS Drive \#4
Agency/Co.	Neel-Schaffer	Jurisdiction	
Date Performed	$9 / 6 / 2016$	East/West Street	HCHS Drive \#4
Analysis Year	2040	North/South Street	SR 128
Time Analyzed	PM Peak	Peak Hour Factor	0.72
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25
Project Description	Savannah CTPG		

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound					Northbound				Southbound			
Movement	U	L	T	R	U	L		T	R	U	L	T	R	U	L	T	R
Priority		10	11	12		7		8	9	1 U	1	2	3	4 U	4	5	6
Number of Lanes		0	0	0		0		0	0	0	1	2	0	0	0	2	0
Configuration			LR								L	T				T	TR
Volume (veh/h)		25		25							2	537				344	4
Percent Heavy Vehicles		17		42							0						
Proportion Time Blocked																	
Right Turn Channelized	No				No					No				No			
Median Type	Undivided																
Median Storage																	

Delay, Queue Length, and Level of Service

HCS 2010 Two-Way Stop Control Summary Report

General Information		Site Information	
Analyst	PWahl	Intersection	SR 128/Higgins Drive
Agency/Co.	Neel-Schaffer	Jurisdiction	
Date Performed	$9 / 6 / 2016$	East/West Street	Higgins Drive
Analysis Year	2016	North/South Street	SR 128
Time Analyzed	AM Peak (7:00-8:00)	Peak Hour Factor	0.75
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25
Project Description	Savannah CTPG		

Lanes

Vehicle Volumes and Adjustments

Delay, Queue Length, and Level of Service

HCS 2010 Two-Way Stop Control Summary Report

General Information		Site Information	
Analyst	PWahl	Intersection	SR 128/Higgins Drive
Agency/Co.	Neel-Schaffer	Jurisdiction	
Date Performed	$9 / 6 / 2016$	East/West Street	Higgins Drive
Analysis Year	2040	North/South Street	SR 128
Time Analyzed	AM Peak	Peak Hour Factor	0.75
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25
Project Description	Savannah CTPG		

Lanes

Vehicle Volumes and Adjustments

Delay, Queue Length, and Level of Service

HCS 2010 Two-Way Stop Control Summary Report

General Information		Site Information	
Analyst	PWahl	Intersection	SR 128/Higgins Drive
Agency/Co.	Neel-Schaffer	Jurisdiction	
Date Performed	$9 / 6 / 2016$	East/West Street	Higgins Drive
Analysis Year	2016	North/South Street	SR 128
Time Analyzed	PM Peak (4:15-5:15)	Peak Hour Factor	0.90
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25
Project Description	Savannah CTPG		

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority		10	11	12		7	8	9	1 U	1	2	3	4 U	4	5	6
Number of Lanes		0	0	0		0	0	0	0	0	1	0	0	0	1	0
Configuration							LR					TR		LT		
Volume (veh/h)						8		10			191	15		12	197	
Percent Heavy Vehicles						0		0						17		
Proportion Time Blocked																
Right Turn Channelized	No															
Median Type	Undivided															
Median Storage																

Delay, Queue Length, and Level of Service

HCS 2010 Two-Way Stop Control Summary Report

General Information		Site Information	
Analyst	PWahl	Intersection	SR 128/Higgins Drive
Agency/Co.	Neel-Schaffer	Jurisdiction	
Date Performed	$9 / 6 / 2016$	East/West Street	Higgins Drive
Analysis Year	2040	North/South Street	SR 128
Time Analyzed	PM Peak	Peak Hour Factor	0.90
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25
Project Description	Savannah CTPG		

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority		10	11	12		7	8	9	1 U	1	2	3	4 U	4	5	6
Number of Lanes		0	0	0		0	0	0	0	0	1	0	0	0	1	0
Configuration							LR					TR		LT		
Volume (veh/h)						8		10			195	15		12	201	
Percent Heavy Vehicles						0		0						17		
Proportion Time Blocked																
Right Turn Channelized	No															
Median Type	Undivided															
Median Storage																

Delay, Queue Length, and Level of Service

HCS 2010 Two-Way Stop Control Summary Report

General Information		Site Information	
Analyst	PWahl	Intersection	SR 128/LacefieldDr
Agency/Co.	Neel-Schaffer	Jurisdiction	
Date Performed	$9 / 6 / 2016$	East/West Street	Lacefield Drive
Analysis Year	2016	North/South Street	SR 128
Time Analyzed	AM Peak (7:00-8:00)	Peak Hour Factor	0.74
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25
Project Description	Savannah CTPG		

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound					Northbound				Southbound			
Movement	U	L	T	R	U	L		T	R	U	L	T	R	U	L	T	R
Priority		10	11	12		7		8	9	1 L	1	2	3	4 U	4	5	6
Number of Lanes		0	1	0		0		0	0	0	1	2	0	0	0	2	0
Configuration			LTR								L	T				T	TR
Volume (veh/h)		30	0	3							129	586				142	358
Percent Heavy Vehicles		3	0	0							2						
Proportion Time Blocked																	
Right Turn Channelized	No				No					No				No			
Median Type	Undivided																
Median Storage																	

Delay, Queue Length, and Level of Service

HCS 2010 Two-Way Stop Control Summary Report

General Information		Site Information	
Analyst	PWahl	Intersection	SR 128/LacefieldDr
Agency/Co.	Neel-Schaffer	Jurisdiction	
Date Performed	$9 / 6 / 2016$	East/West Street	Lacefield Drive
Analysis Year	2040	North/South Street	SR 128
Time Analyzed	AM Peak	Peak Hour Factor	0.74
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25
Project Description	Savannah CTPG		

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound					Northbound				Southbound			
Movement	U	L	T	R	U	L		T	R	U	L	T	R	U	L	T	R
Priority		10	11	12		7		8	9	1 L	1	2	3	4 U	4	5	6
Number of Lanes		0	1	0		0		0	0	0	1	2	0	0	0	2	0
Configuration			LTR								L	T				T	TR
Volume (veh/h)		31	0	3							132	598				145	366
Percent Heavy Vehicles		3	0	0							2						
Proportion Time Blocked																	
Right Turn Channelized	No				No					No				No			
Median Type	Undivided																
Median Storage																	

Delay, Queue Length, and Level of Service

HCS 2010 Two-Way Stop Control Summary Report

General Information		Site Information	
Analyst	PWahl	Intersection	SR 128/LacefieldDr
Agency/Co.	Neel-Schaffer	Jurisdiction	
Date Performed	$9 / 6 / 2016$	East/West Street	Lacefield Drive
Analysis Year	2016	North/South Street	SR 128
Time Analyzed	PM Peak (2:30-3:30)	Peak Hour Factor	0.73
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25
Project Description	Savannah CTPG		

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound					Northbound				Southbound			
Movement	U	L	T	R	U	L		T	R	U	L	T	R	U	L	T	R
Priority		10	11	12		7		8	9	1 U	1	2	3	4 U	4	5	6
Number of Lanes		0	1	0		0		0	0	0	1	2	0	0	0	2	0
Configuration			LTR								L	T				T	TR
Volume (veh/h)		56	0	14							43	505				244	187
Percent Heavy Vehicles		2	0	7							0						
Proportion Time Blocked																	
Right Turn Channelized	No				No					No				No			
Median Type	Undivided																
Median Storage																	

Delay, Queue Length, and Level of Service

HCS 2010 Two-Way Stop Control Summary Report

General Information		Site Information	
Analyst	PWahl	Intersection	SR 128/LacefieldDr
Agency/Co.	Neel-Schaffer	Jurisdiction	
Date Performed	$9 / 6 / 2016$	East/West Street	Lacefield Drive
Analysis Year	2040	North/South Street	SR 128
Time Analyzed	PM Peak	Peak Hour Factor	0.73
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25
Project Description	Savannah CTPG		

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound					Northbound				Southbound			
Movement	U	L	T	R	U	L		T	R	U	L	T	R	U	L	T	R
Priority		10	11	12		7		8	9	1 U	1	2	3	4 U	4	5	6
Number of Lanes		0	1	0		0		0	0	0	1	2	0	0	0	2	0
Configuration			LTR								L	T				T	TR
Volume (veh/h)		57	0	14							44	516				249	191
Percent Heavy Vehicles		2	0	7							0						
Proportion Time Blocked																	
Right Turn Channelized	No				No					No				No			
Median Type	Undivided																
Median Storage																	

Delay, Queue Length, and Level of Service

HCS 2010 Two-Way Stop Control Summary Report

General Information		Site Information	
Analyst	PWahl	Intersection	SR 128/Lewis Street
Agency/Co.	Neel-Schaffer	Jurisdiction	
Date Performed	$9 / 6 / 2016$	East/West Street	Lewis Street
Analysis Year	2016	North/South Street	SR 128
Time Analyzed	AM Peak (7:15-8:15)	Peak Hour Factor	0.82
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25
Project Description	Savannah CTPG		

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority		10	11	12		7	8	9	1 U	1	2	3	4 U	4	5	6
Number of Lanes		0	1	0		0	1	0	0	1	2	0	0	1	2	0
Configuration			LTR				LTR			L	T	TR		L	T	TR
Volume (veh/h)		0	0	0		15	4	6		3	463	16		14	631	8
Percent Heavy Vehicles		0	0	0		7	0	0		0				7		
Proportion Time Blocked																
Right Turn Channelized	No															
Median Type	Undivided															
Median Storage																

Delay, Queue Length, and Level of Service

HCS 2010 Two-Way Stop Control Summary Report

General Information		Site Information	
Analyst	PWahl	Intersection	SR 128/Lewis Street
Agency/Co.	Neel-Schaffer	Jurisdiction	
Date Performed	$9 / 6 / 2016$	East/West Street	Lewis Street
Analysis Year	2040	North/South Street	SR 128
Time Analyzed	AM Peak	Peak Hour Factor	0.82
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25
Project Description	Savannah CTPG		

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority		10	11	12		7	8	9	1 U	1	2	3	4 U	4	5	6
Number of Lanes		0	1	0		0	1	0	0	1	2	0	0	1	2	0
Configuration			LTR				LTR			L	T	TR		L	T	TR
Volume (veh/h)		0	0	0		15	4	6		3	473	16		14	644	8
Percent Heavy Vehicles		0	0	0		7	0	0		0				7		
Proportion Time Blocked																
Right Turn Channelized	No															
Median Type	Undivided															
Median Storage																

Delay, Queue Length, and Level of Service

HCS 2010 Two-Way Stop Control Summary Report

General Information		Site Information	
Analyst	PWahl	Intersection	SR 128/Lewis Street
Agency/Co.	Neel-Schaffer	Jurisdiction	
Date Performed	$9 / 6 / 2016$	East/West Street	Lewis Street
Analysis Year	2016	North/South Street	SR 128
Time Analyzed	PM Peak (4:15-5:15)	Peak Hour Factor	0.94
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25
Project Description	Savannah CTPG		

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority		10	11	12		7	8	9	1 U	1	2	3	4 U	4	5	6
Number of Lanes		0	1	0		0	1	0	0	1	2	0	0	1	2	0
Configuration			LTR				LTR			L	T	TR		L	T	TR
Volume (veh/h)		5	0	1		18	0	34		0	407	31		13	361	3
Percent Heavy Vehicles		0	0	0		0	0	6		0				0		
Proportion Time Blocked																
Right Turn Channelized	No															
Median Type	Undivided															
Median Storage																

Delay, Queue Length, and Level of Service

HCS 2010 Two-Way Stop Control Summary Report

General Information		Site Information	
Analyst	PWahl	Intersection	SR 128/Lewis Street
Agency/Co.	Neel-Schaffer	Jurisdiction	
Date Performed	$9 / 6 / 2016$	East/West Street	Lewis Street
Analysis Year	2040	North/South Street	SR 128
Time Analyzed	PM Peak	Peak Hour Factor	0.94
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25
Project Description	Savannah CTPG		

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority		10	11	12		7	8	9	1 U	1	2	3	4 U	4	5	6
Number of Lanes		0	1	0		0	1	0	0	1	2	0	0	1	2	0
Configuration			LTR				LTR			L	T	TR		L	T	TR
Volume (veh/h)		5	0	1		18	0	35		0	416	32		13	369	3
Percent Heavy Vehicles		0	0	0		0	0	6		0				0		
Proportion Time Blocked																
Right Turn Channelized	No															
Median Type	Undivided															
Median Storage																

Delay, Queue Length, and Level of Service

General Information

Agency	Ne
Analyst	PW
Jurisdiction	
Urban Street	SR
Intersection	SR
Project Description	Sa

Intersection Information

Demand Information				EB			WB			NB			SB		
Approach Movement				L	T	R	L	T	R	L	T	R	L	T	R
Demand (v), veh/h				12	327	17	223	316	5	30	37	231	18	138	5
Signal Information															
Cycle, s	0.0	Reference Phase	2												
Offset, s	0	Reference Point	End	Green	0.0	0.0	0.0	0.0	0.0	0.0					
Uncoordinated	Yes	Simult. Gap E/W	On	Yellow	0.0	0.0	0.0	0.0	0.0	0.0					
Force Mode	Fixed	Simult. Gap N/S	On	Red	0.0	0.0	0.0	0.0	0.0	0.0		5		7	

Signal Information

Timer Results	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT
Assigned Phase	7	4	3	8		6		2
Case Number	0.0	0.0	0.0	0.0		0.0		0.0
Phase Duration, s	0.0	0.0	0.0	0.0		0.0		0.0
Change Period, ($Y+R \mathrm{c}$), s	0.0	0.0	0.0	0.0		0.0		0.0
Max Allow Headway (MAH), s	0.0	0.0	0.0	0.0		0.0		0.0
Queue Clearance Time ($g s$), s	0.0	0.0	0.0	0.0		0.0		0.0
Green Extension Time (g_{e}), s	0.0	0.0	0.0	0.0		0.0		0.0
Phase Call Probability	0.00	0.00	0.00	0.00		0.00		0.00
Max Out Probability	0.00	0.00	0.00	0.00		0.00		0.00

Multimodal Results	EB		WB		NB		SB	
Pedestrian LOS Score / LOS	0.0	A	0.0	A	0.0	A	0.0	A
Bicycle LOS Score / LOS	0.0	A	0.0	A	0.0	A	0.0	A

General Information

Agency
Analyst
Jurisdiction
Urban Street
Intersection
Project Description

Intersection Information

Demand Information
 Approach Movement
 Demand (v), veh/h

Neel-Schaffer
PWahl

SR 128
SR 128 \& Water Street
Savannah CTPG

Signal Information

Cycle, s	0.0	Reference Phase	2
Offset, s	0	Reference Point	End
Uncoordinated	Yes	Simult. Gap E/W	On
Force Mode	Fixed	Simult. Gap N/S	On

Timer Results	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT
Assigned Phase	7	4	3	8		6		2
Case Number	0.0	0.0	0.0	0.0		0.0		0.0
Phase Duration, s	0.0	0.0	0.0	0.0		0.0		0.0
Change Period, ($Y+R$ c $)$, s	0.0	0.0	0.0	0.0		0.0		0.0
Max Allow Headway (MAH), s	0.0	0.0	0.0	0.0		0.0		0.0
Queue Clearance Time ($g s$), s	0.0	0.0	0.0	0.0		0.0		0.0
Green Extension Time (ge_{e}), s	0.0	0.0	0.0	0.0		0.0		0.0
Phase Call Probability	0.00	0.00	0.00	0.00		0.00		0.00
Max Out Probability	0.00	0.00	0.00	0.00		0.00		0.00

Movement Group Results	EB			WB			NB			SB		
Approach Movement	L	T	R	L	T	R	L	T	R	L	T	R
Assigned Movement	7	4	14	3	8	18	1	6	16	5	2	12
Adjusted Flow Rate (v), veh/h	0	0	0	0	0	0	0	0	0		0	
Adjusted Saturation Flow Rate (s), veh/h/ln	0	0	0	0	0	0	0	0	0		0	
Queue Service Time ($\mathrm{g} s$), s	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	
Cycle Queue Clearance Time (g_{c}), s	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	
Green Ratio (g / C)												
Capacity (c), veh/h	0	0	0	0	0	0	0	0	0		0	
Volume-to-Capacity Ratio (X)	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000		0.000	
Back of Queue (Q), ft/ln (50 th percentile)	0	0	0	0	0	0	0	0	0		0	
Back of Queue (Q), veh/ln (50 th percentile)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	
Queue Storage Ratio ($R Q$) (50 th percentile)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	
Uniform Delay (d_{1}), s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	
Incremental Delay (d_{2}), s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	
Initial Queue Delay (d_{3}), s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	
Control Delay (d), s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	
Level of Service (LOS)												
Approach Delay, s/veh / LOS	0.0			0.0			0.0			0.0		
Intersection Delay, s/veh / LOS	0.0						A					

Multimodal Results	EB		WB		NB		SB	
Pedestrian LOS Score / LOS	0.0	A	0.0	A	0.0	A	0.0	A
Bicycle LOS Score / LOS	0.0	A	0.0	A	0.0	A	0.0	A

General Information

Agency	Ne
Analyst	PW
Jurisdiction	
Urban Street	SR
Intersection	SR
Project Description	Sa

Intersection Information

Demand Information				EB			WB			NB			SB		
Approach Movement				L	T	R	L	T	R	L	T	R	L	T	R
Demand (v), veh/h				12	353	32	172	444	6	26	56	224	14	26	9
Signal Information															
Cycle, s	0.0	Reference Phase	2												
Offset, s	0	Reference Point	End	Green	0.0	0.0	0.0	0.0	0.0	0.0					
Uncoordinated	Yes	Simult. Gap E/W	On	Yellow	0.0	0.0	0.0	0.0	0.0	0.0					
Force Mode	Fixed	Simult. Gap N/S	On	Red	0.0	0.0	0.0	0.0	0.0	0.0				7	

Signal Information

Timer Results	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT
Assigned Phase	7	4	3	8		6		2
Case Number	0.0	0.0	0.0	0.0		0.0		0.0
Phase Duration, s	0.0	0.0	0.0	0.0		0.0		0.0
Change Period, ($Y+R_{\text {c }}$), s	0.0	0.0	0.0	0.0		0.0		0.0
Max Allow Headway (MAH), s	0.0	0.0	0.0	0.0		0.0		0.0
Queue Clearance Time ($g s$), s	0.0	0.0	0.0	0.0		0.0		0.0
Green Extension Time (g e) , s	0.0	0.0	0.0	0.0		0.0		0.0
Phase Call Probability	0.00	0.00	0.00	0.00		0.00		0.00
Max Out Probability	0.00	0.00	0.00	0.00		0.00		0.00

Multimodal Results	EB		WB		NB		SB	
Pedestrian LOS Score / LOS	0.0	A	0.0	A	0.0	A	0.0	A
Bicycle LOS Score / LOS	0.0	A	0.0	A	0.0	A	0.0	A

General Information

Agency
Analyst
Jurisdiction
Urban Street
Intersection
Project Description

Intersection Information

Demand Information
 Approach Movement
 Demand (v), veh/h

Neel-Schaffer
PWahl

SR 128
SR 128 \& Water Street
Savannah CTPG

Signal Information

Cycle, s	0.0	Reference Phase	2
Offset, s	0	Reference Point	End
Uncoordinated	Yes	Simult. Gap E/W	On
Force Mode	Fixed	Simult. Gap N/S	On

Green	0.0	0.0	0.0	0.0	0.0	0.0
Yellow	0.0	0.0	0.0	0.0	0.0	0.0
Red	0.0	0.0	0.0	0.0	0.0	0.0

NB			SB		
T	R	L	T	R	
57	229	4	27	9	

Timer Results	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT
Assigned Phase	7	4	3	8		6		2
Case Number	0.0	0.0	0.0	0.0		0.0		0.0
Phase Duration, s	0.0	0.0	0.0	0.0		0.0		0.0
Change Period, ($Y+R_{\text {c }}$), s	0.0	0.0	0.0	0.0		0.0		0.0
Max Allow Headway (MAH), s	0.0	0.0	0.0	0.0		0.0		0.0
Queue Clearance Time ($g s$), s	0.0	0.0	0.0	0.0		0.0		0.0
Green Extension Time (g e) , s	0.0	0.0	0.0	0.0		0.0		0.0
Phase Call Probability	0.00	0.00	0.00	0.00		0.00		0.00
Max Out Probability	0.00	0.00	0.00	0.00		0.00		0.00

Movement Group Results	EB			WB			NB			SB		
Approach Movement	L	T	R	L	T	R	L	T	R	L	T	R
Assigned Movement	7	4	14	3	8	18	1	6	16	5	2	12
Adjusted Flow Rate (v), veh/h	0	0	0	0	0	0	0	0	0		0	
Adjusted Saturation Flow Rate (s), veh/h/ln	0	0	0	0	0	0	0	0	0		0	
Queue Service Time (g s) , s	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	
Cycle Queue Clearance Time (g_{c}), s	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	
Green Ratio (g / C)												
Capacity (c), veh/h	0	0	0	0	0	0	0	0	0		0	
Volume-to-Capacity Ratio (X)	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000		0.000	
Back of Queue (Q), ft/ln (50 th percentile)	0	0	0	0	0	0	0	0	0		0	
Back of Queue (Q), veh/ln (50 th percentile)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	
Queue Storage Ratio ($R Q$) (50 th percentile)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	
Uniform Delay (d_{1}), s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	
Incremental Delay (d_{2}), s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	
Initial Queue Delay ($d_{\text {s }}$), s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	
Control Delay (d), s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	
Level of Service (LOS)												
Approach Delay, s/veh / LOS	0.0			0.0			0.0			0.0		
Intersection Delay, s/veh / LOS	0.0						A					

Multimodal Results	EB		WB		NB		SB	
Pedestrian LOS Score / LOS	0.0	A	0.0	A	0.0	A	0.0	A
Bicycle LOS Score / LOS	0.0	A	0.0	A	0.0	A	0.0	A

HCS 2010 Two-Way Stop Control Summary Report

General Information		Site Information	
Analyst	PWahl	Intersection	SR 128/Malcomb Street
Agency/Co.	Neel-Schaffer	Jurisdiction	
Date Performed	$9 / 6 / 2016$	East/West Street	Malcomb Street
Analysis Year	2016	North/South Street	SR 128
Time Analyzed	AM Peak (7:15-8:15)	Peak Hour Factor	0.79
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25
Project Description	Savannah CTPG		

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority		10	11	12		7	8	9	1 U	1	2	3	4 U	4	5	6
Number of Lanes		0	1	0		0	1	0	0	1	2	0	0	1	2	0
Configuration			LTR				LTR			L	T	TR		L	T	TR
Volume (veh/h)		2	1	5		6	2	12		2	453	16		6	698	2
Percent Heavy Vehicles		0	0	0		0	0	0		0				0		
Proportion Time Blocked																
Right Turn Channelized	No															
Median Type	Undivided															
Median Storage																

Delay, Queue Length, and Level of Service

HCS 2010 Two-Way Stop Control Summary Report

General Information		Site Information	
Analyst	PWahl	Intersection	SR 128/Malcomb Street
Agency/Co.	Neel-Schaffer	Jurisdiction	
Date Performed	$9 / 6 / 2016$	East/West Street	Malcomb Street
Analysis Year	2040	North/South Street	SR 128
Time Analyzed	AM Peak	Peak Hour Factor	0.79
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25
Project Description	Savannah CTPG		

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority		10	11	12		7	8	9	1 U	1	2	3	4 U	4	5	6
Number of Lanes		0	1	0		0	1	0	0	1	2	0	0	1	2	0
Configuration			LTR				LTR			L	T	TR		L	T	TR
Volume (veh/h)		2	1	5		6	2	12		2	463	16		6	713	2
Percent Heavy Vehicles		0	0	0		0	0	0		0				0		
Proportion Time Blocked																
Right Turn Channelized	No															
Median Type	Undivided															
Median Storage																

Delay, Queue Length, and Level of Service

HCS 2010 Two-Way Stop Control Summary Report

General Information		Site Information	
Analyst	PWahl	Intersection	SR 128/Malcomb Street
Agency/Co.	Neel-Schaffer	Jurisdiction	
Date Performed	$9 / 6 / 2016$	East/West Street	Malcomb Street
Analysis Year	2016	North/South Street	SR 128
Time Analyzed	PM Peak (4:15-5:15)	Peak Hour Factor	0.98
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25
Project Description	Savannah CTPG		

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority		10	11	12		7	8	9	1 U	1	2	3	4 U	4	5	6
Number of Lanes		0	1	0		0	1	0	0	1	2	0	0	1	2	0
Configuration			LTR				LTR			L	T	TR		L	T	TR
Volume (veh/h)		1	2	3		7	3	39		5	505	14		10	405	3
Percent Heavy Vehicles		0	0	33		0	0	0		40				0		
Proportion Time Blocked																
Right Turn Channelized	No															
Median Type	Undivided															
Median Storage																

Delay, Queue Length, and Level of Service

HCS 2010 Two-Way Stop Control Summary Report

General Information		Site Information	
Analyst	PWahl	Intersection	SR 128/Malcomb Street
Agency/Co.	Neel-Schaffer	Jurisdiction	
Date Performed	$9 / 6 / 2016$	East/West Street	Malcomb Street
Analysis Year	2040	North/South Street	SR 128
Time Analyzed	PM Peak	Peak Hour Factor	0.98
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25
Project Description	Savannah CTPG		

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority		10	11	12		7	8	9	1 U	1	2	3	4 U	4	5	6
Number of Lanes		0	1	0		0	1	0	0	1	2	0	0	1	2	0
Configuration			LTR				LTR			L	T	TR		L	T	TR
Volume (veh/h)		1	2	3		7	3	40		5	516	14		10	414	3
Percent Heavy Vehicles		0	0	33		0	0	0		40				0		
Proportion Time Blocked																
Right Turn Channelized	No															
Median Type	Undivided															
Median Storage																

Delay, Queue Length, and Level of Service

HCS 2010 Two-Way Stop Control Summary Report

General Information		Site Information	
Analyst	PWahl	Intersection	SR 128/One Stop Drive
Agency/Co.	Neel-Schaffer	Jurisdiction	
Date Performed	$9 / 6 / 2016$	East/West Street	One Stop Drive
Analysis Year	2016	North/South Street	SR 128
Time Analyzed	AM Peak (7:00-8:00)	Peak Hour Factor	0.71
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25
Project Description	Savannah CTPG		

Lanes

Vehicle Volumes and Adjustments

Delay, Queue Length, and Level of Service

HCS 2010 Two-Way Stop Control Summary Report

General Information		Site Information	
Analyst	PWahl	Intersection	SR 128/One Stop Drive
Agency/Co.	Neel-Schaffer	Jurisdiction	
Date Performed	$9 / 6 / 2016$	East/West Street	One Stop Drive
Analysis Year	2040	North/South Street	SR 128
Time Analyzed	AM Peak	Peak Hour Factor	0.71
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25
Project Description	Savannah CTPG		

Lanes

Vehicle Volumes and Adjustments

Delay, Queue Length, and Level of Service

HCS 2010 Two-Way Stop Control Summary Report

General Information		Site Information	
Analyst	PWahl	Intersection	SR 128/One Stop Drive
Agency/Co.	Neel-Schaffer	Jurisdiction	
Date Performed	$9 / 6 / 2016$	East/West Street	One Stop Drive
Analysis Year	2016	North/South Street	SR 128
Time Analyzed	PM Peak (4:15-5:15)	Peak Hour Factor	0.92
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25
Project Description	Savannah CTPG		

Lanes

Vehicle Volumes and Adjustments

Delay, Queue Length, and Level of Service

HCS 2010 Two-Way Stop Control Summary Report

General Information		Site Information	
Analyst	PWahl	Intersection	SR 128/One Stop Drive
Agency/Co.	Neel-Schaffer	Jurisdiction	
Date Performed	$9 / 6 / 2016$	East/West Street	One Stop Drive
Analysis Year	2040	North/South Street	SR 128
Time Analyzed	PM Peak	Peak Hour Factor	0.92
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25
Project Description	Savannah CTPG		

Lanes

Vehicle Volumes and Adjustments

Delay, Queue Length, and Level of Service

HCS 2010 Two-Way Stop Control Summary Report

General Information		Site Information	
Analyst	PWahl	Intersection	SR 128/ElementarySchoolDr
Agency/Co.	Neel-Schaffer	Jurisdiction	
Date Performed	$9 / 6 / 2016$	East/West Street	Elementary School Drive
Analysis Year	2016	North/South Street	SR 128
Time Analyzed	AM Peak (7:00-8:00)	Peak Hour Factor	0.70
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25
Project Description	Savannah CTPG		

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority		10	11	12		7	8	9	1 U	1	2	3	4 U	4	5	6
Number of Lanes		0	1	0		0	1	0	0	1	2	0	0	1	2	0
Configuration			LTR				LTR			L	T	TR		L	T	TR
Volume (veh/h)		275	2	79		0	0	2		0	436	0		2	139	0
Percent Heavy Vehicles		8	0	6		0	0	0		0				0		
Proportion Time Blocked																
Right Turn Channelized	No															
Median Type	Undivided															
Median Storage																

Delay, Queue Length, and Level of Service

HCS 2010 Two-Way Stop Control Summary Report

General Information		Site Information	
Analyst	PWahl	Intersection	SR 128/ElementarySchoolDr
Agency/Co.	Neel-Schaffer	Jurisdiction	
Date Performed	$9 / 6 / 2016$	East/West Street	Elementary School Drive
Analysis Year	2040	North/South Street	SR 128
Time Analyzed	AM Peak	Peak Hour Factor	0.70
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25
Project Description	Savannah CTPG		

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority		10	11	12		7	8	9	1 U	1	2	3	4 U	4	5	6
Number of Lanes		0	1	0		0	1	0	0	1	2	0	0	1	2	0
Configuration			LTR				LTR			L	T	TR		L	T	TR
Volume (veh/h)		281	2	81		0	0	2		0	445	0		2	142	0
Percent Heavy Vehicles		8	0	6		0	0	0		0				0		
Proportion Time Blocked																
Right Turn Channelized	No															
Median Type	Undivided															
Median Storage																

Delay, Queue Length, and Level of Service

HCS 2010 Two-Way Stop Control Summary Report

General Information		Site Information	
Analyst	PWahl	Intersection	SR 128/ElementarySchoolDr
Agency/Co.	Neel-Schaffer	Jurisdiction	
Date Performed	$9 / 6 / 2016$	East/West Street	Elementary School Drive
Analysis Year	2016	North/South Street	SR 128
Time Analyzed	PM Peak (3:00-4:00)	Peak Hour Factor	0.56
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25
Project Description	Savannah CTPG		

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority		10	11	12		7	8	9	1 U	1	2	3	4 U	4	5	6
Number of Lanes		0	1	0		0	1	0	0	1	2	0	0	1	2	0
Configuration			LTR				LTR			L	T	TR		L	T	TR
Volume (veh/h)		176	0	61		1	0	4		0	293	1		6	255	0
Percent Heavy Vehicles		7	0	10		0	0	25		0				0		
Proportion Time Blocked																
Right Turn Channelized	No															
Median Type	Undivided															
Median Storage																

Delay, Queue Length, and Level of Service

HCS 2010 Two-Way Stop Control Summary Report

General Information		Site Information	
Analyst	PWahl	Intersection	SR 128/ElementarySchoolDr
Agency/Co.	Neel-Schaffer	Jurisdiction	
Date Performed	$9 / 6 / 2016$	East/West Street	Elementary School Drive
Analysis Year	2040	North/South Street	SR 128
Time Analyzed	PM Peak	Peak Hour Factor	0.56
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25
Project Description	Savannah CTPG		

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority		10	11	12		7	8	9	1 U	1	2	3	4 U	4	5	6
Number of Lanes		0	1	0		0	1	0	0	1	2	0	0	1	2	0
Configuration			LTR				LTR			L	T	TR		L	T	TR
Volume (veh/h)		180	0	62		1	0	4		0	299	1		6	260	0
Percent Heavy Vehicles		7	0	10		0	0	25		0				0		
Proportion Time Blocked																
Right Turn Channelized	No															
Median Type	Undivided															
Median Storage																

Delay, Queue Length, and Level of Service

HCS 2010 Two-Way Stop Control Summary Report

General Information		Site Information	
Analyst	PWahl	Intersection	SR 128/Ranch Street
Agency/Co.	Neel-Schaffer	Jurisdiction	
Date Performed	$9 / 6 / 2016$	East/West Street	Ranch Street
Analysis Year	2016	North/South Street	SR 128
Time Analyzed	AM Peak (7:15-8:15)	Peak Hour Factor	0.78
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25
Project Description	Savannah CTPG		

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority		10	11	12		7	8	9	1 U	1	2	3	4 U	4	5	6
Number of Lanes		0	1	0		0	1	0	0	1	2	0	0	1	2	0
Configuration			LTR				LTR			L	T	TR		L	T	TR
Volume (veh/h)		0	0	0		13	7	73		47	505	24		29	418	80
Percent Heavy Vehicles		0	0	0		8	0	1		0				0		
Proportion Time Blocked																
Right Turn Channelized	No															
Median Type	Undivided															
Median Storage																

Delay, Queue Length, and Level of Service

HCS 2010 Two-Way Stop Control Summary Report

General Information		Site Information	
Analyst	PWahl	Intersection	SR 128/Ranch Street
Agency/Co.	Neel-Schaffer	Jurisdiction	
Date Performed	$9 / 6 / 2016$	East/West Street	Ranch Street
Analysis Year	2040	North/South Street	SR 128
Time Analyzed	AM Peak	Peak Hour Factor	0.78
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25
Project Description	Savannah CTPG		

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority		10	11	12		7	8	9	1 U	1	2	3	4 U	4	5	6
Number of Lanes		0	1	0		0	1	0	0	1	2	0	0	1	2	0
Configuration			LTR				LTR			L	T	TR		L	T	TR
Volume (veh/h)		0	0	0		13	7	75		48	516	25		30	427	82
Percent Heavy Vehicles		0	0	0		8	0	1		0				0		
Proportion Time Blocked																
Right Turn Channelized	No															
Median Type	Undivided															
Median Storage																

Delay, Queue Length, and Level of Service

HCS 2010 Two-Way Stop Control Summary Report

General Information		Site Information	
Analyst	PWahl	Intersection	SR 128/Ranch Street
Agency/Co.	Neel-Schaffer	Jurisdiction	
Date Performed	$9 / 6 / 2016$	East/West Street	Ranch Street
Analysis Year	2016	North/South Street	SR 128
Time Analyzed	PM Peak (2:30-3:30)	Peak Hour Factor	0.79
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25
Project Description	Savannah CTPG		

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority		10	11	12		7	8	9	1 U	1	2	3	4 U	4	5	6
Number of Lanes		0	1	0		0	1	0	0	1	2	0	0	1	2	0
Configuration			LTR				LTR			L	T	TR		L	T	TR
Volume (veh/h)		0	0	0		17	0	53		9	535	34		64	394	26
Percent Heavy Vehicles		0	0	0		0	0	0		0				0		
Proportion Time Blocked																
Right Turn Channelized	No															
Median Type	Undivided															
Median Storage																

Delay, Queue Length, and Level of Service

HCS 2010 Two-Way Stop Control Summary Report

General Information		Site Information	
Analyst	PWahl	Intersection	SR 128/Ranch Street
Agency/Co.	Neel-Schaffer	Jurisdiction	
Date Performed	$9 / 6 / 2016$	East/West Street	Ranch Street
Analysis Year	2040	North/South Street	SR 128
Time Analyzed	PM Peak	Peak Hour Factor	0.79
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25
Project Description	Savannah CTPG		

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority		10	11	12		7	8	9	1 U	1	2	3	4 U	4	5	6
Number of Lanes		0	1	0		0	1	0	0	1	2	0	0	1	2	0
Configuration			LTR				LTR			L	T	TR		L	T	TR
Volume (veh/h)		0	0	0		17	0	54		9	546	35		65	402	27
Percent Heavy Vehicles		0	0	0		0	0	0		0				0		
Proportion Time Blocked																
Right Turn Channelized	No															
Median Type	Undivided															
Median Storage																

Delay, Queue Length, and Level of Service

HCS 2010 Two-Way Stop Control Summary Report

General Information		Site Information	
Analyst	PWahl	Intersection	SR 128/Sevier Street
Agency/Co.	Neel-Schaffer	Jurisdiction	
Date Performed	$9 / 6 / 2016$	East/West Street	Sevier Street
Analysis Year	2016	North/South Street	SR 128
Time Analyzed	AM Peak (7:15-8:15)	Peak Hour Factor	0.78
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25
Project Description	Savannah CTPG		

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound					Northbound				Southbound			
Movement	U	L	T	R	U	L		T	R	U	L	T	R	U	L	T	R
Priority		10	11	12		7		8	9	1 U	1	2	3	4 U	4	5	6
Number of Lanes		0	0	0		0		0	0	0	1	2	0	0	0	2	0
Configuration			LR								L	T				T	TR
Volume (veh/h)		40		32							35	469				549	68
Percent Heavy Vehicles		8		3							4						
Proportion Time Blocked																	
Right Turn Channelized	No				No					No				No			
Median Type	Undivided																
Median Storage																	

Delay, Queue Length, and Level of Service

HCS 2010 Two-Way Stop Control Summary Report

General Information		Site Information	
Analyst	PWahl	Intersection	SR 128/Sevier Street
Agency/Co.	Neel-Schaffer	Jurisdiction	
Date Performed	$9 / 6 / 2016$	East/West Street	Sevier Street
Analysis Year	2040	North/South Street	SR 128
Time Analyzed	AM Peak	Peak Hour Factor	0.78
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25
Project Description	Savannah CTPG		

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound					Northbound				Southbound			
Movement	U	L	T	R	U	L		T	R	U	L	T	R	U	L	T	R
Priority		10	11	12		7		8	9	1 U	1	2	3	4 U	4	5	6
Number of Lanes		0	0	0		0		0	0	0	1	2	0	0	0	2	0
Configuration			LR								L	T				T	TR
Volume (veh/h)		41		33							36	479				560	69
Percent Heavy Vehicles		8		3							4						
Proportion Time Blocked																	
Right Turn Channelized	No				No					No				No			
Median Type	Undivided																
Median Storage																	

Delay, Queue Length, and Level of Service

HCS 2010 Two-Way Stop Control Summary Report

General Information		Site Information	
Analyst	PWahl	Intersection	SR 128/Sevier Street
Agency/Co.	Neel-Schaffer	Jurisdiction	
Date Performed	$9 / 6 / 2016$	East/West Street	Sevier Street
Analysis Year	2016	North/South Street	SR 128
Time Analyzed	PM Peak (2:30-3:30)	Peak Hour Factor	0.81
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25
Project Description	Savannah CTPG		

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound					Northbound				Southbound			
Movement	U	L	T	R	U	L		T	R	U	L	T	R	U	L	T	R
Priority		10	11	12		7		8	9	1 U	1	2	3	4 U	4	5	6
Number of Lanes		0	0	0		0		0	0	0	1	2	0	0	0	2	0
Configuration			LR								L	T				T	TR
Volume (veh/h)		37		46							14	573				417	31
Percent Heavy Vehicles		0		2							0						
Proportion Time Blocked																	
Right Turn Channelized	No				No					No				No			
Median Type	Undivided																
Median Storage																	

Delay, Queue Length, and Level of Service

HCS 2010 Two-Way Stop Control Summary Report

General Information		Site Information	
Analyst	PWahl	Intersection	SR 128/Sevier Street
Agency/Co.	Neel-Schaffer	Jurisdiction	
Date Performed	$9 / 6 / 2016$	East/West Street	Sevier Street
Analysis Year	2040	North/South Street	SR 128
Time Analyzed	PM Peak	Peak Hour Factor	0.81
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25
Project Description	Savannah CTPG		

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound					Northbound				Southbound			
Movement	U	L	T	R	U	L		T	R	U	L	T	R	U	L	T	R
Priority		10	11	12		7		8	9	1 U	1	2	3	4 U	4	5	6
Number of Lanes		0	0	0		0		0	0	0	1	2	0	0	0	2	0
Configuration			LR								L	T				T	TR
Volume (veh/h)		38		47							14	585				426	32
Percent Heavy Vehicles		0		2							0						
Proportion Time Blocked																	
Right Turn Channelized	No				No					No				No			
Median Type	Undivided																
Median Storage																	

Delay, Queue Length, and Level of Service

HCS 2010 Two-Way Stop Control Summary Report

General Information		Site Information	
Analyst	PWahl	Intersection	SR 128/Stadium Drive
Agency/Co.	Neel-Schaffer	Jurisdiction	
Date Performed	$9 / 6 / 2016$	East/West Street	Stadium Drive
Analysis Year	2016	North/South Street	SR 128
Time Analyzed	AM Peak (7:15-8:15)	Peak Hour Factor	0.77
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25
Project Description	Savannah CTPG		

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority		10	11	12		7	8	9	1 U	1	2	3	4 U	4	5	6
Number of Lanes		0	0	0		0	0	0	0	1	2	0	0	0	2	0
Configuration			LR							L	T				T	TR
Volume (veh/h)		10		16						60	520				464	15
Percent Heavy Vehicles		0		0						0						
Proportion Time Blocked																
Right Turn Channelized	No															
Median Type	Undivided															
Median Storage																

Delay, Queue Length, and Level of Service

HCS 2010 Two-Way Stop Control Summary Report

General Information		Site Information	
Analyst	PWahl	Intersection	SR 128/Stadium Drive
Agency/Co.	Neel-Schaffer	Jurisdiction	
Date Performed	$9 / 6 / 2016$	East/West Street	Stadium Drive
Analysis Year	2040	North/South Street	SR 128
Time Analyzed	AM Peak	Peak Hour Factor	0.77
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25
Project Description	Savannah CTPG		

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound					Northbound				Southbound			
Movement	U	L	T	R	U	L		T	R	U	L	T	R	U	L	T	R
Priority		10	11	12		7		8	9	1 U	1	2	3	4 U	4	5	6
Number of Lanes		0	0	0		0		0	0	0	1	2	0	0	0	2	0
Configuration			LR								L	T				T	TR
Volume (veh/h)		10		16							61	531				474	15
Percent Heavy Vehicles		0		0							0						
Proportion Time Blocked																	
Right Turn Channelized	No				No					No				No			
Median Type	Undivided																
Median Storage																	

Delay, Queue Length, and Level of Service

HCS 2010 Two-Way Stop Control Summary Report

General Information		Site Information	
Analyst	PWahl	Intersection	SR 128/Stadium Drive
Agency/Co.	Neel-Schaffer	Jurisdiction	
Date Performed	$9 / 6 / 2016$	East/West Street	Stadium Drive
Analysis Year	2016	North/South Street	SR 128
Time Analyzed	PM Peak (2:30-3:30)	Peak Hour Factor	0.75
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25
Project Description	Savannah CTPG		

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound					Northbound				Southbound			
Movement	U	L	T	R	U	L		T	R	U	L	T	R	U	L	T	R
Priority		10	11	12		7		8	9	1 U	1	2	3	4 U	4	5	6
Number of Lanes		0	0	0		0		0	0	0	1	2	0	0	0	2	0
Configuration			LR								L	T				T	TR
Volume (veh/h)		16		39							14	522				384	33
Percent Heavy Vehicles		6		0							0						
Proportion Time Blocked																	
Right Turn Channelized	No				No					No				No			
Median Type	Undivided																
Median Storage																	

Delay, Queue Length, and Level of Service

HCS 2010 Two-Way Stop Control Summary Report

General Information		Site Information	
Analyst	PWahl	Intersection	SR 128/Stadium Drive
Agency/Co.	Neel-Schaffer	Jurisdiction	
Date Performed	$9 / 6 / 2016$	East/West Street	Stadium Drive
Analysis Year	2040	North/South Street	SR 128
Time Analyzed	PM Peak	Peak Hour Factor	0.75
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25
Project Description	Savannah CTPG		

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound					Northbound				Southbound			
Movement	U	L	T	R	U	L		T	R	U	L	T	R	U	L	T	R
Priority		10	11	12		7		8	9	1 U	1	2	3	4 U	4	5	6
Number of Lanes		0	0	0		0		0	0	0	1	2	0	0	0	2	0
Configuration			LR								L	T				T	TR
Volume (veh/h)		16		40							14	533				392	34
Percent Heavy Vehicles		6		0							0						
Proportion Time Blocked																	
Right Turn Channelized	No				No					No				No			
Median Type	Undivided																
Median Storage																	

Delay, Queue Length, and Level of Service

General Information

Agency	N
Analyst	P
Jurisdiction	
Urban Street	SR
Intersection	SR
Project Description	S

Demand Information
 Approach Movement
 Demand (v), veh/h

Intersection Information

	Intersection Information	
	Duration, h	0.25
Area Type	Other	
PHF	0.89	
	Analysis Period	$1>7: 15$
St 2016 AM.xus		

Signal Information				Green	0.0				0.0					
Cycle, s	0.0	Reference Phase	2											
Offset, s	0	Reference Point	End											
Uncoordinated	No	Simult. Gap E/W	On	Yellow	0.0	0.0	0.0	0.0	0.0	0.0			λ	
Force Mode	Fixed	Simult. Gap N/S	On	Red	0.0	0.0	0.0	0.0	0.0	0.0	5			

Multimodal Results	EB		WB		NB		SB	
Pedestrian LOS Score / LOS	0.0	A	0.0	A	0.0	A	0.0	A
Bicycle LOS Score / LOS	0.0	A	0.0	A	0.0	A	0.0	A

General Information

Agency
Analyst
Jurisdiction
Urban Street
Intersection
Project Description

Intersection Information

Demand Information
 Approach Movement
 Demand (v), veh/h

Neel-Schaffer
PWahl

SR 128
SR 128 \& Water Street
Savannah CTPG

Duration, h	0.25
Area Type	Other
PHF	0.89
Analysis Period	$1>7: 15$

Signal Information

Cycle, s	0.0	Reference Phase	2
Offset, s	0	Reference Point	End
Uncoordinated	No	Simult. Gap E/W	On
Force Mode	Fixed	Simult. Gap N/S	On

Timer Results	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT
Assigned Phase	7	4	3	8	1	6	5	2
Case Number	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Phase Duration, s	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Change Period, ($Y+R \mathrm{c}$), s	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Max Allow Headway (MAH), s	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Queue Clearance Time ($g s$), s	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Green Extension Time (g_{e}), s	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Phase Call Probability	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Max Out Probability	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Movement Group Results	EB			WB			NB			SB		
Approach Movement	L	T	R	L	T	R	L	T	R	L	T	R
Assigned Movement	7	4	14	3	8	18	1	6	16	5	2	12
Adjusted Flow Rate (v), veh/h	0	0		0	0		0	0		0	0	0
Adjusted Saturation Flow Rate (s), veh/h/ln	0	0		0	0		0	0		0	0	0
Queue Service Time (g s), s	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Cycle Queue Clearance Time (g c) , s	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Green Ratio (g/C)												
Capacity (c), veh/h	0	0		0	0		0	0		0	0	0
Volume-to-Capacity Ratio (X)	0.000	0.000		0.000	0.000		0.000	0.000		0.000	0.000	0.000
Back of Queue (Q), ft/ln (50 th percentile)	0	0		0	0		0	0		0	0	0
Back of Queue (Q), veh/ln (50 th percentile)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Queue Storage Ratio ($R Q$) (50 th percentile)	0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00	0.00
Uniform Delay (d_{1}), s/veh	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Incremental Delay (d_{2}), s/veh	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Initial Queue Delay (d_{3}), s/veh	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Control Delay (d), s/veh	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Level of Service (LOS)												
Approach Delay, s/veh / LOS	0.0			0.0			0.0			0.0		
Intersection Delay, s/veh / LOS	0.0						A					

Multimodal Results	EB		WB		NB		SB	
Pedestrian LOS Score / LOS	0.0	A	0.0	A	0.0	A	0.0	A
Bicycle LOS Score / LOS	0.0	A	0.0	A	0.0	A	0.0	A

General Information

Agency	Ne
Analyst	PW
Jurisdiction	
Urban Street	SR
Intersection	SR
Project Description	Sa

Demand Information
 Approach Movement
 Demand (v), veh/h

Intersection Information

	Intersection Information	
	Duration, h	0.25
Area Type	Other	
PHF	0.96	
	Analysis Period	$1>4: 15$
St 2016 PM.xus		

Signal Information				Green	0.0				0.0					
Cycle, s	0.0	Reference Phase	2											
Offset, s	0	Reference Point	End											
Uncoordinated	No	Simult. Gap E/W	On	Yellow	0.0	0.0	0.0	0.0	0.0	0.0			λ	
Force Mode	Fixed	Simult. Gap N/S	On	Red	0.0	0.0	0.0	0.0	0.0	0.0	5			

Multimodal Results	EB		WB		NB		SB	
Pedestrian LOS Score / LOS	0.0	A	0.0	A	0.0	A	0.0	A
Bicycle LOS Score / LOS	0.0	A	0.0	A	0.0	A	0.0	A

General Information

Agency
Analyst
Jurisdiction
Urban Street
Intersection
Project Description

Intersection Information
Demand Information

Approach Movement
Demand (v), veh/h

Neel-Schaffer	
PWahl	
SR 128	A
SR 128 \& Water Street	Fl\|
Savannah CTPG	

Analysis Date	9/18/2016
Time Period	PM Peak

Analysis Year 2040
File Name \quad SR128 \& WaterSt 2040 PM.xus

	Duration, h
Area Type	0.25
	PHF
	Analyer

Signal Information

Multimodal Results	EB		WB		NB		SB	
Pedestrian LOS Score / LOS	0.0	A	0.0	A	0.0	A	0.0	A
Bicycle LOS Score / LOS	0.0	A	0.0	A	0.0	A	0.0	A

General Information

Agency	Ne
Analyst	PV
Jurisdiction	
Urban Street	SR
Intersection	SR
Project Description	Sa

Intersection Information

Demand Information				EB			WB			NB			SB		
Approach Movement				L	T	R	L	T	R	L	T	R	L	T	R
Demand (v), veh/h				66	119	5	4	136	3	0	36	4	9	36	118
Signal Information															
Cycle, s	0.0	Reference Phase	2												
Offset, s	0	Reference Point	End	Green	0.0	0.0	0.0	0.0	0.0	0.0					
Uncoordinated	Yes	Simult. Gap E/W	On	Yellow	0.0	0.0	0.0	0.0	0.0	0.0					
Force Mode	Fixed	Simult. Gap N/S	On	Red	0.0	0.0	0.0	0.0	0.0	0.0		5			

Timer Results	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT
Assigned Phase	7	4	3	8	1	6	5	2
Case Number	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Phase Duration, s	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Change Period, ($Y+R \mathrm{c}$), s	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Max Allow Headway (MAH), s	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Queue Clearance Time ($g s$), s	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Green Extension Time (g_{e}), s	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Phase Call Probability	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Max Out Probability	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Movement Group Results	EB			WB			NB			SB		
Approach Movement	L	T	R	L	T	R	L	T	R	L	T	R
Assigned Movement	7	4	14	3	8	18	1	6	16	5	2	12
Adjusted Flow Rate (v), veh/h	0	0		0	0		0	0		0	0	
Adjusted Saturation Flow Rate (s), veh/h/ln	0	0		0	0		0	0		0	0	
Queue Service Time (g s), s	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Cycle Queue Clearance Time (c_{c}), s	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Green Ratio (g/C)												
Capacity (c), veh/h	0	0		0	0		0	0		0	0	
Volume-to-Capacity Ratio (X)	0.000	0.000		0.000	0.000		0.000	0.000		0.000	0.000	
Back of Queue (Q), ft/ln (50 th percentile)	0	0		0	0		0	0		0	0	
Back of Queue (Q), veh/ln (50 th percentile)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Queue Storage Ratio ($R Q$) (50 th percentile)	0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00	
Uniform Delay (d_{1}), s/veh	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Incremental Delay (d_{2}), s/veh	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Initial Queue Delay ($d_{\text {з }}$), s/veh	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Control Delay (d), s/veh	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Level of Service (LOS)												
Approach Delay, s/veh / LOS	0.0			0.0			0.0			0.0		
Intersection Delay, s/veh / LOS	0.0						A					

Multimodal Results	EB		WB		NB		SB	
Pedestrian LOS Score / LOS	0.0	A	0.0	A	0.0	A	0.0	A
Bicycle LOS Score / LOS	0.0	A	0.0	A	0.0	A	0.0	A

General Information

Agency
Analyst
Jurisdiction
Urban Street
Intersection
Project Description

Project Description

Intersection Information

| Neel-Schaffer |
| :--- | :--- |
| PWahl |
| |
| SR 128 |
| SR 128/Wayne \& Water... |

Analysis Date 9/18/2016
Time Period AM Peak
Analysis Year 2040
File Name
Savannah CTPG
Duration h 0.25

Duration, h	0.25
Area Type	Other

PHF 0.81
Analysis Period $1>7: 15$

EB		
L	T	R
68	123	5

Approach Movement
Demand (v), veh/h

Signal Information

Timer Results	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT
Assigned Phase	7	4	3	8	1	6	5	2
Case Number	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Phase Duration, s	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Change Period, ($Y+R \mathrm{c}$), s	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Max Allow Headway (MAH), s	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Queue Clearance Time ($g s$), s	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Green Extension Time (ge), s	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Phase Call Probability	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Max Out Probability	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Movement Group Results	EB			WB			NB			SB		
Approach Movement	L	T	R	L	T	R	L	T	R	L	T	R
Assigned Movement	7	4	14	3	8	18	1	6	16	5	2	12
Adjusted Flow Rate (v), veh/h	0	0		0	0		0	0		0	0	
Adjusted Saturation Flow Rate (s), veh/h/ln	0	0		0	0		0	0		0	0	
Queue Service Time (g s), s	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Cycle Queue Clearance Time (g_{c}), s	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Green Ratio (g / C)												
Capacity (c), veh/h	0	0		0	0		0	0		0	0	
Volume-to-Capacity Ratio (X)	0.000	0.000		0.000	0.000		0.000	0.000		0.000	0.000	
Back of Queue (Q), ft/ln (50 th percentile)	0	0		0	0		0	0		0	0	
Back of Queue (Q), veh/ln (50 th percentile)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Queue Storage Ratio ($R Q$) (50 th percentile)	0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00	
Uniform Delay (d_{1}), s/veh	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Incremental Delay (d_{2}), s/veh	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Initial Queue Delay ($d_{\text {з }}$), s/veh	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Control Delay (d), s/veh	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Level of Service (LOS)												
Approach Delay, s/veh / LOS	0.0			0.0			0.0			0.0		
Intersection Delay, s/veh / LOS	0.0						A					

Multimodal Results	EB		WB		NB		SB	
Pedestrian LOS Score / LOS	0.0	A	0.0	A	0.0	A	0.0	A
Bicycle LOS Score / LOS	0.0	A	0.0	A	0.0	A	0.0	A

General Information

Agency	Ne
Analyst	PV
Jurisdiction	
Urban Street	SR
Intersection	SR
Project Description	Sa

Intersection Information

Demand Information				EB			WB			NB			SB		
Approach Movement				L	T	R	L	T	R	L	T	R	L	T	R
Demand (v), veh/h				71	132	15	9	145	13	8	56	17	31	46	44
Signal Information															
Cycle, s	0.0	Reference Phase	2												
Offset, s	0	Reference Point	End	Green	0.0	0.0	0.0	0.0	0.0	0.0					
Uncoordinated	Yes	Simult. Gap E/W	On	Yellow	0.0	0.0	0.0	0.0	0.0	0.0					
Force Mode	Fixed	Simult. Gap N/S	On	Red	0.0	0.0	0.0	0.0	0.0	0.0		5			

Timer Results	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT
Assigned Phase	7	4	3	8	1	6	5	2
Case Number	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Phase Duration, s	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Change Period, ($Y+R \mathrm{c}$), s	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Max Allow Headway (MAH), s	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Queue Clearance Time ($g s$), s	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Green Extension Time (g_{e}), s	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Phase Call Probability	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Max Out Probability	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Movement Group Results	EB			WB			NB			SB		
Approach Movement	L	T	R	L	T	R	L	T	R	L	T	R
Assigned Movement	7	4	14	3	8	18	1	6	16	5	2	12
Adjusted Flow Rate (v), veh/h	0	0		0	0		0	0		0	0	
Adjusted Saturation Flow Rate (s), veh/h/ln	0	0		0	0		0	0		0	0	
Queue Service Time (g s), s	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Cycle Queue Clearance Time (c_{c}), s	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Green Ratio (g/C)												
Capacity (c), veh/h	0	0		0	0		0	0		0	0	
Volume-to-Capacity Ratio (X)	0.000	0.000		0.000	0.000		0.000	0.000		0.000	0.000	
Back of Queue (Q), ft/ln (50 th percentile)	0	0		0	0		0	0		0	0	
Back of Queue (Q), veh/ln (50 th percentile)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Queue Storage Ratio ($R Q$) (50 th percentile)	0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00	
Uniform Delay (d_{1}), s/veh	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Incremental Delay (d_{2}), s/veh	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Initial Queue Delay ($d_{\text {з }}$), s/veh	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Control Delay (d), s/veh	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Level of Service (LOS)												
Approach Delay, s/veh / LOS	0.0			0.0			0.0			0.0		
Intersection Delay, s/veh / LOS	0.0						A					

Multimodal Results	EB		WB		NB		SB	
Pedestrian LOS Score / LOS	0.0	A	0.0	A	0.0	A	0.0	A
Bicycle LOS Score / LOS	0.0	A	0.0	A	0.0	A	0.0	A

General Information

Agency
Analyst
Jurisdiction
Urban Street
Intersection
Project Description

Intersection Information

Neel-Schaffer
PWahl
SR 128
SR 128/Wayne \& Water...

Analysis Date 9/18/2016

Time Period PM Peak
Analysis Year 2040
File Name
Savannah CTPG
Duration h 0.25

| Duration, h | 0.25 |
| :--- | :--- | :--- |
| Area Type | Other |
| PHF | 0.93 |

Analysis Period $1>4: 30$

Demand Information
Approach Movement
Demand (v), veh/h

EB			WB			SB			SB		
L	T	R	L	T	R	L	T	R	L	T	R
73	136	15	9	150	13	8	58	18	32	48	45

Signal Information

Timer Results	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT
Assigned Phase	7	4	3	8	1	6	5	2
Case Number	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Phase Duration, s	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Change Period, $(Y+R$ c $)$, s	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Max Allow Headway $(\mathrm{MAH}), \mathrm{s}$	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Queue Clearance Time $(g s)$, s	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Green Extension Time $(g e), \mathrm{s}$	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Phase Call Probability	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Max Out Probability	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Movement Group Results	EB			WB			NB			SB		
Approach Movement	L	T	R	L	T	R	L	T	R	L	T	R
Assigned Movement	7	4	14	3	8	18	1	6	16	5	2	12
Adjusted Flow Rate (v), veh/h	0	0		0	0		0	0		0	0	
Adjusted Saturation Flow Rate (s), veh/h/ln	0	0		0	0		0	0		0	0	
Queue Service Time (g s) , s	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Cycle Queue Clearance Time (g_{c}), s	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Green Ratio (g / C)												
Capacity (c), veh/h	0	0		0	0		0	0		0	0	
Volume-to-Capacity Ratio (X)	0.000	0.000		0.000	0.000		0.000	0.000		0.000	0.000	
Back of Queue (Q), ft/ln (50 th percentile)	0	0		0	0		0	0		0	0	
Back of Queue (Q), veh/ln (50 th percentile)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Queue Storage Ratio ($R Q$) (50 th percentile)	0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00	
Uniform Delay (d_{1}), s/veh	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Incremental Delay (d_{2}), s/veh	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Initial Queue Delay ($d_{\text {з }}$), s/veh	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Control Delay (d), s/veh	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Level of Service (LOS)												
Approach Delay, s/veh / LOS	0.0			0.0			0.0			0.0		
Intersection Delay, s/veh / LOS	0.0						A					

Multimodal Results	EB		WB		NB		SB	
Pedestrian LOS Score / LOS	0.0	A	0.0	A	0.0	A	0.0	A
Bicycle LOS Score / LOS	0.0	A	0.0	A	0.0	A	0.0	A

General Information

Agency	Ne
Analyst	PW
Jurisdiction	
Urban Street	SR
Intersection	SR
Project Description	Sa

Demand Information	EB			WB			NB			SB		
Approach Movement	L	T	R	L	T	R	L	T	R	L	T	R
Demand (v), veh/h	397	176	16	25	228	11	3	90	2	169	119	367

| Multimodal Results | EB | | WB | | NB | | SB | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Pedestrian LOS Score / LOS | 0.0 | A | 0.0 | A | 0.0 | A | 0.0 | A |
| Bicycle LOS Score / LOS | 0.0 | A | 0.0 | A | 0.0 | A | 0.0 | A |

General Information

General Information

Agency	N
Analyst	P
Jurisdiction	
Urban Street	SR
Intersection	S
Project Description	S

Intersection Information

Demand Information				EB			WB			NB			SB		
Approach Movement				L	T	R	L	T	R	L	T	R	L	T	R
Demand (v), veh/h				396	178	4	9	204	12	2	130	10	195	117	442
Signal Information															
Cycle, s	0.0	Reference Phase	2												
Offset, s	0	Reference Point	End	Green	0.0	0.0	0.0	0.0	0.0	0.0					
Uncoordinated	Yes	Simult. Gap E/W	On	Yellow	0.0	0.0	0.0	0.0	0.0	0.0					
Force Mode	Fixed	Simult. Gap N/S	On	Red	0.0	0.0	0.0	0.0	0.0	0.0					

| Timer Results | EBL | EBT | WBL | WBT | NBL | NBT | SBL | SBT |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Assigned Phase | 7 | 4 | 3 | 8 | 1 | 6 | 5 | 2 |
| Case Number | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| Phase Duration, s | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| Change Period, $\left(Y+R_{c}\right)$, s | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| Max Allow Headway $(M A H), s$ | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| Queue Clearance Time $(g s)$, s | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| Green Extension Time $(g e), s$ | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| Phase Call Probability | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| Max Out Probability | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |

Movement Group Results	EB			WB			NB			SB		
Approach Movement	L	T	R	L	T	R	L	T	R	L	T	R
Assigned Movement	7	4	14	3	8	18	1	6	16	5	2	12
Adjusted Flow Rate (v), veh/h	0	0		0	0		0	0	0	0	0	0
Adjusted Saturation Flow Rate (s), veh/h/ln	0	0		0	0		0	0	0	0	0	0
Queue Service Time (g s), s	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Cycle Queue Clearance Time (g_{c}), s	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Green Ratio (g / C)												
Capacity (c), veh/h	0	0		0	0		0	0	0	0	0	0
Volume-to-Capacity Ratio (X)	0.000	0.000		0.000	0.000		0.000	0.000	0.000	0.000	0.000	0.000
Back of Queue (Q), ft/ln (50 th percentile)	0	0		0	0		0	0	0	0	0	0
Back of Queue (Q), veh/ln (50 th percentile)	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Queue Storage Ratio ($R Q$) (50 th percentile)	0.00	0.00		0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00
Uniform Delay (d_{1}), s/veh	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Incremental Delay (d_{2}), s/veh	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Initial Queue Delay (d_{3}), s/veh	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Control Delay (d), s/veh	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Level of Service (LOS)												
Approach Delay, s/veh / LOS	0.0			0.0			0.0			0.0		
Intersection Delay, s/veh / LOS	0.0						A					

Multimodal Results	EB		WB		NB		SB	
Pedestrian LOS Score / LOS	0.0	A	0.0	A	0.0	A	0.0	A
Bicycle LOS Score / LOS	0.0	A	0.0	A	0.0	A	0.0	A

General Information

Agency	N
Analyst	PW
Jurisdiction	
Urban Street	SR
Intersection	SR
Project Description	Sa

Savannah CTPG

Intersection Information

Neel-Schaffer
PWahl

SR 128
SR 128/Wayne \& SR 15...
PWahl
Analysis Date 9/18/2016
Time Period PM Peak
Analysis Year 2040
File Name \quad SR128-Wayne \& SR15-SR69-MainSt 2040 PM.xus

Duration, h	0.25
Area Type	Other
PHF	0.93
Analysis Period	$1>4: 30$
	SR15-SR69-MainSt 2040 PM.xus

Demand Information				EB			WB			NB			SB		
Approach Movement				L	T	R	L	T	R	L	T	R	L	T	R
Demand (v), veh/h				409	184	4	9	211	12	2	134	10	201	119	456
Signal Information															
Cycle, s	0.0	Reference Phase	2												
Offset, s	0	Reference Point	End	Green	0.0	0.0	0.0	0.0	0.0	0.0					
Uncoordinated	Yes	Simult. Gap E/W	On	Yellow	0.0	0.0	0.0	0.0	0.0	0.0					
Force Mode	Fixed	Simult. Gap N/S	On	Red	0.0	0.0	0.0	0.0	0.0	0.0					

Timer Results	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT
Assigned Phase	7	4	3	8	1	6	5	2
Case Number	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Phase Duration, s	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Change Period, ($Y+R$) , s	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Max Allow Headway (MAH), s	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Queue Clearance Time ($g s$), s	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Green Extension Time (e_{e}), s	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Phase Call Probability	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Max Out Probability	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Movement Group Results	EB			WB			NB			SB		
Approach Movement	L	T	R	L	T	R	L	T	R	L	T	R
Assigned Movement	7	4	14	3	8	18	1	6	16	5	2	12
Adjusted Flow Rate (v), veh/h	0	0		0	0		0	0	0	0	0	0
Adjusted Saturation Flow Rate (s), veh/h/ln	0	0		0	0		0	0	0	0	0	0
Queue Service Time (g s), s	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Cycle Queue Clearance Time (g_{c}), s	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Green Ratio (g / C)												
Capacity (c), veh/h	0	0		0	0		0	0	0	0	0	0
Volume-to-Capacity Ratio (X)	0.000	0.000		0.000	0.000		0.000	0.000	0.000	0.000	0.000	0.000
Back of Queue (Q), ft/ln (50 th percentile)	0	0		0	0		0	0	0	0	0	0
Back of Queue (Q), veh/ln (50 th percentile)	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Queue Storage Ratio ($R Q$) (50 th percentile)	0.00	0.00		0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00
Uniform Delay (d_{1}), s/veh	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Incremental Delay (d_{2}), s/veh	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Initial Queue Delay (d_{3}), s/veh	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Control Delay (d), s/veh	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Level of Service (LOS)												
Approach Delay, s/veh / LOS	0.0			0.0			0.0			0.0		
Intersection Delay, s/veh / LOS	0.0						A					

Multimodal Results	EB		WB		NB		SB	
Pedestrian LOS Score / LOS	0.0	A	0.0	A	0.0	A	0.0	A
Bicycle LOS Score / LOS	0.0	A	0.0	A	0.0	A	0.0	A

HCS 2010 Two-Way Stop Control Summary Report

General Information		Site Information	
Analyst	PWahl	Intersection	SR 69/Discount Drive
Agency/Co.	Neel-Schaffer	Jurisdiction	
Date Performed	$9 / 6 / 2016$	East/West Street	Discount Drive
Analysis Year	2016	North/South Street	SR 69
Time Analyzed	AM Peak (7:00-8:00)	Peak Hour Factor	0.82
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25
Project Description	Savannah CTPG		

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound					Northbound				Southbound			
Movement	U	L	T	R	U	L		T	R	U	L	T	R	U	L	T	R
Priority		10	11	12		7		8	9	1 U	1	2	3	4 U	4	5	6
Number of Lanes		0	0	0		0		0	0	0	0	1	0	0	0	1	0
Configuration			LR								LT						TR
Volume (veh/h)		29		0							6	174				70	20
Percent Heavy Vehicles		0		0							17						
Proportion Time Blocked																	
Right Turn Channelized	No				No					No				No			
Median Type	Undivided																
Median Storage																	

Delay, Queue Length, and Level of Service

HCS 2010 Two-Way Stop Control Summary Report

General Information		Site Information	
Analyst	PWahl	Intersection	SR 69/Discount Drive
Agency/Co.	Neel-Schaffer	Jurisdiction	
Date Performed	$9 / 6 / 2016$	East/West Street	Discount Drive
Analysis Year	2040	North/South Street	SR 69
Time Analyzed	AM Peak	Peak Hour Factor	0.82
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25
Project Description	Savannah CTPG		

Lanes

Vehicle Volumes and Adjustments

Delay, Queue Length, and Level of Service

HCS 2010 Two-Way Stop Control Summary Report

General Information		Site Information	
Analyst	PWahl	Intersection	SR 69/Discount Drive
Agency/Co.	Neel-Schaffer	Jurisdiction	
Date Performed	$9 / 6 / 2016$	East/West Street	Discount Drive
Analysis Year	2016	North/South Street	SR 69
Time Analyzed	PM Peak (4:30-5:30)	Peak Hour Factor	0.86
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25
Project Description	Savannah CTPG		

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound					Northbound				Southbound			
Movement	U	L	T	R	U	L		T	R	U	L	T	R	U	L	T	R
Priority		10	11	12		7		8	9	1 L	1	2	3	4 U	4	5	6
Number of Lanes		0	0	0		0		0	0	0	0	1	0	0	0	1	0
Configuration			LR								LT						TR
Volume (veh/h)		35		14							3	119				36	146
Percent Heavy Vehicles		3		14							0						
Proportion Time Blocked																	
Right Turn Channelized	No				No					No				No			
Median Type	Undivided																
Median Storage																	

Delay, Queue Length, and Level of Service

HCS 2010 Two-Way Stop Control Summary Report

General Information		Site Information	
Analyst	PWahl	Intersection	SR 69/Discount Drive
Agency/Co.	Neel-Schaffer	Jurisdiction	
Date Performed	$9 / 6 / 2016$	East/West Street	Discount Drive
Analysis Year	2040	North/South Street	SR 69
Time Analyzed	PM Peak	Peak Hour Factor	0.86
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25
Project Description	Savannah CTPG		

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound					Northbound				Southbound			
Movement	U	L	T	R	U	L		T	R	U	L	T	R	U	L	T	R
Priority		10	11	12		7		8	9	1 L	1	2	3	4 U	4	5	6
Number of Lanes		0	0	0		0		0	0	0	0	1	0	0	0	1	0
Configuration			LR								LT						TR
Volume (veh/h)		37		15							3	125				38	153
Percent Heavy Vehicles		3		14							0						
Proportion Time Blocked																	
Right Turn Channelized	No				No					No				No			
Median Type	Undivided																
Median Storage																	

Delay, Queue Length, and Level of Service

HCS 2010 Two-Way Stop Control Summary Report

General Information		Site Information	
Analyst	PWahl	Intersection	SR 69/E. Main Street
Agency/Co.	Neel-Schaffer	Jurisdiction	
Date Performed	$9 / 6 / 2016$	East/West Street	E. Main Street
Analysis Year	2016	North/South Street	SR 69
Time Analyzed	AM Peak (7:30-8:30)	Peak Hour Factor	0.84
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25
Project Description	Savannah CTPG		

Lanes

Vehicle Volumes and Adjustments

Delay, Queue Length, and Level of Service

HCS 2010 Two-Way Stop Control Summary Report

General Information		Site Information	
Analyst	PWahl	Intersection	SR 69/E. Main Street
Agency/Co.	Neel-Schaffer	Jurisdiction	
Date Performed	$9 / 6 / 2016$	East/West Street	E. Main Street
Analysis Year	2040	North/South Street	SR 69
Time Analyzed	AM Peak	Peak Hour Factor	0.84
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25
Project Description	Savannah CTPG		

Lanes

Vehicle Volumes and Adjustments

Delay, Queue Length, and Level of Service

HCS 2010 Two-Way Stop Control Summary Report

General Information		Site Information	
Analyst	PWahl	Intersection	SR 69/E. Main Street
Agency/Co.	Neel-Schaffer	Jurisdiction	
Date Performed	$9 / 6 / 2016$	East/West Street	E. Main Street
Analysis Year	2016	North/South Street	SR 69
Time Analyzed	PM Peak (4:45-5:45)	Peak Hour Factor	0.94
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25
Project Description	Savannah CTPG		

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority		10	11	12		7	8	9	1 U	1	2	3	4 U	4	5	6
Number of Lanes		0	0	0		0	0	0	0	0	1	0	0	0	1	0
Configuration							LR					TR		LT		
Volume (veh/h)						32		66			450	48		48	331	
Percent Heavy Vehicles						0		0						0		
Proportion Time Blocked																
Right Turn Channelized	No															
Median Type	Undivided															
Median Storage																

Delay, Queue Length, and Level of Service

HCS 2010 Two-Way Stop Control Summary Report

General Information		Site Information	
Analyst	PWahl	Intersection	SR 69/E. Main Street
Agency/Co.	Neel-Schaffer	Jurisdiction	
Date Performed	$9 / 6 / 2016$	East/West Street	E. Main Street
Analysis Year	2040	North/South Street	SR 69
Time Analyzed	PM Peak	Peak Hour Factor	0.94
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25
Project Description	Savannah CTPG		

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority		10	11	12		7	8	9	1 U	1	2	3	4 U	4	5	6
Number of Lanes		0	0	0		0	0	0	0	0	1	0	0	0	1	0
Configuration							LR					TR		LT		
Volume (veh/h)						33		68			465	50		48	331	
Percent Heavy Vehicles						0		0						0		
Proportion Time Blocked																
Right Turn Channelized	No															
Median Type	Undivided															
Median Storage																

Delay, Queue Length, and Level of Service

HCS 2010 Two-Way Stop Control Summary Report

General Information		Site Information	
Analyst	PWahl	Intersection	SR 69/Eureka Street
Agency/Co.	Neel-Schaffer	Jurisdiction	
Date Performed	$9 / 6 / 2016$	East/West Street	Eureka Street
Analysis Year	2016	North/South Street	SR 69
Time Analyzed	AM Peak (7:15-8:15)	Peak Hour Factor	0.78
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25
Project Description	Savannah CTPG		

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority		10	11	12		7	8	9	1 U	1	2	3	4 U	4	5	6
Number of Lanes		0	1	0		0	1	0	0	0	1	0	0	0	1	0
Configuration			LTR													
Volume (veh/h)		79	2	18		0	1	3		26	340	1		2	291	89
Percent Heavy Vehicles		1	0	6		0	0	0		0				0		
Proportion Time Blocked																
Right Turn Channelized	No															
Median Type	Undivided															
Median Storage																

Delay, Queue Length, and Level of Service

HCS 2010 Two-Way Stop Control Summary Report

General Information		Site Information	
Analyst	PWahl	Intersection	SR 69/Eureka Street
Agency/Co.	Neel-Schaffer	Jurisdiction	
Date Performed	$9 / 6 / 2016$	East/West Street	Eureka Street
Analysis Year	2040	North/South Street	SR 69
Time Analyzed	AM Peak	Peak Hour Factor	0.78
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25
Project Description	Savannah CTPG		

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority		10	11	12		7	8	9	1 U	1	2	3	4 U	4	5	6
Number of Lanes		0	1	0		0	1	0	0	0	1	0	0	0	1	0
Configuration			LTR													
Volume (veh/h)		82	2	19		0	1	3		27	351	1		2	300	92
Percent Heavy Vehicles		1	0	6		0	0	0		0				0		
Proportion Time Blocked																
Right Turn Channelized	No															
Median Type	Undivided															
Median Storage																

Delay, Queue Length, and Level of Service

HCS 2010 Two-Way Stop Control Summary Report

General Information		Site Information	
Analyst	PWahl	Intersection	SR 69/Eureka Street
Agency/Co.	Neel-Schaffer	Jurisdiction	
Date Performed	$9 / 6 / 2016$	East/West Street	Eureka Street
Analysis Year	2016	North/South Street	SR 69
Time Analyzed	PM Peak (4:15-5:15)	Peak Hour Factor	0.89
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25
Project Description	Savannah CTPG		

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority		10	11	12		7	8	9	1 U	1	2	3	4 U	4	5	6
Number of Lanes		0	1	0		0	1	0	0	0	1	0	0	0	1	0
Configuration			LTR													
Volume (veh/h)		33	0	25		0	0	5		14	450	0		2	351	41
Percent Heavy Vehicles		3	0	0		0	0	0		7				0		
Proportion Time Blocked																
Right Turn Channelized	No															
Median Type	Undivided															
Median Storage																

Delay, Queue Length, and Level of Service

HCS 2010 Two-Way Stop Control Summary Report

General Information		Site Information	
Analyst	PWahl	Intersection	SR 69/Eureka Street
Agency/Co.	Neel-Schaffer	Jurisdiction	
Date Performed	$9 / 6 / 2016$	East/West Street	Eureka Street
Analysis Year	2040	North/South Street	SR 69
Time Analyzed	PM Peak	Peak Hour Factor	0.89
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25
Project Description	Savannah CTPG		

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority		10	11	12		7	8	9	1 U	1	2	3	4 U	4	5	6
Number of Lanes		0	1	0		0	1	0	0	0	1	0	0	0	1	0
Configuration			LTR													
Volume (veh/h)		34	0	26		0	0	5		14	465	0		2	362	42
Percent Heavy Vehicles		3	0	0		0	0	0		7				0		
Proportion Time Blocked																
Right Turn Channelized	No															
Median Type	Undivided															
Median Storage																

Delay, Queue Length, and Level of Service

General Information

Agency
Analyst
Jurisdiction
Urban Street
Intersection
Project Description
Demand Information
Approach Movement
Demand (v), veh/h
Signal Information

Signal Information

Cycle, s	0.0	Reference Phase	2
Offset, s	0	Reference Point	End
Uncoordinated	Yes	Simult. Gap E/W	Off
Force Mode	Fixed	Simult. Gap N/S	On

Timer Results
Assigned Phase
Case Number
Phase Duration, s
Change Period, ($Y+R$ c), s
Max Allow Headway (MAH), s
Queue Clearance Time ($g s$), s
Green Extension Time ($g e$), s
Phase Call Probability
Max Out Probability

Movement Group Results

Approach Movement
Assigned Movement
Adjusted Flow Rate (v), veh/h
Adjusted Saturation Flow Rate (s), veh/h/ln
Queue Service Time ($g s$), s
Cycle Queue Clearance Time (g_{c}), s
Green Ratio (g / C)
Capacity (c), veh/h
Volume-to-Capacity Ratio (X)
Back of Queue (Q), ft/ln (50 th percentile)
Back of Queue (Q), veh/ln (50 th percentile)
Queue Storage Ratio ($R Q$) (50 th percentile)
Uniform Delay (d_{1}), s/veh
Incremental Delay (d_{2}), s/veh
Initial Queue Delay (d_{3}), s/veh
Control Delay (d), s/veh
Level of Service (LOS)
Approach Delay, s/veh / LOS
Intersection Delay, s/veh / LOS

SR 69
SR 69 \& Higgins Dr/Fre... 2016 AM Peak

Intersection Information

Intersection Information	
Duration, h	0.25
Area Type	Other
PHF	0.80
	Analysis Period

No errors or warnings exist.
--- Comments ---

General Information

Agency
Analyst
Jurisdiction
Urban Street
Intersection
Project Description

Neel-Schaffer
PWahl
SR 69
SR 69 \& Higgins Dr/Fre...
2040 AM Peak

Demand Information				EB			WB			NB			SB		
Approach Movement				L	T	R	L	T	R	L	T	R	L	T	R
Demand (v), veh/h				31	49	9	18	46	93	18	210	70	81	130	20
Signal Information															
Cycle, s	0.0	Reference Phase	2												
Offset, s	0	Reference Point	End	Green	0.0	0.0	0.0	0.0	0.0	0.0					
Uncoordinated	Yes	Simult. Gap E/W	Off	Yellow	0.0	0.0	0.0	0.0	0.0	0.0					
Force Mode	Fixed	Simult. Gap N/S	On	Red	0.0	0.0	0.0	0.0	0.0	0.0			6	7	

Traffic Information	EB			WB			NB			SB		
Approach Movement	L	T	R	L	T	R	L	T	R	L	T	R
Demand (v), veh/h	31	49	9	18	46	93	18	210	70	81	130	20
Initial Queue (Qb), veh/h	0	0	0	0	0	0	0	0	0	0	0	0
Base Saturation Flow Rate (So), veh/h	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Parking (N_{m}), man/h		None			None			None			None	
Heavy Vehicles (Pнv), \%		8		0	16	4	0	7	7	4	12	
Ped / Bike / RTOR, /h	0	0	0	0	0	0	0	0	0	0	0	0
Buses (Nb), buses/h	0	0	0	0	0	0	0	0	0	0	0	0
Arrival Type (AT)	3	3	3	3	3	3	3	3	3	3	3	3
Upstream Filtering (I)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Lane Width (W), ft		12.0		12.0	12.0	12.0	12.0	12.0	12.0	12.0	12.0	
Turn Bay Length, ft		0		0	0	0	0	0	0	0	0	
Grade (Pg), \%		0			0			0			0	
Speed Limit, mi/h	40	40	40	40	40	40	40	40	40	40	40	40
Phase Information	EBL		EBT	WBL		WBT	NBL		NBT	SBL		SBT
Maximum Green (Gmax) or Phase Split, s			30.0			30.0	30.0		60.0	30.0		60.0
Yellow Change Interval (Y), s			4.0			4.0	4.0		4.0	4.0		4.0
Red Clearance Interval (R_{c}), s			1.0			1.0	1.0		1.0	1.0		1.0
Minimum Green (Gmin), s	4		10	4		10	10		10	10		10
Start-Up Lost Time ($/ t$), s	2.0		2.0	2.0		2.0	2.0		2.0	2.0		2.0
Extension of Effective Green (e), s	2.0		2.0	2.0		2.0	2.0		2.0	2.0		2.0
Passage (PT), s	3.0		3.0	3.0		3.0	3.0		3.0	3.0		3.0
Recall Mode	Off		Off	Off		Off	Off		Min	Off		Min
Dual Entry	No		No									
Walk (Walk), s	0.0		0.0	0.0		0.0	0.0		0.0	0.0		0.0
Pedestrian Clearance Time (PC), s	0.0		0.0	0.0		0.0	0.0		0.0	0.0		0.0
Multimodal Information		EB			WB			NB			SB	
85th \% Speed / Rest in Walk / Corner Radius	0	No	25									
Walkway / Crosswalk Width / Length, ft	9.0	12	0	9.0	12	0	9.0	12	0	9.0	12	0
Street Width / Island / Curb	0	0	No									
Width Outside / Bike Lane / Shoulder, ft	12	5.0	2.0	12	5.0	2.0	12	5.0	2.0	12	5.0	2.0
Pedestrian Signal / Occupied Parking	No		0.50									

General Information

Agency	N
Analyst	PW
Jurisdiction	
Urban Street	SR
Intersection	SR
Project Description	20

Project Description

Intersection Information

Neel-Schaffer
PWahl

SR 69
SR 69 \& Higgins Dr/Fre...
2040 AM Peak

Analysis Date 9/12/2016
Time Period AM Peak
Analysis Year 2040
File Name
SR69 \& Higg
\& Higg
Duration, h
Area Type
PHF 0.80
Analysis Period 1>7:00

Demand Information

Approach Movement
Demand (v), veh/h

EB			WB				SB				
L	T	R	L	T	R	L	T	R	L	T	R
31	49	9	18	46	93	18	210	70	81	130	20

Signal Information

Cycle, s	0.0	Reference Phase	2
Offset, s	0	Reference Point	End
Uncoordinated	Yes	Simult. Gap E/W	Off
Force Mode	Fixed	Simult. Gap N/S	On

Timer Results

Assigned Phase
Case Number
Phase Duration, s
Change Period, ($Y+R_{c}$), s
Max Allow Headway (MAH), s
Queue Clearance Time ($g s$), s
Green Extension Time ($g e$), s
Phase Call Probability
Max Out Probability

Movement Group Results

Approach Movement
Assigned Movement
Adjusted Flow Rate (v), veh/h
Adjusted Saturation Flow Rate (s), veh/h/ln
Queue Service Time ($g s$), s
Cycle Queue Clearance Time ($g c$), s
Green Ratio (g / C)
Capacity (c), veh/h
Volume-to-Capacity Ratio (X)
Back of Queue (Q), ft/ln (50 th percentile)
Back of Queue (Q), veh/ln (50 th percentile)
Queue Storage Ratio ($R Q$) (50 th percentile)
Uniform Delay (d_{1}), s/veh
Incremental Delay (d_{2}), s/veh
Initial Queue Delay (d_{3}), s/veh
Control Delay (d), s/veh
Level of Service (LOS)
Approach Delay, s/veh / LOS
Intersection Delay, s/veh / LOS

EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT
	8		4	5	2	1	6
	0.0		0.0	0.0	0.0	0.0	0.0
	0.0		0.0	0.0	0.0	0.0	0.0
	0.0		0.0	0.0	0.0	0.0	0.0
	0.0		0.0	0.0	0.0	0.0	0.0
	0.0		0.0	0.0	0.0	0.0	0.0
	0.0		0.0	0.0	0.0	0.0	0.0
	0.00		0.00	0.00	0.00	0.00	0.00
	0.00		0.00	0.00	0.00	0.00	0.00

Multimodal Results	EB		WB		NB		SB	
Pedestrian LOS Score / LOS	0.0	A	0.0	A	0.0	A	0.0	A
Bicycle LOS Score / LOS	0.0	A	0.0	A	0.0	A	0.0	A

No errors or warnings exist.
--- Comments ---

General Information

Agency	N
Analyst	P
Jurisdiction	
Urban Street	SR
Intersection	SR
Project Description	2

Neel-Schaffer
PWahl

Demand Information				EB			WB			NB			SB		
Approach Movement				L	T	R	L	T	R	L	T	R	L	T	R
Demand (v), veh/h				17	8	3	23	3	39	5	259	14	38	210	13
Signal Information															
Cycle, s	0.0	Reference Phase	2											3	
Offset, s	0	Reference Point	End	Green	0.0	0.0	0.0	0.0	0.0	0.0					
Uncoordinated	Yes	Simult. Gap E/W	Off	Yellow	0.0	0.0	0.0	0.0	0.0	0.0					
Force Mode	Fixed	Simult. Gap N/S	On	Red	0.0	0.0	0.0	0.0	0.0	0.0			6		

Traffic Information	EB			WB			NB			SB		
Approach Movement	L	T	R	L	T	R	L	T	R	L	T	R
Demand (v), veh/h	17	8	3	23	3	39	5	259	14	38	210	13
Initial Queue (Q_{b}), veh/h	0	0	0	0	0	0	0	0	0	0	0	0
Base Saturation Flow Rate (So), veh/h	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Parking (N_{m}), man/h		None			None			None			None	
Heavy Vehicles (Pнv), \%		7		0	0	0	20	7	0	0	5	
Ped / Bike / RTOR, /h	0	0	0	0	0	0	0	0	0	0	0	0
Buses (Nb), buses/h	0	0	0	0	0	0	0	0	0	0	0	0
Arrival Type (AT)	3	3	3	3	3	3	3	3	3	3	3	3
Upstream Filtering (I)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Lane Width (W), ft		12.0		12.0	12.0	12.0	12.0	12.0	12.0	12.0	12.0	
Turn Bay Length, ft		0		0	0	0	0	0	0	0	0	
Grade (Pg), \%		0			0			0			0	
Speed Limit, mi/h	40	40	40	40	40	40	40	40	40	40	40	40

General Information

Agency
Analyst
Jurisdiction
Urban Street
Intersection
Project Description

Demand Information
 Approach Movement
 Demand (v), veh/h

Neel-Schaffer PWahl

SR 69

SR 69 \& Higgins Dr/Fre... 2016 PM Peak

Intersection Information

Intersection Information	
Duration, h	0.25
Area Type	Other
PHF	0.81
	Analysis Period
Freewell 2016 PM.xus	

Timer Results	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT
Assigned Phase		8		4	5	2	1	6
Case Number		0.0		0.0	0.0	0.0	0.0	0.0
Phase Duration, s		0.0		0.0	0.0	0.0	0.0	0.0
Change Period, ($Y+R$) , s		0.0		0.0	0.0	0.0	0.0	0.0
Max Allow Headway (MAH), s		0.0		0.0	0.0	0.0	0.0	0.0
Queue Clearance Time ($g s$), s		0.0		0.0	0.0	0.0	0.0	0.0
Green Extension Time (e_{e}), s		0.0		0.0	0.0	0.0	0.0	0.0
Phase Call Probability		0.00		0.00	0.00	0.00	0.00	0.00
Max Out Probability		0.00		0.00	0.00	0.00	0.00	0.00

Multimodal Results	EB		WB		NB		SB	
Pedestrian LOS Score / LOS	0.0	A	0.0	A	0.0	A	0.0	A
Bicycle LOS Score / LOS	0.0	A	0.0	A	0.0	A	0.0	A

No errors or warnings exist.
--- Comments ---

General Information

Agency	N
Analyst	P
Jurisdiction	
Urban Street	SR
Intersection	SR
Project Description	20

Neel-Schaffer
PWahl
SR 69
SR 69 \& Higgins Dr/Fre...
2040 PM Peak

Analysis Date $9 / 12 / 2016$ Intersection Information

Demand Information				EB			WB			NB			SB		
Approach Movement				L	T	R	L	T	R	L	T	R	L	T	R
Demand (v), veh/h				18	8	3	24	3	40	5	267	14	39	217	13
Signal Information															
Cycle, s	0.0	Reference Phase	2												
Offset, s	0	Reference Point	End	Green	0.0	0.0	0.0	0.0	0.0	0.0				3	
Uncoordinated	Yes	Simult. Gap E/W	Off	Yellow	0.0	0.0	0.0	0.0	0.0	0.0					
Force Mode	Fixed	Simult. Gap N/S	On	Red	0.0	0.0	0.0	0.0	0.0	0.0			6	7	

Traffic Information	EB			WB			NB			SB		
Approach Movement	L	T	R	L	T	R	L	T	R	L	T	R
Demand (v), veh/h	18	8	3	24	3	40	5	267	14	39	217	13
Initial Queue (Qb), veh/h	0	0	0	0	0	0	0	0	0	0	0	0
Base Saturation Flow Rate (So), veh/h	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Parking (N_{m}), man/h		None			None			None			None	
Heavy Vehicles (Pнv), \%		7		0	0	0	20	7	0	0	5	
Ped / Bike / RTOR, /h	0	0	0	0	0	0	0	0	0	0	0	0
Buses (Nb), buses/h	0	0	0	0	0	0	0	0	0	0	0	0
Arrival Type (AT)	3	3	3	3	3	3	3	3	3	3	3	3
Upstream Filtering (I)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Lane Width (W), ft		12.0		12.0	12.0	12.0	12.0	12.0	12.0	12.0	12.0	
Turn Bay Length, ft		0		0	0	0	0	0	0	0	0	
Grade (Pg), \%		0			0			0			0	
Speed Limit, mi/h	40	40	40	40	40	40	40	40	40	40	40	40
Phase Information	EBL		EBT	WBL		WBT	NBL		NBT	SBL		SBT
Maximum Green (Gmax) or Phase Split, s			30.0			30.0	30.0		60.0	30.0		60.0
Yellow Change Interval (Y), s			4.0			4.0	4.0		4.0	4.0		4.0
Red Clearance Interval (R_{c}), s			1.0			1.0	1.0		1.0	1.0		1.0
Minimum Green ($G_{\text {min }}$), s	4		10	4		10	10		10	10		10
Start-Up Lost Time ($/ t$), s	2.0		2.0	2.0		2.0	2.0		2.0	2.0		2.0
Extension of Effective Green (e), s	2.0		2.0	2.0		2.0	2.0		2.0	2.0		2.0
Passage (PT), s	3.0		3.0	3.0		3.0	3.0		3.0	3.0		3.0
Recall Mode	Off		Off	Off		Off	Off		Min	Off		Min
Dual Entry	No		No									
Walk (Walk), s	0.0		0.0	0.0		0.0	0.0		0.0	0.0		0.0
Pedestrian Clearance Time (PC), s	0.0		0.0	0.0		0.0	0.0		0.0	0.0		0.0
Multimodal Information		EB			WB			NB			SB	
85th \% Speed / Rest in Walk / Corner Radius	0	No	25									
Walkway / Crosswalk Width / Length, ft	9.0	12	0	9.0	12	0	9.0	12	0	9.0	12	0
Street Width / Island / Curb	0	0	No									
Width Outside / Bike Lane / Shoulder, ft	12	5.0	2.0	12	5.0	2.0	12	5.0	2.0	12	5.0	2.0
Pedestrian Signal / Occupied Parking	No		0.50									

General Information

Agency	N
Analyst	PW
Jurisdiction	
Urban Street	SR
Intersection	SR
Project Description	20

Project Description

Intersection Information

Neel-Schaffer
PWahl

SR 69
SR 69 \& Higgins Dr/Fre...
2040 PM Peak

Demand Information

Approach Movement
Demand (v), veh/h

EB			NB				SB				
L	T	R	L	T	R	L	T	R	L	T	R
18	8	3	24	3	40	5	267	14	39	217	13

Signal Information

Cycle, s	0.0	Reference Phase	2
Offset, s	0	Reference Point	End
Uncoordinated	Yes	Simult. Gap E/W	Off
Force Mode	Fixed	Simult. Gap N/S	On

Timer Results

Assigned Phase
Case Number
Phase Duration, s
Change Period, ($Y+R$ c), s
Max Allow Headway (MAH), s
Queue Clearance Time ($g s$), s
Green Extension Time ($g e$), s
Phase Call Probability
Max Out Probability

Movement Group Results

Approach Movement
Assigned Movement
Adjusted Flow Rate (v), veh/h
Adjusted Saturation Flow Rate (s), veh/h/ln
Queue Service Time ($g s$), s
Cycle Queue Clearance Time ($g c$), s
Green Ratio (g / C)
Capacity (c), veh/h
Volume-to-Capacity Ratio (X)
Back of Queue (Q), ft/ln (50 th percentile)
Back of Queue (Q), veh/ln (50 th percentile)
Queue Storage Ratio ($R Q$) (50 th percentile)
Uniform Delay (d_{1}), s/veh
Incremental Delay (d_{2}), s/veh
Initial Queue Delay (d_{3}), s/veh
Control Delay (d), s/veh
Level of Service (LOS)
Approach Delay, s/veh / LOS
Intersection Delay, s/veh / LOS

EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT
	8		4	5	2	1	6
	0.0		0.0	0.0	0.0	0.0	0.0
	0.0		0.0	0.0	0.0	0.0	0.0
	0.0		0.0	0.0	0.0	0.0	0.0
	0.0		0.0	0.0	0.0	0.0	0.0
	0.0		0.0	0.0	0.0	0.0	0.0
	0.0		0.0	0.0	0.0	0.0	0.0
	0.00		0.00	0.00	0.00	0.00	0.00
	0.00		0.00	0.00	0.00	0.00	0.00

Multimodal Results	EB		WB		NB		SB	
Pedestrian LOS Score / LOS	0.0	A	0.0	A	0.0	A	0.0	A
Bicycle LOS Score / LOS	0.0	A	0.0	A	0.0	A	0.0	A

General Information

Agency	N
Analyst	PW
Jurisdiction	
Urban Street	SR
Intersection	SR
Project Description	2

Project Description

Neel-Schaffer PWahl

SR 69 SR 69 \& Higgins Dr/Fre... 2040 PM Peak

Intersection Information
Intersection information

Duration, h	0.25
Area Type	Other

PHF
Analysis Period $1>4: 30$
File Name \quad SR69 \& Higgins-Freewell 2040 PM.xus

Demand Information				EB			WB			NB			SB		
Approach Movement				L	T	R	L	T	R	L	T	R	L	T	R
Demand (v), veh/h				18	8	3	24	3	40	5	267	14	39	217	13
Signal Information															
Cycle, s	0.0	Reference Phase	2												
Offset, s	0	Reference Point	End	Green	0.0	0.0	0.0	0.0	0.0	0.0				3	
Uncoordinated	Yes	Simult. Gap E/W	Off	Yellow	0.0	0.0	0.0	0.0	0.0	0.0					
Force Mode	Fixed	Simult. Gap N/S	On	Red	0.0	0.0	0.0	0.0	0.0	0.0			6		

	EB			WB			NB			SB		
Saturation Flow / Delay	L	T	R	L	T	R	L	T	R	L	T	R
Lane Width Adjustment Factor (f_{w})												
Heavy Vehicle Adjustment Factor ($f_{H V}$)												
Approach Grade Adjustment Factor (f_{g})												
Parking Activity Adjustment Factor (f_{p})	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Bus Blockage Adjustment Factor (fbb)	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Area Type Adjustment Factor (fa)												
Lane Utilization Adjustment Factor (fLu)	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Left-Turn Adjustment Factor ($f_{L T}$)		0.000			0.000		0.000	0.000		0.000	0.000	
Right-Turn Adjustment Factor (fRT)		0.000			0.000			0.000			0.000	
Left-Turn Pedestrian Adjustment Factor ($f_{\text {Lpb }}$)	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Right-Turn Ped-Bike Adjustment Factor ($f_{\text {Rpb }}$)	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Movement Saturation Flow Rate (s), veh/h		0			0		0	0		0	0	
Proportion of Vehicles Arriving on Green (P)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Incremental Delay Factor (k)		0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	

Signal Timing / Movement Groups	EBL	EBT/R	WBL	WBT/R	NBL	NBT/R	SBL	SBT/R
Lost Time (tı)		0.0		0.0	0.0	0.0	0.0	0.0
Green Ratio (g / C)		0.00		0.00	0.00	0.00	0.00	0.00
Permitted Saturation Flow Rate (s_{p}), veh/h/ln		0		0	0	0	0	0
Shared Saturation Flow Rate (Ssh), veh/h/ln		0		0	0	0	0	0
Permitted Effective Green Time (g_{p}), s		0.0		0.0	0.0	0.0	0.0	0.0
Permitted Service Time ($\mathrm{gu}^{\text {) , s }}$		0.0		0.0	0.0	0.0	0.0	0.0
Permitted Queue Service Time ($g_{p s}$), s		0.0		0.0	0.0	0.0	0.0	0.0
Time to First Blockage (g_{f}), s		0.0		0.0	0.0	0.0	0.0	0.0
Queue Service Time Before Blockage ($\mathrm{ffs}^{\text {s }}$, s		0.0		0.0	0.0	0.0	0.0	0.0
Protected Right Saturation Flow (S_{R}), veh/h/ln		0		0	0	0	0	0
Protected Right Effective Green Time (g_{R}), s		0.0		0.0	0.0	0.0	0.0	0.0
Multimodal	EB		WB		NB		SB	
Pedestrian F_{w} / F_{v}	0.000	0.00	0.000	0.00	0.000	0.00	0.000	0.00
Pedestrian Fs / Fdelay	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Pedestrian Mcorner / Mcw		0.00		0.00		0.00		0.00
Bicycle cb / db	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Bicycle Fw / Fv	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

No errors or warnings exist.
--- Comments ---

HCS 2010 Two-Way Stop Control Summary Report

General Information		Site Information	
Analyst	PWahl	Intersection	SR 69/One Stop Drive
Agency/Co.	Neel-Schaffer	Jurisdiction	
Date Performed	$9 / 6 / 2016$	East/West Street	One Stop Drive
Analysis Year	2016	North/South Street	SR 69
Time Analyzed	AM Peak (7:00-8:00)	Peak Hour Factor	0.85
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25
Project Description	Savannah CTPG		

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound					Northbound				Southbound			
Movement	U	L	T	R	U	L		T	R	U	L	T	R	U	L	T	R
Priority		10	11	12		7		8	9	1 L	1	2	3	4 U	4	5	6
Number of Lanes		0	0	0		0		0	0	0	0	1	0	0	0	1	0
Configuration			LR								LT						TR
Volume (veh/h)		26		13							19	208				122	17
Percent Heavy Vehicles		4		23							5						
Proportion Time Blocked																	
Right Turn Channelized	No				No					No				No			
Median Type	Undivided																
Median Storage																	

Delay, Queue Length, and Level of Service

HCS 2010 Two-Way Stop Control Summary Report

General Information		Site Information	
Analyst	PWahl	Intersection	SR 69/One Stop Drive
Agency/Co.	Neel-Schaffer	Jurisdiction	
Date Performed	$9 / 6 / 2016$	East/West Street	One Stop Drive
Analysis Year	2040	North/South Street	SR 69
Time Analyzed	AM Peak	Peak Hour Factor	0.85
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25
Project Description	Savannah CTPG		

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound					Northbound				Southbound			
Movement	U	L	T	R	U	L		T	R	U	L	T	R	U	L	T	R
Priority		10	11	12		7		8	9	1 L	1	2	3	4 U	4	5	6
Number of Lanes		0	0	0		0		0	0	0	0	1	0	0	0	1	0
Configuration			LR								LT						TR
Volume (veh/h)		27		14							20	218				128	18
Percent Heavy Vehicles		4		23							5						
Proportion Time Blocked																	
Right Turn Channelized	No				No					No				No			
Median Type	Undivided																
Median Storage																	

Delay, Queue Length, and Level of Service

HCS 2010 Two-Way Stop Control Summary Report

General Information		Site Information	
Analyst	PWahl	Intersection	SR 69/One Stop Drive
Agency/Co.	Neel-Schaffer	Jurisdiction	
Date Performed	$9 / 6 / 2016$	East/West Street	One Stop Drive
Analysis Year	2016	North/South Street	SR 69
Time Analyzed	PM Peak (4:15-5:15)	Peak Hour Factor	0.77
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25
Project Description	Savannah CTPG		

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound					Northbound				Southbound			
Movement	U	L	T	R	U	L		T	R	U	L	T	R	U	L	T	R
Priority		10	11	12		7		8	9	1 L	1	2	3	4 U	4	5	6
Number of Lanes		0	0	0		0		0	0	0	0	1	0	0	0	1	0
Configuration			LR								LT						TR
Volume (veh/h)		16		13							18	226				174	16
Percent Heavy Vehicles		6		8							0						
Proportion Time Blocked																	
Right Turn Channelized	No				No					No				No			
Median Type	Undivided																
Median Storage																	

Delay, Queue Length, and Level of Service

HCS 2010 Two-Way Stop Control Summary Report

General Information		Site Information	
Analyst	PWahl	Intersection	SR 69/One Stop Drive
Agency/Co.	Neel-Schaffer	Jurisdiction	
Date Performed	$9 / 6 / 2016$	East/West Street	One Stop Drive
Analysis Year	2040	North/South Street	SR 69
Time Analyzed	PM Peak	Peak Hour Factor	0.77
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25
Project Description	Savannah CTPG		

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound					Northbound				Southbound			
Movement	U	L	T	R	U	L		T	R	U	L	T	R	U	L	T	R
Priority		10	11	12		7		8	9	1 L	1	2	3	4 U	4	5	6
Number of Lanes		0	0	0		0		0	0	0	0	1	0	0	0	1	0
Configuration			LR								LT						TR
Volume (veh/h)		17		14							19	237				183	17
Percent Heavy Vehicles		6		8							0						
Proportion Time Blocked																	
Right Turn Channelized	No				No					No				No			
Median Type	Undivided																
Median Storage																	

Delay, Queue Length, and Level of Service

HCS 2010 Two-Way Stop Control Summary Report

General Information		Site Information	
Analyst	PWahl	Intersection	SR 69/Ranch Street
Agency/Co.	Neel-Schaffer	Jurisdiction	
Date Performed	$9 / 6 / 2016$	East/West Street	Ranch Street
Analysis Year	2016	North/South Street	SR 69
Time Analyzed	AM Peak (7:15-8:15)	Peak Hour Factor	0.82
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25
Project Description	Savannah CTPG		

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority		10	11	12		7	8	9	1 U	1	2	3	4 U	4	5	6
Number of Lanes		0	0	0		0	0	0	0	0	1	0	0	0	1	0
Configuration			LR							LT						TR
Volume (veh/h)		39		20						27	406				320	19
Percent Heavy Vehicles		0		1						0						
Proportion Time Blocked																
Right Turn Channelized	No															
Median Type	Undivided															
Median Storage																

Delay, Queue Length, and Level of Service

HCS 2010 Two-Way Stop Control Summary Report

General Information		Site Information	
Analyst	PWahl	Intersection	SR 69/Ranch Street
Agency/Co.	Neel-Schaffer	Jurisdiction	
Date Performed	$9 / 6 / 2016$	East/West Street	Ranch Street
Analysis Year	2040	North/South Street	SR 69
Time Analyzed	AM Peak	Peak Hour Factor	0.82
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25
Project Description	Savannah CTPG		

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound					Northbound				Southbound			
Movement	U	L	T	R	U	L		T	R	U	L	T	R	U	L	T	R
Priority		10	11	12		7		8	9	1 U	1	2	3	4 U	4	5	6
Number of Lanes		0	0	0		0		0	0	0	0	1	0	0	0	1	0
Configuration			LR								LT						TR
Volume (veh/h)		40		21							28	419				330	20
Percent Heavy Vehicles		0		1							0						
Proportion Time Blocked																	
Right Turn Channelized	No				No					No				No			
Median Type	Undivided																
Median Storage																	

Delay, Queue Length, and Level of Service

HCS 2010 Two-Way Stop Control Summary Report

General Information		Site Information	
Analyst	PWahl	Intersection	SR 69/Ranch Street
Agency/Co.	Neel-Schaffer	Jurisdiction	
Date Performed	$9 / 6 / 2016$	East/West Street	Ranch Street
Analysis Year	2016	North/South Street	SR 69
Time Analyzed	PM Peak (4:15-5:15)	Peak Hour Factor	0.90
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25
Project Description	Savannah CTPG		

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound					Northbound				Southbound			
Movement	U	L	T	R	U	L		T	R	U	L	T	R	U	L	T	R
Priority		10	11	12		7		8	9	1 U	1	2	3	4 U	4	5	6
Number of Lanes		0	0	0		0		0	0	0	0	1	0	0	0	1	0
Configuration			LR								LT						TR
Volume (veh/h)		37		25							19	468				406	14
Percent Heavy Vehicles		0		0							0						
Proportion Time Blocked																	
Right Turn Channelized	No				No					No				No			
Median Type	Undivided																
Median Storage																	

Delay, Queue Length, and Level of Service

HCS 2010 Two-Way Stop Control Summary Report

General Information		Site Information	
Analyst	PWahl	Intersection	SR 69/Ranch Street
Agency/Co.	Neel-Schaffer	Jurisdiction	
Date Performed	$9 / 6 / 2016$	East/West Street	Ranch Street
Analysis Year	2040	North/South Street	SR 69
Time Analyzed	PM Peak	Peak Hour Factor	0.90
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25
Project Description	Savannah CTPG		

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority		10	11	12		7	8	9	1 U	1	2	3	4 U	4	5	6
Number of Lanes		0	0	0		0	0	0	0	0	1	0	0	0	1	0
Configuration			LR							LT						TR
Volume (veh/h)		38		26						20	483				419	14
Percent Heavy Vehicles		0		0						0						
Proportion Time Blocked																
Right Turn Channelized	No															
Median Type	Undivided															
Median Storage																

Delay, Queue Length, and Level of Service

HCS 2010 Two-Way Stop Control Summary Report

General Information		Site Information	
Analyst	PWahl	Intersection	SR 69/SR 203
Agency/Co.	Neel-Schaffer	Jurisdiction	
Date Performed	$9 / 6 / 2016$	East/West Street	SR 203-Pinhook Drive
Analysis Year	2016	North/South Street	SR 69-Florence Road
Time Analyzed	AM Peak (7:30-8:30)	Peak Hour Factor	0.84
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25
Project Description	Savannah CTPG		

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority		10	11	12		7	8	9	1 U	1	2	3	4 U	4	5	6
Number of Lanes		0	0	0		0	0	0	0	0	1	0	0	0	1	0
Configuration							LR					TR		LT		
Volume (veh/h)						53		122			258	12		48	269	
Percent Heavy Vehicles						0		0						2		
Proportion Time Blocked																
Right Turn Channelized	No															
Median Type	Undivided															
Median Storage																

Delay, Queue Length, and Level of Service

HCS 2010 Two-Way Stop Control Summary Report

General Information		Site Information	
Analyst	PWahl	Intersection	SR 69/SR 203
Agency/Co.	Neel-Schaffer	Jurisdiction	
Date Performed	$9 / 6 / 2016$	East/West Street	SR 203-Pinhook Drive
Analysis Year	2040	North/South Street	SR 69-Florence Road
Time Analyzed	AM Peak	Peak Hour Factor	0.84
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25
Project Description	Savannah CTPG		

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority		10	11	12		7	8	9	1 U	1	2	3	4 U	4	5	6
Number of Lanes		0	0	0		0	0	0	0	0	1	0	0	0	1	0
Configuration							LR					TR		LT		
Volume (veh/h)						55		126			266	12		50	278	
Percent Heavy Vehicles						0		0						2		
Proportion Time Blocked																
Right Turn Channelized	No															
Median Type	Undivided															
Median Storage																

Delay, Queue Length, and Level of Service

HCS 2010 Two-Way Stop Control Summary Report

General Information		Site Information	
Analyst	PWahl	Intersection	SR 69/SR 203
Agency/Co.	Neel-Schaffer	Jurisdiction	
Date Performed	$9 / 6 / 2016$	East/West Street	SR 203-Pinhook Drive
Analysis Year	2016	North/South Street	SR 69-Florence Road
Time Analyzed	PM Peak (4:45-5:45)	Peak Hour Factor	0.92
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25
Project Description	Savannah CTPG		

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority		10	11	12		7	8	9	1 U	1	2	3	4 U	4	5	6
Number of Lanes		0	0	0		0	0	0	0	0	1	0	0	0	1	0
Configuration							LR					TR		LT		
Volume (veh/h)						28		95			400	30		101	268	
Percent Heavy Vehicles						7		0						0		
Proportion Time Blocked																
Right Turn Channelized	No															
Median Type	Undivided															
Median Storage																

Delay, Queue Length, and Level of Service

HCS 2010 Two-Way Stop Control Summary Report

General Information		Site Information	
Analyst	PWahl	Intersection	SR 69/SR 203
Agency/Co.	Neel-Schaffer	Jurisdiction	
Date Performed	$9 / 6 / 2016$	East/West Street	SR 203-Pinhook Drive
Analysis Year	2040	North/South Street	SR 69-Florence Road
Time Analyzed	PM Peak	Peak Hour Factor	0.92
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25
Project Description	Savannah CTPG		

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority		10	11	12		7	8	9	1 U	1	2	3	4 U	4	5	6
Number of Lanes		0	0	0		0	0	0	0	0	1	0	0	0	1	0
Configuration							LR					TR		LT		
Volume (veh/h)						29		98			413	31		104	277	
Percent Heavy Vehicles						7		0						0		
Proportion Time Blocked																
Right Turn Channelized	No															
Median Type	Undivided															
Median Storage																

Delay, Queue Length, and Level of Service

HCS+: Unsignalized Intersections Release 5.6

Phone:
Fax:
E-Mail:
ALL-WAY STOP CONTROL(AWSC) ANALYSIS \qquad
Analyst:
PWahl
Neel-Schaffer
9/12/2016
Date Performed:
AM Peak (7:00-8:00)
Intersection: SR69/SR226
Jurisdiction:
Units: U. S. Customary
Analysis Year: 2016
Project ID: Savannah CTPG
East/West Street: SR 226
North/South Street: SR 69
_______ Worksheet 2 - Volume Adjustments and Site Characteristics \qquad

	Eastbound			Westbound			Northbound			Southbound		
	L	T	R	L	T	R	L	T	R	L	T	R
Volume	3	54	8	7	69	20	12	132	35	14	31	7

\% Thrus Left Lane

	Eastbound		Westbound		Northbound		Southbound L1	
		L2	L1	L2	L1	L2		L2

Duration, T 0.25 hrs .
Worksheet 3 - Saturation Headway Adjustment Worksheet \qquad

Eastbound	Westbound	Northbound	Southbound		
L 1	L 2	L 1	L 2	L 1	L 2

Flow Rates:

Total in Lane	7	82	15	95	24	191	24	51
Left-Turn	7	0	15	0	24	0	24	0
Right-Turn	0	10	0	21	0	40	0	9
Prop. Left-Turns	1.0	0.0	1.0	0.0	1.0	0.0	1.0	0.0
Prop. Right-Turns	0.0	0.1	0.0	0.2	0.0	0.2	0.0	0.2
Prop. Heavy Vehicle0.0	0.0	0.1	0.3	0.3	0.1	0.0	0.2	
Geometry Group	5		5		5		5	
Adjustments Exhibit $17-33:$			0.5		0.5	0.5		

hRT-adj	-0.7		-0.7	-0.7	-0.7
hHV-adj	1.7	1.7	1.7	1.7	
hadj, computed	0.5	-0.0	0.7	0.3	0.9

Worksheet 4 - Departure Headway and Service Time \qquad

	Eastbound		Westbound		Northbound	Southbound		
	L1		L2	L1	L2	L1	L2	L1
Flow rate	7	82	15	95	24	191	24	51
hd, initial value	3.20	3.20	3.20	3.20	3.20	3.20	3.20	3.20
X, initial	0.01	0.07	0.01	0.08	0.02	0.17	0.02	0.05
hd, final value	5.88	5.34	6.08	5.63	6.05	5.13	5.76	5.49
X, final value	0.011	0.122	0.025	0.149	0.040	0.272	0.038	0.078
Move-up time, m		2.3		2.3		2.3	2.3	
Service Time	3.6	3.0	3.8	3.3	3.7	2.8	3.5	3.2

Worksheet 5 - Capacity and Level of Service

Eastbound	Westbound	Northbound	Southbound		
L1	L2	L1	L2	L1	L2

Flow Rate	7	82	15	95	24	191	24	51
Service Time	3.6	3.0	3.8	3.3	3.7	2.8	3.5	3.2
Utilization, x	0.011	0.122	0.025	0.149	0.040	0.272	0.038	0.078
Dep. headway, hd	5.88	5.34	6.08	5.63	6.05	5.13	5.76	5.49
Capacity	700	683	500	633	600	707	600	638
95\% Queue Length	0.0	0.4	0.1	0.5	0.1	1.1	0.1	0.3
Delay	8.6	8.8	8.9	9.3	9.0	9.7	8.7	8.7
LOS	A	A	A	A	A	A	A	A

Delay 8.8

Intersection Delay 9.3
9.3
A
9.7
A
8.7

A

HCS+: Unsignalized Intersections Release 5.6

Phone:
Fax:
E-Mail:
ALL-WAY STOP CONTROL(AWSC) ANALYSIS \qquad
Analyst:
PWahl
Neel-Schaffer
9/12/2016
Date Performed:
$\begin{array}{ll}\text { Analysis Time Period: AM Peak } \\ \text { Intersection: } & \text { SR69/SR226 }\end{array}$
Jurisdiction:
Units: U. S. Customary
Analysis Year: 2040
Project ID: Savannah CTPG
East/West Street: SR 226
North/South Street: SR 69
_______ Worksheet 2 - Volume Adjustments and Site Characteristics \qquad

\% Thrus Left Lane

	Eastbound		Westbound		Northbound		Southbound L1		L2

Duration, T 0.25 hrs .
Worksheet 3 - Saturation Headway Adjustment Worksheet \qquad

Eastbound	Westbound	Northbound	Southbound		
L 1	L 2	L 1	L 2	L 1	L 2

Flow Rates:

Total in Lane	7	87	15	99	26	201	25	54
Left-Turn	7	0	15	0	26	0	25	0
Right-Turn	0	10	0	22	0	42	0	9
Prop. Left-Turns	1.0	0.0	1.0	0.0	1.0	0.0	1.0	0.0
Prop. Right-Turns	0.0	0.1	0.0	0.2	0.0	0.2	0.0	0.2
Prop. Heavy Vehicle0.0	0.0	0.1	0.3	0.3	0.1	0.0	0.2	
Geometry Group	5		5		5		5	
Adjustments Exhibit $17-33:$			0.5		0.5			
hLT-adj	0.5						0.5	

hRT-adj	-0.7		-0.7	-0.7	-0.7
hHV-adj	1.7	1.7	1.7	1.7	
hadj, computed	0.5	-0.0	0.7	0.3	0.9

Worksheet 4 - Departure Headway and Service Time

	Eastbound		Westbound		Northbound		Southbound	
	L1	L2	L1	L2	L1	L2	L1	L2
Flow rate	7	87	15	99	26	201	25	54
hd, initial value	3.20	3.20	3.20	3.20	3.20	3.20	3.20	3.20
x, initial	0.01	0.08	0.01	0.09	0.02	0.18	0.02	0.05
hd, final value	5.93	5.40	6.14	5.69	6.08	5.16	5.80	5.54
x, final value	0.012	0.131	0.026	0.156	0.044	0.288	0.040	0.083
Move-up time, m								3
Service Time	3.6	3.1	3.8	3.4	3.8	2.9	3.5	3.2

Worksheet 5 - Capacity and Level of Service

	Eastbound		Westbound		Northbound		Southbound	
	L1	L2	L1	L2	L1	L2	L1	L2
Flow Rate	7	87	15	99	26	201	25	54
Service Time	3.6	3.1	3.8	3.4	3.8	2.9	3.5	3.2
Utilization, x	0.012	0.131	0.026	0.156	0.044	0.288	0.040	0.083
Dep. headway, hd	5.93	5.40	6.14	5.69	6.08	5.16	5.80	5.54
Capacity	700	669	500	619	650	693	625	675
95\% Queue Length	0.0	0.4	0.1	0.6	0.1	1.2	0.1	0.3
Delay	8.7	8.9	9.0	9.4	9.1	9.9	8.7	8.7
LOS	A	A	A	A	A	A	A	A
Approach:								
Delay	8.9		9.4		9.8		8.7	
LOS	A		A		A		A	
Intersection Delay	9.4		Intersection LOS A					

HCS+: Unsignalized Intersections Release 5.6

Phone:
Fax:
E-Mail:
ALL-WAY STOP CONTROL(AWSC) ANALYSIS \qquad
Analyst:
PWahl
Neel-Schaffer
9/12/2016
Date Performed:
Analysis Time Period: PM Peak (4:00-5:00)
Intersection: SR69/SR226
Jurisdiction:
Units: U. S. Customary
Analysis Year: 2016
Project ID: Savannah CTPG
East/West Street: SR 226
North/South Street: SR 69
_______ Worksheet 2 - Volume Adjustments and Site Characteristics \qquad

\% Thrus Left Lane

	Eastbound		Westbound		Northbound		Southbound	
	L1	L2	L1	L2	L1	L2	L1	L2
Configuration	L	TR	L	TR	L	TR	L	TR
PHF	0.67	0.88	0.77	0.74	0.63	0.73	0.48	0.75
Flow Rate	11	99	55	189	7	116	52	143
\% Heavy Veh	0	1	7	9	0	18	4	7
No. Lanes		2		2		2		2
Opposing-Lanes		2		2		2		2
Conflicting-lanes		2		2		2		2
Geometry group		5		5		5		5

Eastbound	Westbound	Northbound	Southbound			
L 1	L 2	L 1	L 2	L 1	L 2	L 1

Flow Rates:

Total in Lane	11	99	55	189	7	116	52	143
Left-Turn	11	0	55	0	7	0	52	0
Right-Turn	0	12	0	54	0	34	0	10
op. Left-Turns	1.0	0.0	1.0	0.0	1.0	0.0	1.0	0.0
op. Right-Turns	0.0	0.1	0.0	0.3	0.0	0.3	0.0	0.1
op. Heavy Vehicle0.0	0.0	0.1	0.1	0.0	0.2	0.0	0.1	

Adjustments Exhibit 17-33:
hLT-adj 0.5
0.5
0.5
0.5

hRT-adj	-0.7		-0.7	-0.7	-0.7
hHV-adj	1.7	1.7	1.7	1.7	
hadj, computed	0.5	-0.1	0.6	-0.0	0.5

	Eastbound		Westbound		Northbound		Southbound	
	L1	L2	L1	L2	L1	L2	L1	L2
Flow rate	11	99	55	189	7	116	52	143
hd, initial value	3.20	3.20	3.20	3.20	3.20	3.20	3.20	3.20
x, initial	0.01	0.09	0.05	0.17	0.01	0.10	0.05	0.13
hd, final value	6.17	5.61	6.13	5.46	6.19	5.79	6.17	5.67
x, final value	0.019	0.154	0.094	0.287	0.012	0.187	0.089	0.225
Move-up time, m		3				3		3
Service Time	3.9	3.3	3.8	3.2	3.9	3.5	3.9	3.4

Worksheet 5 - Capacity and Level of Service

	Eastbound		Westbound		Northbound		Southbound	
	L1	L2	L1	L2	L1	L2	L1	L2
Flow Rate	11	99	55	189	7	116	52	143
Service Time	3.9	3.3	3.8	3.2	3.9	3.5	3.9	3.4
Utilization, x	0.019	0.154	0.094	0.287	0.012	0.187	0.089	0.225
Dep. headway, hd	6.17	5.61	6.13	5.46	6.19	5.79	6.17	5.67
Capacity	550	660	611	652	700	611	578	622
95\% Queue Length	0.1	0.5	0.3	1.2	0.0	0.7	0.3	0.9
Delay	9.0	9.3	9.5	10.3	9.0	9.8	9.5	10.0+
LOS	A	A	A	B	A	A	A	B
Approach:								
Delay	9.3		10.1		9.8		9.9	
LOS	A		B		A		A	
Intersection Delay	9.9		Intersection LOS A					

HCS+: Unsignalized Intersections Release 5.6

Phone:
Fax:
E-Mail:
ALL-WAY STOP CONTROL(AWSC) ANALYSIS \qquad
Analyst:
PWahl
Neel-Schaffer
9/12/2016
Date Performed:
$\begin{array}{ll}\text { Analysis Time Period: } & \text { PM Peak } \\ \text { Intersection: } & \text { SR69/SR226 }\end{array}$
Jurisdiction:
Units: U. S. Customary
Analysis Year: 2040
Project ID: Savannah CTPG
East/West Street: SR 226
North/South Street: SR 69
_______ Worksheet 2 - Volume Adjustments and Site Characteristics \qquad

	Eastbound			Westbound			Northbound			Southbound		
	L	T	R	L	T	R	L	T	R	L	T	R
Volume	8	81	12	45	105	42	\| 5	63	26	\| 26	105	8

\% Thrus Left Lane

	Eastbound		Westbound		Northbound		Southbound L1	
		L2	L1	L2	L1	L2		L1

Duration, T 0.25 hrs .
Worksheet 3 - Saturation Headway Adjustment Worksheet \qquad

Eastbound

Westbound Northbound
L1 L2
Southbound
L1

Flow Rates:

Total in Lane	11	105	58	197	7	121	54	150
Left-Turn	11	0	58	0	7	0	54	0
Right-Turn	0	13	0	56	0	35	0	10
Prop. Left-Turns	1.0	0.0	1.0	0.0	1.0	0.0	1.0	0.0
Prop. Right-Turns	0.0	0.1	0.0	0.3	0.0	0.3	0.0	0.1
Prop. Heavy Vehicle0.0	0.0	0.1	0.1	0.0	0.2	0.0	0.1	

Geometry Group 5
Adjustments Exhibit 17-33:
hLT-adj 0.5
0.5
0.5
0.5

hRT-adj	-0.7		-0.7	-0.7	-0.7
hHV-adj	1.7	1.7	1.7	1.7	
hadj, computed	0.5	-0.1	0.6	-0.0	0.5

Worksheet 5 - Capacity and Level of Service

General Information

Agency	N
Analyst	PW
Jurisdiction	
Urban Street	SR
Intersection	SR
Project Description	Sa

Intersection Information

Demand Information				EB			WB			NB			SB		
Approach Movement				L	T	R	L	T	R	L	T	R	L	T	R
Demand (v), veh/h				18		115				72	259			254	63
Signal Information															
Cycle, s	0.0	Reference Phase	2												
Offset, s	0	Reference Point	End	Green	0.0	0.0	0.0	0.0	0.0	0.0					
Uncoordinated	Yes	Simult. Gap E/W	On	Yellow	0.0	0.0	0.0	0.0	0.0	0.0					
Force Mode	Fixed	Simult. Gap N/S	On	Red	0.0	0.0	0.0	0.0	0.0	0.0					

Traffic Information	EB			WB			NB			SB		
Approach Movement	L	T	R	L	T	R	L	T	R	L	T	R
Demand (v), veh/h	18		115				72	259			254	63
Initial Queue ($Q_{\text {b }}$), veh/h	0		0				0	0			0	0
Base Saturation Flow Rate (so), veh/h	1900		1900				1900	1900			1900	1900
Parking (N_{m}), man/h		None						None			None	
Heavy Vehicles (PHV), \%	0		10				15	2			2	
Ped / Bike / RTOR, /h							0	0		0	0	0
Buses (N_{b}), buses/h	0		0				0	0			0	0
Arrival Type (AT)	3		3				3	3			3	3
Upstream Filtering (I)	1.00		1.00				1.00	1.00			1.00	1.00
Lane Width (W), ft	12.0		12.0				12.0	12.0			12.0	
Turn Bay Length, ft	0		0				0	0			0	
Grade (Pg), \%		0			0			0			0	
Speed Limit, mi/h	35		35				35	35			35	35

Phase Information	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT
Maximum Green (Gmax) or Phase Split, s	16.0	16.0			12.0	41.0		41.0
Yellow Change Interval (Y), s	4.0	4.0			4.0	4.0		4.0
Red Clearance Interval (R_{c}), s	1.0	1.0			1.0	1.0		1.0
Minimum Green ($G_{\text {min }}$, s	10				6	10		10
Start-Up Lost Time (t), s	2.0				2.0	2.0		2.0
Extension of Effective Green (e), s	2.0				2.0	2.0		2.0
Passage (PT), s	2.0				1.5	1.5		1.5
Recall Mode	Off				Off	Min		Min
Dual Entry	Yes				No	Yes		Yes
Walk (Walk), s	0.0				0.0	0.0		0.0
Pedestrian Clearance Time (PC), s	0.0				0.0	0.0		0.0

Multimodal Information	EB			WB	NB			SB		
85th \% Speed / Rest in Walk / Corner Radius	0	No	25		0	No	25	0	No	25
Walkway / Crosswalk Width / Length, ft	9.0	12	0		9.0	12	0	9.0	12	0
Street Width / Island / Curb	0	0	No		0	0	No	0	0	No
Width Outside / Bike Lane / Shoulder, ft	12	5.0	2.0		12	5.0	2.0	12	5.0	2.0
Pedestrian Signal / Occupied Parking	No		. 50		No		0	No		50

General Information

Agency	Ne
Analyst	PW
Jurisdiction	
Urban Street	SR
Intersection	SR
Project Description	Sa

Intersection Information

Demand Information				EB			WB			NB			SB		
Approach Movement				L	T	R	L	T	R	L	T	R	L	T	R
Demand (v), veh/h				18		115				72	259			254	63
Signal Information															
Cycle, s	0.0	Reference Phase	2												
Offset, s	0	Reference Point	End	Green	0.0	0.0	0.0	0.0	0.0	0.0					
Uncoordinated	Yes	Simult. Gap E/W	On	Yellow	0.0	0.0	0.0	0.0	0.0	0.0				1	
Force Mode	Fixed	Simult. Gap N/S	On	Red	0.0	0.0	0.0	0.0	0.0	0.0		5		7	

Timer Results	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT
Assigned Phase		4			1	6		2
Case Number		0.0			0.0	0.0		0.0
Phase Duration, s		0.0			0.0	0.0		0.0
Change Period, ($Y+R$) , s		0.0			0.0	0.0		0.0
Max Allow Headway (MAH), s		0.0			0.0	0.0		0.0
Queue Clearance Time (g s), s		0.0			0.0	0.0		0.0
Green Extension Time (e_{e}), s		0.0			0.0	0.0		0.0
Phase Call Probability		0.00			0.00	0.00		0.00
Max Out Probability		0.00			0.00	0.00		0.00

Multimodal Results	EB		WB		NB		SB	
Pedestrian LOS Score / LOS	0.0	A	0.0	A	0.0	A	0.0	A
Bicycle LOS Score / LOS	0.0	A	0.0	A	0.0	A	0.0	A

No errors or warnings exist.
--- Comments ---

General Information

Agency	N
Analyst	P
Jurisdiction	
Urban Street	SR
Intersection	SR
Project Description	Sa

Intersection Information

Demand Information

Approach Movement
Demand (v), veh/h

Neel-Schaffer
PWahl

SR 128
SR 69 \& Water St.
Savannah CTPG

Analysis Date 9/18/2016
Time Period PM Peak
Analysis Year 2016
File Name SR69 \& WaterSt 2016 PM.xus

File Name	SR69 \& WaterSt 2016 PM.xus

Duration, h 0.25
Area Type \quad Other
PHF 0.91
Analysis Period 1>4:00

EB			WB				SB				
L	T	R	L	T	R	L	T	R	L	T	R
57		140				98	370			231	32

Signal Information

Cycle, s	0.0	Reference Phase	2
Offset, s	0	Reference Point	End
Uncoordinated	Yes	Simult. Gap E/W	On
Force Mode	Fixed	Simult. Gap N/S	On

Timer Results

Assigned Phase
Case Number
Phase Duration, s
Change Period, $(Y+R c)$, s
Max Allow Headway ($M A H$), s
Queue Clearance Time ($g s$), s
Green Extension Time ($g e$), s
Phase Call Probability
Max Out Probability

Movement Group Results	EB			WB			NB			SB		
Approach Movement	L	T	R	L	T	R	L	T	R	L	T	R
Assigned Movement	7		14				1	6			2	12
Adjusted Flow Rate (v), veh/h	0		0				0	0			0	
Adjusted Saturation Flow Rate (s), veh/h/ln	0		0				0	0			0	
Queue Service Time (g s), s	0.0		0.0				0.0	0.0			0.0	
Cycle Queue Clearance Time (g_{c}), s	0.0		0.0				0.0	0.0			0.0	
Green Ratio (g / C)												
Capacity (c), veh/h	0		0				0	0			0	
Volume-to-Capacity Ratio (X)	0.000		0.000				0.000	0.000			0.000	
Back of Queue (Q), ft/ln (50 th percentile)	0		0				0	0			0	
Back of Queue (Q), veh/ln (50 th percentile)	0.0		0.0				0.0	0.0			0.0	
Queue Storage Ratio ($R Q$) (50 th percentile)	0.00		0.00				0.00	0.00			0.00	
Uniform Delay (d_{1}), s/veh	0.0		0.0				0.0	0.0			0.0	
Incremental Delay (d_{2}), s/veh	0.0		0.0				0.0	0.0			0.0	
Initial Queue Delay (d_{3}), s/veh	0.0		0.0				0.0	0.0			0.0	
Control Delay (d), s/veh	0.0		0.0				0.0	0.0			0.0	
Level of Service (LOS)												
Approach Delay, s/veh / LOS	0.0			0.0			0.0					
Intersection Delay, s/veh / LOS	0.0						A					

Intersection Delay, s/veh / LOS
0.0

Multimodal Results	EB		WB		NB		SB	
Pedestrian LOS Score / LOS	0.0	A	0.0	A	0.0	A	0.0	A
Bicycle LOS Score / LOS	0.0	A	0.0	A	0.0	A	0.0	A

APPENDIX C: ENVIRONMENTAL MAPS

APPENDIX D: PUBLIC MEETING INFORMATION

Notice of Project Informational Meeting

The City of Savannah will conduct a public meeting on May 12, 2016 beginning at 6:00 P.M. at Savannah City Hall 140 Main Street, Savannah, TN 38372 regarding a roadway corridor study along Pickwick Street (SR 69) and Florence Road (SR 128) as shown in the general location map.

The study, funded by a Community Transportation Planning Grant from the Tennessee Department of Transportation, will look at vehicle, pedestrian, and bicyclist needs along the corridors and develop strategies to preserve and enhance the functionality of the routes for all users. The intent of the Public Meeting is to solicit input regarding existing traffic issues and specific areas which should be considered in the study.

Persons with a disability, who require aids or services to participate at the meeting, may contact Mr. Thomas Smith at the following address no less than ten (10) days prior to the date of the meeting.

Thomas Smith
City of Savannah
140 Main Street
Savannah, TN 38372
(731) 925-3300
tsmith@cityofsavannah.org
Study Area

NOTICE OF TRUSTEE'S SALE

WHEREAS, default has occurred in the performance of the covenants, erms, and conditions of a Deed of Trust Note dated November 12, 2004, erms, and conditions of a Deed of Trust Note dated November 12, 2004, 3,2004 , in Book No. 361, at Page 254, in Office of the Register of Deeds 3, 2004, in Book No. 361, at Page 254, in Office of the Register of Deeds Joan Franks, conveying certain property therein described to Philip L. Jean Franks, conveying certain property therein described to Philip L. Carlton as Trustee for Morigage Electronic Registration Systems, Inc., as a nominee for America's Wholesale Lender, its successors and assigns; and the undersigned, Wilson \& Associates, P.L.L.C., having been appointed Successor Trustee by Ditech Financial LLC.

NOW, THEREFORE, notice is hereby given that the entire indebtedness has been declared due and payable; and that an agent of Wilson \& Associates, P.L.L.C., as Successor Trustee, by virtue of the power, duty, and authority created by a fixture filing; a deed of trust; and any matter than an accurate survey of the premises might disclose; and

All right and equity of redemption, statutory or otherwise, homestead, and dower are expressly waived in said Deed of Trust, and the title is believed to be good, but the undersigned will sell and convey only as Substitute Trustee The right is reserved to adjourn the day of the sale to another day, time, and place certain without further publication, upon announcement at the time and place for the sale set forth above.

This office is attempting to collect a debt. Any information obtained will be used for that purpose

Brock \& Scott, PLLC, Substitute Trustee
c/o Tennessee Foreclosure Department
277 Mallory Station Road
Suite 115
Franklin, TN 37067
PH: 615-550-7697 FX: 615-550-8484
File No.: 15-25228 FC01
(4213tc)

NOTICE OF PUBLIC MEETING

DATE: Thursday, May 12, 2016

TIME: 6:00 PM
PLACE: Savannah City Hall, 140 Main Street, Savannah, TN The City of Savannah will conduct a public meeting in conjunction with the monthly Planning Commission meeting for the purpose of soliciting citizen comments regarding a roadway corridor study along Pickwick Street (SR-128S) and Florence Road (SR69) from Main Street (SR-15/US-64) to Airport Road (SR-226).
The study, funded by a Community Transportation Planning Grant from the Tennessee Department of Transportation will review vehicle, pedestrian and bicyclist needs along the corridors and develop strategies to preserve and enhance the functionality of the routes for all users. The intent of the meeting is to solicit input regarding existing traffic issues and specific areas which should be considered in the study.
The City of Savannah does not discriminate on the basis of race, color, religion, age, sex, handicap, or national origin. Savannah City Hall is accessible to persons with disabilities.
Any person with a disability needing special accommodations should contact Tom Smith at Savannah City Hall, (731) 925-3300 Ext. 156 prior to the time and date of the meeting indicated above.

Our archive pages
 are printable
 CHECK OUT OUR WEBSITE AT

NOTICE TO FURNISHERS
NOTICE TO FURNISHERS OF LABOR AND MATERIALS TO Sweeping Corp. of America, Inc.
PROJECT NO.: $98048-4183-04$ CONTRACT NO.: CNN376 COUNTY: Hardin The Tennessee Department of Transporta tion is about to make final settlement with Terry Russell serviced ofrice space in Savannah, TN. The avannah and must meet all state and local building regulations and Architectural Barriers Act Accessibility Standards (ABAAS). New or existing space with renovations will be considered. Space must be available for occupancy by Nov 1, 2017. All services, supplies, utilities, and janitorial (full service lease) are to be provided as part of the rental consideration. The lease term is a 10 years. The lease will have a 120-day termination clause.

The Government is considering alternative space if economically ad vantageous. In making this determination, the Government will consid er, among other things, the availability of alternate space that potentially can satisfy the Government's requirements, as well as costs likely to be incurred through relocating, such as physical move costs, replication o tenant improvements and telecommunication infrastructure, and non-pro ductive agency downtime.

Persons interested in offering space meeting these requirements and wishing to obtain a solicitation should contact on or before May 25, 2016:

Expressions of interest should include the following:

1. Building name and address, or site location and approximate address (if known)
2. Location of space within building
3. Rentable square feet offered and full-service rental rate per square foot 4. List of building services provided
4. Total ANSI/BOMA usable square feet office area (ABOA) and the building common area factor
5. Amount of onsite paved parking available; parking lot must be able to accommodate pull-thru trailers and oversized vehicles.
6. Energy efficiency and renewable energy features existing within the building
7. Building ownership information
8. Contact information for Owner or Authorized Agen

Send Expressions of interest referencing Savannah, TN USDA to: Name/Title: Robert L Moody AmeriVet Real Estate Services Inc. Address: 5005 W Laurel Street Suite 213 Tampa, FL 33607
Office/Fax: 813-605-5903
Email Address: rlmoody@amerivetres.com
Government Contact
Real Property Leasing Officer: Michelle Bales, USDA RPLO Transaction Manager: Robert Moody, AmeriVet Real Estate Services Inc. Field Broker: Robert Moody, AmeriVet Real Estate Services Inc.
The U.S. Department of Agriculture (USDA) prohibits discrimination in al of its programs and activities on the basis of race, color, national origin age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sexual orientation, political beliefs, genetic information, reprisal, or because all or part of an individual's income is derived from any public assistance program. (Not all prohibited bases apply to all programs.)

NOTICE

The Adamsville Utilities 2015 Water Quality Report will be published in the Savannah Courier on May 5, 2016. This report will not be direct mailed to customers. You may request a copy by calling 731-632-5017.

BID NOTICE

The Hardin County Highway Department is accepting bids for asphalt paving, liquid asphalt and chip/seal at the Hardin County Highway Dept. Office at 9920 Highway 128 S. Bids will be accepted until 10 a.m. on May 10th, 2016. Bids Effective January 1, 2011, a masonry subcontractor must be licensed with an "LMC" classification in order to bid or to be listed on the outside of bid envelope as a Licensed Masonry Contractor (LMC) when the masonry portion is $\$ 100,000$ or more (including materials and labor). The BC-9 or BC will not be acceptable. Bidders must be properly licensed under the laws governing their respective trades and be able to obtain insurance and bonds required for the Work. A Performance Bond, separate Labor and Material Payment Bond, and Insurance in a form acceptable to Owner will be required of the successful Bidder. The successful bidder will be required to furnish and pay for satisfactory performance and payment bond, bonds or insurance surety.

ADDITIONAL BID REQUIREMENTS

In addition to the Bid Form, Bid Bond, and all other required bid documents, the Bidder shall submit with his/her bid a list of at least (4) four commercial roofing projects completed in the last five (5) years that includes:

1. The project name and location
2. Owner's name, and contact information including address and working telephone number.
A. The Bidder is also required to submit proof of performed commercial roofing work completed under his/her license number within the last five years, and proof warranty work from manufacturer of any installed roofing system for the past five years.
B. As per the System's participation in the U.S. Communities Government Purchasing Alliance's Program for Roofing Supplies and Related Products and Services, as priced by and awarded to Gariand/DBS, Inc., resulting from the competitively solicited Sealed Bid \#09-5409 issued by the Cobb County Board of Commissioners, it is the intent of the System to purchase direct the identified materials on the "Garland Materials List". The authorized Garland Applicators Bid shall inciude everything except for the materials listed on the Material List. The roofing contractor shall also be responsible for accepting the materials at the job site and staging them where they feel necessary. If materials remain once the job is complete, the System has the option to decide what to do with the materials. One option, if the System decides to return the unused/properly stored materials to Garland, the contractor shall be responsible for the restocking fee,
C. A mandatory pre-bid meeting for all bidders will be held at the High School Administrative Offices located at 1170 Pickwick Street South, Savannah, TN 38372 on May 5, 2016 at 1:00 p.m.

COMMUNITY TRANSPORTATION PLANNING GRANT PUBLIC INVOLVEMENT

DATE (2016)

ACTION

April 26 Public Meeting Notice placed on City of Savannah website and City Hall bulletin board

April 28 Public Meeting Notice advertised in Savannah Courier (local newspaper)
May $5 \quad$ Public Meeting Notice advertised in Savannah Courier (local newspaper)
May $5 \quad$ Public Meeting Notice announced at Monthly City Commission Meeting and Comment Forms passed out to City Commissioners and Public

May 12 Meeting with Hardin County School Superintendent. Comment form provided for passing out to school personnel.

May 12 Public Meeting presentation by Neel-Schaffer in conjunction with Monthly Planning Commission Meeting

May 17 Press Release, Presentation and Comment Form placed on City website
May 17 Planning Grant Announcement and pass out Comment forms at Rotary Civic Club Meeting

May 18 Information on Planning Grant Announcement and Comment forms provided for handout at next River City Kiwanis Civic Club meeting and employees of Hardin County Bank

June 14 Receive Comment forms from Savannah Courier employees
June $14 \quad$ E-mail all Comment forms to Neel-Schaffer
$\begin{array}{ll}\text { October } 13 & \begin{array}{l}\text { Presentation of Corridor Study recommendations by Neel-Schaffer at Monthly } \\ \\ \\ \text { Planning Commission Meeting }\end{array}\end{array}$
November 7 (Proposed) Presentation of Final Corridor Study recommendations by NeelSchaffer at Monthly City Commission Meeting
sald road and running with the doundary of said wilkes property, south 77 degrees 33 minutes 24 seconds West, passing an iron pin in the West right-of-way line of said road at 50 feet, continuing 426.80 , running in all 476.80 feet to an iron pin in the center of a power line; thence running with said pewer line, North 05 degrees 51 minutes 52 seconds West, 454.00 feet to an iron pin; thence leaving sald power line, North 84 degrees 08 minutes 08 seconds East, passing an iron pin in the West right-of-way minutes 08 seconds East, passing an iron pin in the West right-of-way
Ine of Embassy Cove at 518.87 feet, continulng 25.02 feet, running in all 543.89 feet to a point in the center of said road; thence running with the center of said road, South 03 degrees 21 minutes 26 seconds East, 47.81 feet; South 04 degrees 09 minutes 44 seconds West, 142.69 feet; and South 05 degrees 43 minutes 35 seconds West, 215.49 feet to the point of beginning, containing 5,000 acres, including 0.258 acres in the right-ofway area of Embassy Cove. Description according to the survey of Davld B. Cagle, R.L.S. TN No. 497, dated November 24, 1995.

ALSO KNOWN AS: 450 Embassy Cove, Savannah, TN 38372
This sale is subject to all matters shown on any applicable recorded plat; any unpald taxes; any restrlative covenants, easements, or setback lines that may be applicable; any statutory rights of redemption of any governmental agency, state or federal; any prior liens or encumbrances as well as any priority created by a fixture filing; and to any matter that an accurate survey of the premises might disclose. In addition, the following parties may claim an interest in the above-referenced property:

Jimmie M. Franks
Donna Jean Franks
The sale held pursuant to this Notice may be rescinded at the Successor Trustee's option at any time. The right is reserved to adjourn the day of the sale to another day, time, and place certain without further publication, upon announcement at the time and place for the sale set forth above. W\&A No. 312983

DATED April 21, 2016
WILSON \& ASSOCIATES, P.L.L.C.
Successor Trustee
OR SALE INFORMATION
VISIT WWW.MYFIR.COM
and WWW.REALTYTRAC.COM
(4283tc)

IN THE GENERAL SESSIONS COURT OF HARDIN COUNTY, TENNESSEE WILLIAM FRANKLIN CARTER

PLAINTIFF,
Vs.
CIVIL NO. 874
KATHERINE JO CARTER,
DEFENDANT.
ORDER OF PUBLICATION
It appearing to the Court from the sworn petition or affidavit filed in this cause that the whereabouts of the Defendant, Katherine Jo Carter, is presently unknown and cannot be ascertained upon diligent inquiry, so that ordlnary process cannot be served upon her. Therefore, this Order of Publication should be publlished in the Savannah Courier newspaper located in Savannah, Hardin County, Tennessee as the best possible notice to the Defendant under the circumstances.

Defendant, Katherine Jo Carter, is hereby required to appear and file an answer with this court, or otherwise defend against the Complaint for Dlvorce and to serve an answer to said petition by May 19,2016 , which is thirty (30) days from the last day of publication of this notice, and send a copy of said answer to Flaintiff's attorney, Joe L. Brown, whose address is 419 Main Street, Savannah, Tennessee 38372, or a default judgment will be entered against the Defendant, Katherine Jo Carter, and this cause set for hearing in the General Sessions Court of Hardin County, Tennessee, sitting in the Hardin County Courthouse in Savannah, Tennessee, ex parte as to Defendant, Katherine Jo Carter

If there is no answer, a hearing on Plaintifi's motion for default shall be heard on June 20, 2016.

Entered this the 12th day of April, 2016.
/s/ Diane Polk, Clerk
APPROVED FOR ENTRY:
/s/ Joe L. Brown, BPR \# 022450
Attorney for the Petitioner
419 Main Street
Savannah, TN 38372
(731) 925-2202

NOTICE OF ROAD CLOSING

CLAYBROOK DRIVE

(North of Parkview Drive Intersection)
Please be advised that the City of Savannah will be closing Claybrook Drive north of the Parkview Drive Intersection starting Thursday, May 12 th for approximately eight weeks (dependent upon weather conditions) to replace an exisiling drainage culvert with new concrete box culverts. During this period, no through traffic will be allowed and detour signs will be placed accordingly. Local traffic will be allowed to existing properties only.
For more information, please contact Tom Smith, Project Manager, City of Savannah, 225-3300 or email:
tsmith@cityoisavannah.org.

BID NOTICE

The Hardin County Highway Department is accepting bids for rock at the Hardin County Highway Dept. Office at 9920 Highway 128 S . Bids will be accepted until 10 a.m. on May 17, 2016. Blds should be sealed, dellvered or mailed to:

Hardin County HIghway Department
P.O. Box 116 - Savannah, TN 38372

Please indicate on envelope: BID
It is the pollcy of the Hardin County Highway Department not to discriminate on the basis of race, color, natlonal origin, age, sex, or disability in its hiring and employment practices or in admission to or operation of its programs, service and activities. The Hardin County Highway Dept. reserves the right to accept or reject any or all bids. For specifications contact the Hardin County Highway Department.

Admission Policy and Hiring Policy of Harbert Hils Academy Nursing Home May 2016

It is the policy of the Harbert Hills Academy Nursing Home to admit and to treat all patients without regard to race, color, national origin, mental or physical disability. The same requirements for admission are applied to all patients and are assigned or transferred within the nursing home without regard to race, color, national origin, physical or mental disability and abide by the regulations of the Department of Health and Human Services. There is no distinction in eliglbility for or in the manner of providing any patient service provided by or through the nursing home. All facilities of the nursing home are available without distinction to all patients and visitors, regardless of race, color, or national origin, mental or physical disability. All persons and/or organizations that recommend the Harbert Hills Academy Nursing Home are advised to do so without regard to the patient's race, color, national origin, physical or mental disability. Harbert Hills Academy Nursing Home is an EOE. Harbert Hills Academy Nursing Home complies with all Title VI, Section 504 \& ADA Regulations. If you have any questions concerning the Title VI, or 504 compliance call Randall Dickman, Administrator at 731-925-7221.

Please indicate on envelope: BID

 It is the policy of the Hardin County Highway Department not to discriminate on the basis of race, color, national orlgin, age, sex, or disability in lts hiring and employment practices or in admission to or operation of its programs, service and activities. The Hardin County Highvey Depis reserves the right to accept of reject any or dill bids.For specifications contact the Hardin County Highway Department.

BID NOTICE

The city of Savannan is accepting Sealed Bids for the provision of construction equipment with operator for miscellaneous ciull work scope. Bids will be accepted until Tuesday, May 17, 2016 at City Hall, 140 Main Street, Savannah, TN 38372 at 2:00 Pat where bids will be publicly opened and read alouc:

The work consists of general civil work scope as may be required within the cfity of Savannah for tha Fiscal Year 2016-2017.
eid documents and specifications may be olotained from Tom Smith/Project Manager, City of Savannah, 140 Main Street, Savannah, TN 38372, Tel: (731) $925-3300$ ext. 156

The Gity of Savannah is an equal opportunity arfirmative actlon employer, drug free with policies of nondiscrimination on the basis of race, sex, religion, color, national or ethnic origin, age, disability or military service.

The City of Savannah reserves the right to reject any and all bids and to walve intormality in bidding.

NOTICE OF PUBLIC MEETING

DATE: Thursday, May 12, 2016

TIME: 6:00 PM

PLACE: Savannah City Hall, 140 Main Street, Gavannah, TN The Clty of Savannah will conduct a public meeting in conjunction with the monthly Planning Commission meeting for the purpose of soliciting citizen comments regarding a roadway corridor study along plekwick Street (SR-128S) and Florence Road (SR-Es) from Main Street (SR-15/US-64) to Aipport Road (SR-226).

The study, funded by Community Transportation Planning Grant from the Tennessee Department of Transpertation will review vehicle, pedestrian and bicychist needs along the corridors and develop strategies to preserve and enhance the functionality of the routes for all users. The intent of the meeting is to sollcit input regarding existing traffic issues and specific areas which should be considered in the study.

The Clty of Savannah does not discriminate on the basis of race, color, religion, age, sex, handicap, or national origin. Savannah City Hall is accessible to persons with disabilitles.

Any person with a disability needing special accommodations, or persons requiring language assistance services, should contact Tom Smith at Savannah City Hall, (731) $925-3300$ Ext. 156 prior to the time and date of the meeting indicated above.

On the Record meatraner1

Fire Reports weedo mens 19

Hardin County Fire Dept.
The following items are derived directly from official Hardin County Fire Department reports and spokesmen. May 6

Crump-Morris Chapel (Dist. 2) responded to the intersection of U.S. 64 and Lemert Road at 2:14 p.m. after receiving a report of a single vehicle collision. On arrival firefighters found a car hit a guardrail, injuring two. They were transported by ambulance to the emergency room, and the call was closed at $2: 46$ p.m.
May 7
Crump-Morris Chapel (Dist. 2) responded to 430 Coffee Landing Road at 12:03 a.m. after a report of a single vehicle rollover. The car had two occu-
pants, one was airlifted and the other transported by ambulance to the emergency room. The call was closed at 12:35 a.m. May 12
Walnut Grove (Dist. 11) responded with Bruton Branch (Dist. 14) and HCFD (Station 12) to 2295 BarriertownD Drive at6:10 a.m. atter receiving a report of a house fire. On arrival, firefighters found the house fully involved.

The owner reported cooking breakfast on the stove, and the grease in the skillet caught fire. The home was a total loss. The call was closed at 8:47 a.m.

Counce (Dist. 3) responded to 3270 Tenn. 57 at 9:50 p.m. after receiving a report of an accident with injury, car versus tree. The single occupant was airlifted, and the call was closed at 11:05 p.m. May 13
of failure to provide proof of vehicle insurance and second offense driving on a revoked license.

Olivet-Walkertown (Dist. 6) responded to 2600 Tenn. 226 at 6:47 a.m. after receiving a report of a two vehicle accident without injury. Occupants ofboth vehicles refusedtreatmentatthescene, and the call was closed at 6:05 p.m.

Walnut Grove (Dist. 11) responded with Bruton Branch (Dist. 14) and HCFD (Station 12) to 54.10 Tenn. 69 at 5. a.m. after receiving a report of a fire at the property of Ameripride Fabricators. On arrival firefighters found the owner had

Auditions upcoming for SPAC's Steel Magnolias

Savannah Performing Arts nah Theater.
Company (SPAC) will hold auditions for Steel Magnolias, a comedy-drama play, on Saturday, May 21, at 7 p.m. and Saturday, May 28, at 7 p.m., at the Historic Savan-

Showtimes will be Aug. 4, 5, 6, at 7 p.m. nightly, and Aug. 7, at 2 p.m.

Steel Magnolias is about a bond among a group of a bond among a group of
southern women in northwest

Louisiana. The play is written by Robert Harling, based on his experiences with his sister's death. The title suggests the "female characters are as delicate as magnolias but as tough as steel."

Savannah seeks input on Pickwick and Florence traffic

Julia Ewoldt
Staff Writer
Publicinputisbeingrequested tofulfilla study on Pickwick Street and Florence Road. The goal of the study, led by Neel-Schaffer, Inc. consulting team, is to look at
vehicle, pedestrian, bicyclist and freight needs on these two roads and then make suggestions as to which areas need improvement, including how to better use to undeveloped property and how to better access existing developed property.

Comment forms can be accessed at cityofsavannah.org under the "Public Notices" tabin the upperrighthand comer, and they will be accepted until June 12. The city plans to complete the study by November 2016.

The study is being paid for
by a grant from the Tennessee Department of Transportation's Office of Community Transportation. Savannah was one of eight cities in the state to receive the $\$ 250,000$ for the study and only had to pay ten percent of the cost.

Driver Ronnie Gibbs, 68, Cravens Drive, was stopped on Church Street at the intersection of Main Street at 2:12 p.m. Don-
already extinguished the fire, and firefighters doused the hot-spots with water. The owner reported welding, and sparks caught the wall on fire. The call was closed at 6:19 a.m.
May 14
Burnt Church (Dist. 8) responded to 245 Campground Road at $9: 15 \mathrm{a} . \mathrm{m}$. after receiving a report of a tree that had fallen on power lines and then onto the road, causing smoke and a small fire. The tree was removed and TVEC notified, and the call was
into a metal support on the back porch, causing him to break a front tooth. A witness supported Smith'sstatement. A warrantwas closed at 10:07 a.m.

Crump-Morris Chapel (Dist. 2) responded to 29630 Tenn. 69 at $9: 19$ p.m. after a report of a single vehicle accident with no injury. A car hit a bridge abuttment, and the driver refused treatment at the scene. The call was closed at 10:23p.m.

Counce (Dist. 3) responded to 11895 Tenn. 57 at 11:33 a.m. after receiving a report of a possible gas lead. No gas leak was found, and the call was closed at 12:10 p.m.

PUBLIC NOTICE

Tenth District Community Meeting Saturday, May 21, 2016 at 10:00 A.M. at the Tenth District Community Hall Corner of Hwy. 69 and Gospel Lane The purpose of this meeting is to elect officers of Tenth District Community Improvement Club
Property: Map 016, Ctrl. Map 016, Parcel 021.01
Hurricane School House and Lot
For questions contact
Joe L. Brown, Attorney
419 Main Street
Savannah, TN 38372
731-925-2202

Thank you for your interest in the SR 69 (Florence Road)/SR 128 (Pickwick Street) Corridor Study. We appreciate your comments.

1. What do you primarily use the corridors for?
\square Live along the corridors
\square Work along the corridors
$\square \quad$ Attend school or take children to school
\square Use of other facilities
2. How often do you travel through the corridors?
\square Multiple times throughout the day
\square Twice daily
\square Couple of times a week
\square Once a week
\square Less than once a week
3. What challenges, if any, do you encounter while on the corridors?
\qquad
\qquad

4. Please rank each of the following factors in order of importance on a scale of $1-10(1=$ lower importance, $10=$ higher importance).
\qquad Truck Traffic \qquad Bicyclist Safety
School Traffic
Pedestrian Safety
Intersection Congestion
Number of Driveway
\qquad Roadway Congestion
5. Is there anything else that you would like to share with our team or are there any unique considerations about the corridors that our team should be aware of? Please provide your complete contact information (optional) so that we may remain in contact with you throughout the study:

Name	
Street	
City, Zip	
Email	
Phone	

Thank you for your interest and participation!

FOR MORE INFORMATION CONTACT STUDY TEAM LEADER TOM SMITH:
(731) 925-3300 ext. 156
tsmith@cityofsavannah.org

Thomas L. Smith c/o Savannah Corridor Study City of Savannah
140 Main Street
Savannah, TN 38372

Gracias por su interés en el estudio del corredor de la SR 69 (Carretera Florencia) /SR 128 (Calle Pickwick). Apreciamos sus comentarios.

1. ¿Para qué principalmente usa estas carreteras?
$\square \quad$ Vivo a lo largo de las carreteras
$\square \quad$ Trabajo a lo largo de las carreteras
\square Asistir a la escuela o llevar a los niños a la escuela
\square El uso de otras instalaciones
2. ¿Con qué frecuencia viaja por estas carreteras?Varias veces durante el día
$\square \quad$ Dos veces diarias
\square Par de veces a la semana
\square Una vez a la semana
\square Menos de una vez por semana
3. ¿Qué desafíos, si alguno, ha encontrado mientras esta a lo largo de estas carreteras?
\qquad
\qquad

4. Por favor, a cada uno de los siguientes factores asigne el orden de importancia en una escala de 1-10 (1 = baja importancia, 10 = mayor importancia).
\qquad Tráfico de Camiones
Tráfico de Escuela
\qquad Seguridad ciclista
-_ Congestión de Intersección
Seguridad de los Peatones
\qquad
Número de entradas
Congestión Vial
5. ¿Existe cualquier otra cosa que le gustaría compartir con nuestro equipo o hay consideraciones únicas sobre las carreteras que nuestro equipo debe tener en cuenta? Proporcione la información completa de contacto (opcional) para que podamos permanecer en contacto con usted durante todo el estudio:

Nombre	
Calle	
Ciudad, Zip	
Correo electrónico	
Teléfono	

¡Gracias por su interés y participación!

PARA MÁS INFORMACIÓN COMUNIQUESTE CON EL LÍDER

Thomas L. Smith c/o Savannah Corridor Study City of Savannah
140 Main Street
Savannah, TN 38372

PUBLIC MEETING \#1

SAVANNAH

SR69/128

CORRIDOR STUDY

A corridor study along the SR 128 / SR 69 corridors beginning at the intersection of SR 128 and SR 226 and ending at the intersection of SR 69 and SR 226.

The purpose of the proposed study is to identify strategies to improve transportation operations within the study area for

THE PROJECT

 vehicular traffic, pedestrians, bicyclists and freight movement.The study will analyze the corridors to identify deficiencies and develop improvement strategies for:

- Safety improvements at intersections and identified high accident locations
- Operational improvements at critical areas
- Accommodation of all travel modes
- Access management on developed properties
- Land use plans for undeveloped properties
- General roadway capacity improvements

STUDY BACKGROUND AND AREA

- Savannah selected for TDOT CTPG funds for an SR 69/SR 128 Study
- TDOT assigned CTPG Projects to Statewide Planning Consultants
- Savannah officials selected Neel-Schaffer from pool of consultants
- Kick Off Meeting held with City, TDOT and consultants.

In order to create a planning document that is reflective of the needs of the community in Savannah, the Neel-Schaffer team seeks to engage stakeholders in identifying and validating issues

PURPOSE OF THIS MEETING

 within the corridors.Furthermore, the vision and goals for the project will be the guide in which the study team measures the success of the plan. Community input and acceptance of the vision and goals will result in a plan that addresses the unique needs in Savannah along SR 69 and SR 128.

VISION AND GOALS

Vision: The vision is to develop a comprehensive plan for the corridor that addresses current deficiencies in capacity and safety, provides guidance for improvements to address existing access management issues, and creates a framework to guide future development and public investment through land use policy and access management policy for the subject routes.

Goal 1: Enhance the functionality of the routes for all users through geometric and operational improvements to address access management issues, capacity deficiencies and safety concerns.

Goal 2: Provide for the efficient movement of people and goods from developing industrial and commercial areas south of Savannah into the city.

Goal 3: Ensure compatibility of future development with the transportation network through appropriate land use planning.

GOAL 1

Goal 1: Enhance the functionality of the routes for all users through geometric and operational improvements to address access management issues, capacity deficiencies and safety concerns.

The SR 69 and SR 128 corridors suffer from recurring congestion due to inadequate capacity, lack of turn lanes, and poor access management. Design of street intersections in several locations creates serious operational and safety concerns. The plan will identify deficiencies and develop both near-term and long-term solutions to address those issues.

GOAL 2

Goal 2: Provide for the efficient movement of people and goods from developing industrial and commercial areas south of Savannah into the city.

SR 128 and SR 69 are both important arterials in Savannah/Hardin County, providing links from the city to the Savannah-Hardin County Airport, the Savannah/Hardin County Industrial Park, the Florence/Muscle Shoals, Alabama area to the southeast, and Pickwick Dam and the industrial facilities along Yellow Creek and the Tennessee-Tombigbee Waterway in Mississippi. The plan will address improvements needed to support and enhance the ability of the corridor to accommodate anticipated growth in demand in these areas.

GOAL 3

Goal 3: Ensure compatibility of future development with the transportation network through appropriate land use planning.

In the southern portion of the study area traffic operations are presently not a problem since much of the abutting property is currently undeveloped. However given the presence of the Savannah/Hardin County Airport, major gas and electric transmission lines, and access to the Tennessee River, there is a high potential for rapid development by commercial, industrial, or residential land uses. The plan will develop land-use policy guidance and access management guidance for these areas to ensure that development occurs in a way that is integrated with the ability of the transportation network to support the increasing demand.

DATA COLLECTION \& INVENTORY

- Traffic Counts
- Crash History
- Land Use and Zoning
- Preliminary Environmental
- Planned Development
- School Bus Routing

EXISTING TRAFFIC CONDITIONS

EXISTING LAND USE MAP

ENVIRONMENTAL OVERVIEW

ISSUE - SCHOOL TRAFFIC

How much of an issue is school traffic?

What concerns do you have about school traffic?

What intersections and sections of roadway are most impacted?

ISSUE - BIKE AND PEDESTRIAN TRAFFIC

What challenges do bicyclists and pedestrians face?

Where are they most impacted?

How would improvement benefit the community as a whole?

ISSUE - TRUCK TRAFFIC

Are there any issues with truck traffic?

How do transportation issues impact industrial growth?

How do transportation issues impact economic development?

ISSUE - CONFUSING INTERSECTIONS

ISSUE - CONGESTION AT INTERSECTIONS

Are there intersections where you experience frequent delays?

What are the issues with these intersections?

What time of day are these issues more prevalent?

NEXT STEPS

1. FEEDBACK FROM RESIDENTS/BUSINESSES
2. EXISTING CONDITIONS SUMMARY
3. TRAFFIC MODELING \& FORECASTING
4. IMPROVEMENT ALTERNATIVES
5. ANOTHER PUBLIC MEETING

WE VALUE YOUR FEEDBACK!

CONCLUSION \& QUESTIONS

Please contact Tom Smith, Barry Alexander or Karen Mohammadi with your comments;

Tsmith@CityofSavannah.org
Barry.Alexander@Neel-Schaffer.com
Karen.Mohammad@Neel-Schaffer.com

NOTICE OF PUBLIC MEETING

DATE: Monday, November 7, 2016
TIME: 5:00-7:00 PM
PLACE: Savannah City Hall, 140 Main Street, Savannah, TN

The City of Savannah will conduct a public meeting regarding a roadway corridor study along Pickwick Street (SR-128S) and Florence Road (SR-69) from Main Street (SR-15/ US-64) to Airport Road (SR-226). This meeting will be followed by a presentation at the monthly City Commission Meeting at 7:00 PM.

The study, funded by a Community Transportation Planning Grant from the Tennessee Department of Transportation has evaluated vehicle, pedestrian and bicyclist needs, both present and future, along the corridors and the study consultants have developed strategies to preserve and enhance the functionality of the routes for all users. The intent of the meeting is to share those strategies, answer questions and solicit input regarding the study recommendations.

The City of Savannah does not discriminate on the basis of race, color, religion, age, sex, handicap, or national origin. Savannah City Hall is accessible to persons with disabilities.

Any person with a disability needing special accommodations, or persons requiring language assistance services, should contact Tom Smith at Savannah City Hall, (731) 925-3300 Ext. 156 prior to the time and date of the meeting indicated above.
trustee's notice of foreclosure sale
arnaut having been made in the terms, conditions and
ayments provided inacertain Deed of Trust, dated Aprili, 2014, executed by William Joseph Delfino II and Erin Bishop to W. Andrew Yarbrough Trustee, of record in Record Book 597, Page 741 in the Register's Office fo
Hardiin County, Tennessee, to secure the indettedness Hercin County, Tennessee, to secure the indebtedness described, the said Deed of Trust, I, W. Andrew Yarbrough, will by virtue of the power and authority vested in me as Trustee, on the 7th day of November, 2016 a TENNESSEE, sell to the highest bidder COURTHOUSE, HARDIN COUNTY, rights of redemption, homestead and dower, rights by virtue of marriage and all other exemptions of every kind, which are expressly waived, an A certain tract or parcel of land lying and being situated in the 6 th Civi: District of Harain Cous
as follows: as follows
No. 142 with the center line of Pisgan-Tula Road; thence running with the center of Pisgah-Tula Road, south 89 - Tegreess 15 minutes East, 460 feet to a
point in the center of the point in the center of the same; thence running north 00 degrees 28 minutes
east 25 feet to an iron fence post in the noth prescritive righto said road found marking the southeast corner and true point of beginning of the property herein described, being a southeast corner of Roy Taylor property described in DB $136-831$, ROHC ; thence leaving said road and running with the
boundary of said Taylor property, north 00 degrees 28 minutes boundary of said Taylor property, north 00 degrees 28 minutes east, 220.76
feet to an iron fence post; thence south 89 degrees 34 minutes 50 seconds east, 400 feet to an iron fence post; and thence south 00 degrees 28 minutes 05 seconds west, 220.05 feet to an iron fence post in the north prescriptive way line, north 89 degrees 40 minutes 57 seconds west, 400 feet to the point of beginning containing 2.024 acres. (Description according to prior deed)
Bishoo by teed of ponap Syranveyed io Wiliam Joseph Delfino Il and Erin

(2) Twelve (12) months from the de
This the 13 th day of October, 2016 .

Is/ John Ray Ford, Administrator
/s/ Dennis W. Plunk, Attorney for the Estate
(10202tp)
Community news

Crump

a 5 k chapter wil g a 5 k run/walk at Pickwick anding State Park on Saturday the TCAT Trick or Trot 5K rluding ristration ncluang registaiion and fee information, can send an email call the school.
October birthdays: Mearan Kennedy, Kenny Harris and Jeff Gambrell.
Please keep Reda \& Lola Jarrett in your prayers. If you have any Crump "Good News," birthdays, or prayer requests, please email, ext, or call and let me know. will be glad to add it to the Crump community news col umnin The Courier. This article is largely based on what you hare with me.
Have a wonderful week and may God watch over you.

NOTICE OF TRUSTEE'S SALE

WHEREAS, default has occurred in the performance of the covenants, terms, and conditions of a Deed of Trust Note dated February 22, 2005, and
the Deed of Trust of even date securing the same, recorded February 22, the Deed of Trust of even date securing the same, recorded February 22,
2005, in Book No. 367, at Page 789 , in Office of the Register of Daeds for Hardin County, Tennessee, executed by Tasha Nichole Shubert and James C. Shubert, conveying certain property therein described to Andrew Valentine, Esq. as Trustee for American Home Mortgage; and the undersigned, Wilson \& Chase Bank, National Association.
NOW, THEREFORE, notice is hereby given that the entire indebtedne has been declared due and payable; and that an agent of Wilson \& Associates, P.L.L.C., as Successor Trustee, by virtue of the power, duty, and authority Bank, National Association, will, on December 1, 2016 on or about 11:00 AM, at the Hardin County Courthouse, Savannah, Tennessee, offer for sale certain at the conclusion of the sale, or credit bid from a bank or orthified funds paid pre-approved by the successor trustee. The sale is free from all exemptions, which are expressly waived in the Deed of Trust, said property being real state situated in Hardin County, Tennessee, and being more particularly escribed as follows:
Being Lot No. 36
Subdivision being of record in Plat Book 2, Page 86 in the Hardin Cound Register's Office. Reference is here made to said Plat and to the Book and 36 and the same is incorporated herein by this referenence as fully and to the same extent as if copied in full herein.
ALSO KNOWN AS: 160 Clement Drive, Savannah, TN 38372
Ty unpaid taxes; any testrictive covenants, easements, or setthack lines plat; may be applicable; any statutory rights of redemption of any governmental priority created by a fixiture filing and to or encumbrances as well as any Saturday and took him some It any matter that an accurate survey
I talked with Bettye Crow

NOTICE OF PUBLIC MEETING

DATE: Monday, November 7, 2016
TIME: 5:00-7:00 PM
PLACE: Savannah City Hall, 140 Main Street, Savannah, TN
The City of Savannah will conduct a public meeting regarding a roadway corridor study along Pickwick Street(SR 128S) and Florence Road (SR-69) from Main Street (SR-15) US-64) to Airport Road (SR-226). This meeting will be fol Meeting at 7:00 PM.

The study, funded by a Community Transportation Plan ning Grant from the Tennessee Department of Transportation has evaluated vehicle, pedestrian and bicyclist needs, both present and future, along the corridors and the study consultants have developed strategies to preserve and enhance the functionality of the routes for all users. The questions and solicit input regarding the study recommen dations.
The City of Savannah does not discriminate on the basis of race, color, religion, age, sex, handicap, or nationa origin. Savannah City Hall is accessible to persons with disabilities.
Any person with a disability needing special accommo dations, or persons requiring language assistance ser-
vices, should contact Tom Smith at Savannah City Hall, (731) 925-3300 Ext. 156 prior to the time and date of the meeting indicated above.

NOTICE TO CREDITORS

Notice is hereby given pursuant to T.C.A. $\$ 30-2-306$ that on the 7 th day
October, 2016, Letters of Administration, in respect of the ESTATE OF LUCILLE R. MARTIN, deceased, who died on the 26th day of September, 2016, were issued to the undersigned by the Probate Court of Hardin County or unmatured, against the estate are required to file the same with the clerk of the above named court on or before the eariier of the dates prescribed in
(1) or (2) otherwise their claims will be forever barred: (1) or (2) otherwise their claims will be forever barred:
as the case may be) of this notice if the creditior received an actual coopy of as the case may be) of this notice if the creaditor received an actual copy of
this notice to creditors at least sixty (60) days before the date that is four (4) months from the date of the first publication (or posting); or
(B)) Sixty (60) days from the date the creditor received an actual copy
of the notice to creditors if the creditor received the copy of the notice less than sixty (60) days prior to the dade that is four (4) mopths trom the date of
the the first publication (or posting) as described in (1) (A); or
(2) Twelve (12) monts from the decedents
(2) Twelve (12) months from the deceedent's date of death.

This the 7 th day of October, 2016.
s/ Anthony Wayne Martin, Administra
Estate of Lucille R. Martin, Deceased
MARTHA SMITTH, CLERK OF THE PROBATE COURT $\mathrm{ls} /$ Martha S . Smith, Cleat
Attorney for the estate:
Attorney for the estate:
/s/ Dennis W. Plunk
NOTICE TO CREDITORS
Notice is hereby given that on the 11 th day of October, 2016, Letters Tes-
amentary (or of administration as the case may be) in respect to the estate Lersigned by the Chancery Court of Hagrdin County, Tennessee All tersens dersigned by the Chancery Court of Hardin County, Tennessee. All persons, estitity are recouired to file the same with the clerk of the above named Court

Law Office of Richard McFall

344 Main St. " Savannah, TN 38372 Criminal Defense • Bankruptcy Personal Injury • Divorce • Custody All major credit cards accepted
(901) 289-8321 Just Call McFall

Mortgage Association ("Fannie Mae") and WHEREAS, Federal Natıona Mortgage Association ("Fannie Mae"), as the holder of the Note for which debt is owed, ("Note Holder"), appointed the undersigned, Priority Trustee Services of TN, LLC, as Substitute Trustee by instrument filed or to be filed for record in the Register's Office of Hardin County, Tennessee, with all the rights, powers and privileges of the original Trustee named in said Deed of Trust; and NOW, THEREFORE, notice is hereby given that the entire indebtedness has been declared due and payable as provided in said Deed of Trust by the Note Holder, and that the undersigned, Priority Trustee Services of TN, LLC, Substitute Trustee, or its duly appointed attorneys or agents, by virtue of the power and authority vested in it, will on December 1, 2016, commencing at 11:00 AM at the Front Door of the Hardin County Courthouse, 465 Main Street, Savannah, TN 38372, proceed to sell at public outcry to the highest and best bidder for cash or certified check only. The wiring of funds will not be accepted. The conducting of the sale will be handled by Auction.com. More information concerning their policies and procedures on bidding at the foreclosure sale can be found on their website Auction.com. The following described property situated in Hardin County, Tennessee, to wit: BEING LOT NO. 37 IN THE BELLE MEADE SUBDIVISION A PLAT OR PIAN OF SAID SUBDIVISION BEING OFRECORD IN PLATCABINET2 PAGE 31, INTHEREGISTER'S OFFICE OF HARDIN COUNTY TENNESSEE AND REFERENCE IS HERE MADE TO SAID PLAT AND TO THE BOOK AND PAGE WHERE RECORDED FOR A MORE COMPLETE AND ACCURATE DESCRIPTION OF SAID FOR A MOR AS THERE GIVEN AND SHOWN IS INCORPORATED HEREIN BY AS RERE GIVEN AND SHO AS FULY AND TO THE SAME EXTENT THIS REFERENCE THERETO AS FULLY AND TO THE SAME EXTENT AS IF COPIED IN FULL HEREN. (DESCRIPTION ACCORDING TO PRIOR DEED.) BEING THE SAME PROPERTY CONVEYED TO VIVIA N DILLIHUNT BY DEED DATED OCTOBER2, 2OO AND OF RECHD IN DEED BOOK 457, PAGE 265, IN THE REGISTERES OFICE OF HAT ST COUNTY, TENNESSEE. PROPERTY ADDRESS: 380 WALNUT ST, SAVANNAH, TN 38372 CURRENT OWNER(S): Vivian Dilhunt The sale of the above-described property shall be subject to all matters shown on any recorded plan; any unpaid taxes; any restrictive covenants, easements or set-back lines that may be applicable; any prior liens or encumbrances as well as any priority created by a fixture filing; and any matter that an accurate survey of the premises might disclose. Substitute Trustee will only convey any interest he/she may have in the property at the time of sale. Property is sold "as is, where is." For every lien or claim of lien of the state identified above, please be advised notice required by § 67-1-1433 (b)(1) was timely given and that any sale of the property herein referenced will be subject to the right of the state to redeem the land as provided for in § $67-1-1433$ (c)(1) All right and equity of redemption, statutory or otherwise, homestead, and dower are expressly waived in said Deed of Trust, and the title is believed to be good, but the undersigned will sell and convey only as Substitute Trustee. The right is reserved to adjourn the day of the sale to another day, time, and place certain without further publication upon announcement at the time
 OF TN LLC 2970 Clairmont Road NE, Suite 780 Atlanta, Georgia 30329 OF TN, LLC 2970 Clairmont Road NE, Suke 780 Atlanta, Georgia 30329
 10/20/16,10/27/16,11/03/10 10/27/2016, 11/03/2016
(10203tc)

IN RE:

THE ADOPTION OF MINOR CHILDREN
WHOSE NAME FOR THE PURPOSE OF THIS PROCEEDING IS WHOSE NAME FOR THE PURPOSE OF THIS PROCEED
JONATHAN CHRISTOPHER MANARD, DOB: $11 / 24 / 1999$ JONATHAN CHRISTOPHER MANARD,
EMILY DAWN MANARD, DOB: $6 / 13 / 2004$
DANIALLAH HOLLIE MANARD, DOB: 6/14/2005 BY:
SUSAN OWENS AND
WILLIAM OWENS, JR.
PETITIONERS,
VS.
NO. AD-372
JUNE ANN OWENS RESPONDENT.

ORDER OF PUBLICATION
It appearing to the Court from the sworn petition or affidavit filed in this cause that the whereabouts of the Respondent, June Ann Owens, is presently unknown and cannot be ascertained upon diligent inquiry, so that ordinary process cannot be served upon her. Therefore, this Order of Publication should be published in the Savannah Courier newspaper located in Savannah, Hardin County, Tennessee as the best possible notice to the Respondents Hander the circumstances

Respondent, June Ann Owens, is hereby required to appear and file Respond with Marth Smith, the Clerk and Master of the Hardin County an answry Chancery Court, Hardin County Cour House, the Petition for Adoption by Tennessee, 38372 or ormintion def Parental Rights, and to serve and answer Grandparents and Termi 10 is thity (30) days from the last day said petition by December 24, 2016, which is thity (30) days fom he last day of publication of this notice, and send a copy of said answer to Joe. L. Brow, Attorney for the Pellioners in this cause, whose adr will Savannah, Tennessee 38372, or a default judgment will be entered against the Respondent, June Ann Owens, and this cause set for hearing in the Chancery Court of Hardin County, Tennessee, sitting in the Hardin County Courthouse in Savannah, Tennessee, ex parte as to Respondent, June Ann Owens.

If there is no answer, a hearing on Petitioner's Motion for Default shall be
heard on January 3,2017. Failure to answer or appear may result intermination of Respondent's parental rights to the children referenced above.

Entered this the 25th day of October, 2016.
s/ Martha S. Smith, Clerk \& Master
By: Tammy Hunt, Deputy Clerk and Master
Approved for entry:
s/ Joe L. Brown, BPR \#022450
Attorney for the Petitioners
419 Main Street
Savannah, TN 38372
(731) 925-2202
(10274tc)

NOTICE

The Hardin County Board of Education will meet at 5:30 p.m on Monday, November 14, 2016 at East Hardin Elementary located at 100 Freewill Lane, Savannah, TN 38372. The public is invited.

PUBLIC NOTICE
 SAVANNAH CITY COMMISSION RESCHEDULED MEETING

The Savannah City Commission regular monthly meeting for November has been rescheduled for the following date: Monday, November 7, 2016 at 7 p.m. at City Hall There will not be a Study Session for November. The public is invited and encouraged to attend.

NOTICE OF PUBLIC MEETING

DATE: Monday, November 7, 2016
TIME: 5:00-7:00 PM
PLACE: Savannah City Hall, 140 Main Street, Savannah, TN
The City of Savannah will conduct a public meeting re garding a road way corridor study along Pickwick Street(SR128S) and Florence Road (SR-69) from Main Street (SR-15/ US-64) to Airport Road (SR-226). This meeting will be fol lowed by a presentation at the monthly City Commission Meeting at 7:00 PM.

The study, funded by a Community Transportation Planning Grant from the Tennessee Department of Transportation has evaluated vehicle, pedestrian and bicyclist needs, both present and future, along the corridors and the study consultants have developed strategies to preserve and enhance the functionality of the routes for all users. The intent of the meeting is to share those strategies, answer questions and solicit input regarding the study recommendations.

The City of Savannah does not discriminate on the ba sis of race, color, religion, age, sex, handicap, or national origin. Savannah City Hall is accessible to persons with disabilities.

Any person with a disability needing special accommodations, or persons requiring language assistance services, should contact Tom Smith at Savannah City Hall, (731) 925-3300 Ext. 156 prior to the time and date of the meeting indicated above.

Savannah City Commission Rescheduled Regular Monthly Meeting Monday November 7, 2016, 7 P.M.

I. Call to Order
II. Pledge of Allegiance
III. Prayer
IV. Presentation by Neel-Schaffer, Inc. - The Savannah SR 69/128 Corridor Study
V. Minutes:

To Be Approved:
(X) City Commission-October 6, 2016, Regular Meeting,

To Be Accepted for Record:
(X) Historic Zoning Commission - October 11, 2016, Regular Meeting 6_{6}
(X) Planning Commission - October 13, 2016, Regular Meeting ${ }_{7}$
(X) Parks Commission - October 20, 2016, Regular Meeting 8
VI. Ordinances:
(X) $1^{\text {st }}$ Reading, of an Ordinance to amend the official zoning map of Savannah, Tennessee, to rezone properties located near 1750, 1800, and 1834 Florence Road (Heather Wilson property) from B-2 (General Business) District to R-3 (High Density Residential) District. ROGER FRANKS ${ }_{q}$
VII. Resolutions:
(X) A Resolution adopting the Savannah SR 69/128 Corridor Study prepared for the City of Savannah, Tennessee. TOM SMITH 12
VIII. Proclamations/Awards:

NONE

PUBLIC PARTICIPATION

IX. Purchases:
A. A motion is requested by the Police Department, "approving the purchase of two 2017 Utility Police Interceptor vehicles from Ford of Murfreesboro at the state contract price of $\$ 35,110.98$ each, including equipment." The total purchase price will be $\$ 70,221.96$ ATTACHMENT NO. 1, TERRY HOSEA $_{13}$
B. A motion is requested by the Utility Department, "approving a Professional Engineering Services Agreement between the Savannah Utility Department and The Tennergy Corporation for the Industrial Road Regulator Station upgrade." Total cost is $\$ 13,800.00$ ATTACHMENT NO. 2, VIRGIL MORRIS $_{15}$
X. New Business:
XI. Other Business:

IF ANY

CITY MANAGER'S REPORT

XII. Announcements:

IF ANY
XIII. Information Items:
(X) Governmental Type Funds - September, 2016, Financial Reports ${ }_{19}$
(X) Utility Dept. - September, 2016, Financial Reports ${ }_{27}$
(X) Police Dept. - October, 2016, Activity Report 31
(X) Codes Dept. - October, 2016, Activity Report 33
(X) Parks Dept. - October, 2016, Activity Report 34
(X) Fire Dept. - October, 2016, Activity Report 35
XIV. Adjourn

Meeting of the SAVANNAH MUNICIPAL/REGIONAL PLANNING COMMISSION October 13, 2016

Present
Blake White
Leroy White
Benny Austin

Absent
Jerry Rogers
Joe Cromwell

Others	
Terry Hulen	Tom Smith
Will Radford	Barry Webb
Garry Welch	Heather Wilson
Seth Sumner	Nichole Seymour
Stephen White	Calvin Abram
Patti Clare	Barry Alexander
Karen Mohammadi	

Secretary Blake White called the October meeting to order and called for a motion to approve the minutes of the August 11, 2016 regularly scheduled Planning Commission meeting. Commissioner Leroy White made motion to approve minutes as written. Commissioner Benny Austin seconded the motion. The vote was all ayes.

New Business:

A. Rezoning - Florence Road - Heather Wilson

Staff presented the commission with a petition from Heather Wilson requesting property that she owns and located off of Florence Road be rezoned from B-2 (General Business District) to R-3 (High Density Residential District). Staff presented the commission with an overview map outlining where this property was located. After discussion, Commissioner Leroy White made motion to recommend to the City Commission that Tract 1 of Heather Wilson property along with the four parcels adjacent north be rezoned from B-2 to R-3. Commissioner Benny Austin seconded the motion. The vote was all ayes.

B. Community Transportation Planning Grant

Staff introduced Barry Alexander, Patti Clare and Karen Mohammadi from Neel/Schaffer Consultant Firm and turned the meeting over to them. Neel/Schaffer staff gave a general overview of what the TDOT Community Transportation Planning Grant purpose was and the data they have collected. Also present was Calvin Abram/Region 4 Supervisor and Nicole Seymour/ Planner from TDOT. Neel/Schaffer staff gave a presentation outlining the proposal and recommendation of the Transportation Corridor study. After discussion, the commission recommended approval of the study to the city commission.

C. Food Truck

Commissioner Leroy White made motion to postpone discussion of a Food Truck Ordinance until next month's meeting since all the commissioners were not present. Commissioner Benny Austin seconded the motion. The vote was all ayes.

Old Business: None

Other Business: None

There being no further business, a motion to adjourn was made by Commissioner Benny Austin and seconded by Commissioner Leroy White. The vote was all ayes.

Respectfully submitted,

[^5]
RESOLUTION

RESOLUTION ADOPTING THE SAVANNAH SR 69/128 CORRIDOR STUDY PREPARED FOR THE CITY OF SAVANNAH, TENNESSEE

WHEREAS, the Board of Mayor and Commissioners of the City of Savannah, Tennessee have committed to supporting and improving the area's transportation system for mobility and accessibility of present and future generations of City of Savannah citizens; and,

WHEREAS, the City of Savannah was awarded a TDOT Community Transportation Planning Grant by the State of Tennessee, Department of Transportation to aid with the creation of planning documents that support improvements in traffic flow, safety and overall efficiency of the transportation system to achieve community visions as related to transportation and land use needs that promote economic growth; and,

WHEREAS, the TDOT Consultant (Neel-Schaffer, Inc.) has completed the Savannah SR69/128 Corridor Study per contract guidelines and deliverables providing recommendations for safety, capacity and connectivity within the study area; and,

WHEREAS, the City of Savannah hereby acknowledges receipt of the Savannah SR69/128 Corridor Study for use in sustaining guidance and compatibility with the planning of future development of the transportation network and land use planning within the study area;

NOW, THEREFORE BE IT RESOLVED by the Board of Mayor and Commissioners of the City of Savannah, meeting this the $7^{\text {th }}$ day of November, 2016, that the City of Savannah does hereby adopt the Savannah SR69/128 Corridor Study as a guiding document to be considered in future planning decisions.

READ, ADOPTED, AND APPROVED IN OPEN PUBLIC MEETING THIS $7^{\text {th }}$ DAY OF NOVEMBER, 2016.

[^6]October 25, 2016

Main Menu

Home
Pay Your Utility Bill Online Statistics
Community Development
Fire \& Police
Recreation
Taxes/Utilities
Savannah Main Street
Board Meetings
FAQs
Contact Us
Links
News Articles
Upcoming Events
Job Openings
City Charter
Board Members
Animal Services Department Directory

Water Quality Report
Historic District Design
Guidelines
Vendor Registry
Bids and RFPs
Brick Paver Memorial Form Savannah Theater Calendar
Savannah Municipal Code

Area Info

Follow Us on Facebook! Chamber of Commerce Tour Hardin County

Public Meeting (Final)
SR69/128 Corridor Study EEO Statement

City Zoning Information

Home

Public Meeting (Final) SR69/128 Corridor Study
NOTICE OF PUBLIC MEETING
DATE: Monday, November 7, 2016
TIME: 5:00-7:00 PM
PLACE: Savannah City Hall, 140 Main Street, Savannah, TN
The City of Savannah will conduct a public meeting regarding a roadway corridor study along Pickwick Street (SR-128S) and Florence Road (SR-69) from Main Street (SR-15/ US-64) to Airport Road (SR-226). This meeting will be followed by a presentation at the monthly City Commission Meeting at 7:00 PM.
The study, funded by a Community Transportation Planning Grant from the Tennessee Department of Transportation has evaluated vehicle, pedestrian and bicyclist needs, both present and future, along the corridors and the study consultants have developed strategies to preserve and enhance the functionality of the routes for all users. The intent of the meeting is to share those strategies, answer questions and solicit input regarding the study recommendations.
The City of Savannah does not discriminate on the basis of race, color, religion, age, sex, handicap or national origin. Savannah City Hall is accessible to persons with disabilities.
Any person with a disability needing special accommodations, or persons requiring language assistance services, should contact Tom Smith at Savannah City Hall, (731) 925-3300 Ext. 156 prior to the time and date of the meeting indicated above.

Next >
[Back]

NOTICE OF PUBLIC MEETING

DATE: Monday, November 7, 2016
TIME: 5:00-7:00 PM
PLACE: Savannah City Hall, 140 Main Street, Savannah, TN

The City of Savannah will conduct a public meeting regarding a roadway corridor study along Pickwick Street (SR-128S) and Florence Road (SR-69) from Main Street (SR-15/ US-64) to Airport Road (SR-226). This meeting will be followed by a presentation at the monthly City Commission Meeting at 7:00 PM.

The study, funded by a Community Transportation Planning Grant from the Tennessee Department of Transportation has evaluated vehicle, pedestrian and bicyclist needs, both present and future, along the corridors and the study consultants have developed strategies to preserve and enhance the functionality of the routes for all users. The intent of the meeting is to share those strategies, answer questions and solicit input regarding the study recommendations.

The City of Savannah does not discriminate on the basis of race, color, religion, age, sex, handicap, or national origin. Savannah City Hall is accessible to persons with disabilities.

Any person with a disability needing special accommodations, or persons requiring language assistance services, should contact Tom Smith at Savannah City Hall, (731) 925-3300 Ext. 156 prior to the time and date of the meeting indicated above.

Thank you for your interest in the SR 69 (Florence Road)/SR 128 (Pickwick Street) Corridor Study. We appreciate your comments. The build recommendations are included on the back of this form. The priorities used were low, medium and high. "Low" priorities reflect long range projects to be completed 10 or more years in the future. "Medium" priority projects are those that should be completed in the next 5 to 10 years. "High" priority projects are those that should be accomplished in the next five years. Please use the last column to tell us how you think the projects should be prioritized. If you do not feel a project should be included, write "None" in the square.

Improvement Project	Estimated Project Costs		Recommended Priority	Your Recommended Priority
Spot Improvements				
SR 128/Dodd Road	\$	70,000	Medium	
SR 128/Sevier Street Signal	\$	220,000	High	
SR 15/Main Street and Water Street Interconnect, Coordinate and Retime Downtown Signals	\$	530,000	High	
SR 69/SR 15 Realignment	\$	550,000	Medium	
SR 69/SR 203 (Pinhook) Realignment	\$	630,000	High	
SR 69/Malcomb Street	\$	70,000	High	
SR 69/Lewis Street	\$	70,000	High	
SR 69/Ranch Street	\$	70,000	High	
SR 69/Austin Street	\$	70,000	High	
SR 69/One Stop Drive	\$	100,000	High	
SR 69 Curve Improvement South of One Stop Drive	\$	550,000	Medium	
SR 69/SR 226 (Airport Drive)	\$	10,000	High	
SR 226 (Airport Drive)/Discount Drive	\$	10,000	HIgh	
Multimodal Improvements				
Main Street	\$	220,000	Medium	
Water Street	\$	180,000	Low	
Malcomb Street	\$	470,000	Low	
Hickory Street	\$	430,000	Low	
Lewis Street	\$	380,000	Low	
Ranch Street	\$	410,000	Low	
Eureka Lane	\$	420,000	Low	
Higgins Drive + North to Opel Loop	\$	500,000	Low	
Connectivity Improvements				
Sevier to Stout Connector	\$	1,540,000	Medium	
Dodd/Discount Drive Connector	\$	2,090,000	Medium	
School Access Improvements				
South Street Improvement	\$	220,000	High	
Driveway/Storage Lane Improvements	\$	70,000	Medium	
Corridor Improvements				
SR 69 Higgins to Main Street	\$	10,920,000	Medium	

Thank you for your interest and participation! FOR MORE INFORMATION CONTACT STUDY TEAM LEADER TOM SMITH:

City Planning Commission Meeting

SAVANNAH
 SR69/128
 CORRIDOR STUDY

- Tennessee Department of Transportation

THE PROJECT

A corridor study along the SR 128 / SR 69 corridors beginning at the intersection of SR 128 and SR 226 and ending at the intersection of SR 69 and SR 226.

The purpose of the proposed study is to identify strategies to improve transportation operations within the study area for vehicular traffic, pedestrians, bicyclists and freight movement.

The study will analyze the corridors to identify deficiencies and develop improvement strategies for:

- Safety improvements at intersections and identified high accident locations
- Operational improvements at critical areas
- Accommodation of all travel modes
- Access management on developed properties
- Land use plans for undeveloped properties
- General roadway capacity improvements

PROJECT ELEMENTS

\square Background Review
Data Collection and Inventory

- Existing Conditions
\square Public Involvement
\square Recommendations
- Land Use Planning
- Spot Improvements
- Multimodal Improvements
- Connectivity Improvements
- School Access Improvements
- Corridor Improvements
\square Cost Estimates and Project Prioritization

VISION AND GOALS

Vision: The vision is to develop a comprehensive plan for the corridor that addresses current deficiencies in capacity and safety, provides guidance for improvements to address existing access management issues, and creates a framework to guide future development and public investment through land use policy and access management policy for the subject routes.

Goal 1: Enhance the functionality of the routes for all users through geometric and operational improvements to address access management issues, capacity deficiencies and safety concerns.

Goal 2: Provide for the efficient movement of people and goods from developing industrial and commercial areas south of Savannah into the city.

Goal 3: Ensure compatibility of future development with the transportation network through appropriate land use planning.

LEVELS OF SERVICE

 AM Peak 2015Problem Locations:

- SR 128/Parris Drive
- SR 128/Eureka Street
- SR 128/Lacefield Drive
- SR 128/Sevier Street
- SR 128/Water Street
- SR 69/Eureka Street

LEVELS OF SERVICE

 PM Peak 2015Problem Locations:

- SR 128/Parris Drive
- SR 128/Lacefield Drive
- SR 128/Water Street

LEVELS OF SERVICE

AM Peak 2040
2016-2040 Growth rates obtained from TDOT:
SR 128 2.10\% north of Walkertown Rd
SR 128 0\% south of Walkertown Rd
SR 69 4.94\% between Airport Rd and Walkertown Dr
SR 69 3.25\% between Walkertown Dr and Main St
Problem Locations:

- SR 128/Parris Drive
- SR 128/Lacefield Drive
- SR 128/Eureka Street
- SR 128/Sevier Street
- SR 128/Water Street
- SR 69/Eureka Street

LEVELS OF SERVICE

 PM Peak 2040
2016-2040 Growth rates obtained from TDOT:

SR 128 2.10\% north of Walkertown Rd
SR 128 0\% south of Walkertown Rd
SR 69 4.94\% between Airport Rd and Walkertown Dr SR 69 3.25\% between Walkertown Dr and Main St

Problem Locations:

- SR 128/Parris Drive
- SR 128/Lacefield Drive
- SR 128/Water Street

CRASH DATA

Level of Severity	Number Of Crashes in Study Area	Crash by Type for Hardin County
Fatal	2	6
Incapacitating Injury	6	
Non-Incapacitating Injury	110	517^{*}
Prop Damage	419	1418
TOTAL	537	1941

[^7]

CRASH DATA

Type	Number of Crashes	Percentage
Angle	124	23.09%
Head-On	10	1.86%
No Collision W/ Vehicle	82	15.27%
Other	12	2.23%
Rear-End	237	44.13%
Rear To Rear	2	0.37%
Rear To Side	2	0.37%
Sideswipe, Opposite		2.98%
Direction	16	
Sideswipe, Same Direction	32	5.96%
Unknown	2	0.37%
Not Specified	18	3.35%
TOTAL	537	

PUBLIC COMMENTS

Issues Average Rankings in Importance

Truck Traffic						
4.8	7.1	7.6	7.9	6.2	7.0	4.8

$0=$ Not important; 10 =Highly Important

RECOMMENDATIONS
 LAND USE

\square Short-Term: Use Access Management as a Land Use Strategy
\square Short-Term: Adopt Traffic Impact Analysis Requirements
\square Mid Term Action: Adopt Subdivision Regulations
Mid-Term Action: Adopt goals to guide all land use decisions
Long-Term: Adopt a Comprehensive Plan

RECOMMENDATIONS: SPOT IMPROVEMENTS

- South Street/Sharon Street
- SR 128/Sevier Street
\square SR 15/Main Street and Water Street Area
- SR 69/Pinhook/Main Street
- SR 69/Malcomb, Hickory, Lewis, Ranch and Austin Streets
- SR 69/One Stop Drive

RECOMMENDATIONS:
 SPOT IMPROVEMENTS

\square South Street/Sharon Street

- SR 128/Sevier Street
\square SR 15/Main Street and Water Street Area
\square SR 69/Pinhook/Main Street
\square SR 69/Malcomb, Hickory, Lewis, Ranch and Austin Streets
\square SR 69/One Stop Drive

RECOMMENDATIONS: SPOT IMPROVEMENTS

\square South Street/Sharon Street
\square SR 128/Sevier Street
I SR 15/Main Street and Water Street Area
SR 69/Pinhook/Main Street
\square SR 69/Malcomb, Hickory, Lewis, Ranch and Austin Streets
\square SR 69/One Stop Drive

RECOMMENDATIONS: SPOT IMPROVEMENTS

\square South Street/Sharon Street

- SR 128/Sevier Street
\square SR 15/Main Street and Water Street Area
\square SR 69/Pinhook/Main Street
\square SR 69/Malcomb, Hickory, Lewis, Ranch and Austin
\square SR 69/One Stop Drive

RECOMMENDATIONS: SPOT IMPROVEMENTS

\square South Street/Sharon Street
\square SR 128/Sevier Street
I SR 15/Main Street and Water Street Area
SR 69/Pinhook/Main Street
\square SR 69/Malcomb, Hickory, Lewis, Ranch and Austin
\square SR 69/One Stop Drive

RECOMMENDATIONS: SPOT IMPROVEMENTS

\square South Street/Sharon Street

- SR 128/Sevier Street

SR 15/Main Street and Water Street Area
\square SR 69/Pinhook/Main Street
\square SR 69/Malcomb, Hickory, Lewis, Ranch and Austin Streets
\square SR 69/One Stop Drive

RECOMMENDATIONS: SPOT IMPROVEMENTS

South Street/Sharon Street

- SR 128/Sevier Street
\square SR 15/Main Street and Water Street Area
- SR 69/Pinhook/Main Street
\square SR 69/Malcomb, Hickory, Lewis, Ranch and Austin Streets
\square SR 69/One Stop Drive

RECOMMENDATIONS: MULTIMODAL

\square Main Street Sidewalks
\square Water Street Sidewalks
\square Malcomb Street Sidewalk(s)
\square Hickory Street Sidewalk(s)
\square Lewis Street Sidewalk(s)
\square Ranch Street Sidewalk(s)
\square Eureka Street Sidewalk(s)
\square Higgins Street Sidewalk(s)/Trail

RECOMMENDATIONS:
 CONNECTIVITY

- Sevier Street
-Dodd Road

RECOMMENDATIONS:

CONNECTIVITY
\square Sevier Street
■Dodd Road

RECOMMENDATIONS: CONNECTIVITY

\square Sevier Street —Dodd Road

RECOMMENDATIONS:

SCHOOL ACCESS

\square Increasing spacing of dismissal times by 15+ minutes
\square Signalize Sevier Street
\square Prohibit left turns from exits
\square Improving the stacking area at High School
\square Improve Sharon Street/South Street Connection

RECOMMENDATIONS CORRIDOR-WIDE

- SR 69 Widening from Higgins Lane to Water Street

RECOMMENDATIONS: CORRIDOR-WIDE

- SR 69 Widening from Higgins Lane to Water Street

RECOMMENDATIONS: CORRIDOR-WIDE

- SR 69 Widening from Higgins Lane to Water Street

COST \&
 PRIORITY

Improvement Project	Priority	Estimated Project Costs
Spot Improvements		
SR 128/Dodd Road	Medium	\$70,000
SR 128/Sevier Street Signal	High	\$ 220,000
SR 15/Main Street and Water Street Interconnect, Coordinate and Retime Downtown Signals	High	\$530,000
SR 69/SR 15 Realignment	Medium	\$550,000
SR 69/SR 203 (Pinhook) Realignment	High	\$630,000
SR 69/Malcomb Street	High	\$70,000
SR 69/Lewis Street	High	\$70,000
SR 69/Ranch Street	High	\$70,000
SR 69/Austin Street	High	\$70,000
SR 69/One Stop Drive	High	\$100,000
SR 69 Curve Improvement South of One Stop Drive	High	\$550,000
SR 69/SR 226 (Airport Drive)	High	\$10,000
SR 226 (Airport Drive)/Discount Drive	High	\$10,000
Multimodal Improvements		
Main Street	Medium	\$220,000
Water Street	Low	\$180,000
Malcomb Street	Low	\$470,000
Hickory Street	Low	\$430,000
Lewis Street	Low	\$380,000
Ranch Street	Low	\$410,000
Eureka Lane	Low	\$420,000
Higgins Drive + North to Opel Loop	Low	\$500,000
Connectivity Improvements		
Sevier to Stout Connector	High	\$1,540,000
Dodd/Discount Drive Connector	Medium	\$2,090,000
School Access Improvements		
South Street Improvement	High	\$220,000
Driveway/Storage Lane Improvements	Medium	70,000
Corridor Improvements		
SR 69 Higgins to Main Street	Medium	\$10,920,000

WE VALUE YOUR FEEDBACK!

CONCLUSION \& QUESTIONS

Please contact Tom Smith, Barry Alexander or Karen Mohammadi with your comments;

Tsmith@CityofSavannah.org
Barry.Alexander@Neel-Schaffer.com
Karen.Mohammad@Neel-Schaffer.com

APPENDIX E: ACCESS MANAGEMENT

APPENDIX D: ACCESS MANAGEMENT

Section 11-310 of the City's Zoning Ordinance addresses Access Control and is shown below.

1. A point of access, i.e., a drive or opening for vehicles onto a street for one-way traffic shall not exceed twenty (20) feet, for two-way traffic thirtysix (36) feet. Maximum access widths of fifty (50) feet can be allowed on a case by case basis when deemed necessary by the appropriate City Staff or the Planning Commission, and where it is established that daily tractor-trailer traffic will be utilized. (as amended by Ordinance 594-42000)
2. There shall be no more than two (2) points of access to any one (1) public street on a lot less than 400' but more than 100' in width. Lots less than one hundred (100) feet in width shall have no more than one (1) point of access to any one (1) public street.
3. No point of access shall be allowed within ten (10) feet of the right-of-way of any public street intersection.
4. Where sidewalks exist, the area existing between the street and an interior parking space or driveway parallel to the street shall have a curb of at least six (6) inches in height and six (6) inches in width separating the parking area from the sidewalk to prevent encroachment of vehicles onto the sidewalk area.
5. No curbs on city streets or rights-of-way shall be cut or altered without written approval of the Building Inspector.
6. Cases requiring variances relative to this action, and hardships not caused by the property owner, shall be heard and acted upon by the Board of Zoning Appeals, provided, further, that no curb cuts for offstreet automobile storage or parking space shall be permitted where the arrangement would require that vehicles back directly into a public street.
7. Access control on property abutting state or federal highways shall be governed by official regulations of the Tennessee Department of Highways or the provisions of this Ordinance whichever is higher.

Tennessee does not have an Access Management Manual. The Access Management recommendations below are taken from the Kentucky Model Access Management Ordinance. The list below includes the sections from the Manual that are applicable to Savannah. The follow paragraphs are excerpts from those sections as recommended for adoption by the City.

Section 1. Intent and Purpose
Section 6 Corner Clearance
Section 7. Joint and Cross Access
Section 9. Access Connection and Driveway Design
Section 13. Nonconforming Access Features
Section 23. Site Plan Review Procedures
Section 24. Variance Standards

Section 1. Intent and Purpose

The intent of this ordinance is to provide and manage access to land development, while preserving the regional flow of traffic in terms of safety, capacity, and speed. Major thoroughfares, including highways and other arterials, serve as the primary network for moving people and goods. These transportation corridors also provide access to businesses and homes and have served as the focus for commercial and residential development. If access systems are not properly designed, these thoroughfares will be unable to accommodate the access needs of development and retain their primary transportation function. This ordinance balances the right of reasonable access to private property, with the right of the citizens of the city/county) and the Commonwealth of Kentucky to safe and efficient travel.

Section 6. Corner Clearance

1) Corner clearance for connections shall meet or exceed the minimum connection spacing requirements for that roadway.
2) New connections shall not be permitted within the functional area of an intersection or interchange as defined by the connection spacing standards of this code, unless:
a. No other reasonable access to the property is available, and
b. The (permitting department) determines that the connection does not create a safety or operational problem upon review of a site-specific study of the proposed connection prepared by a registered engineer and submitted by the applicant.
3) Where no other alternatives exist, the (permitting department) may allow construction of an access connection along the property line farthest from the intersection. In such cases, directional connections (i.e. right in/out, right in only, or right out only) may be required.
4) In addition to the required minimum lot size, all corner lots shall be of adequate size to provide for required frontyard setbacks and corner clearance on street frontage.

Section 7. Joint and Cross Access

1) Adjacent commercial or office properties classified as major traffic generators (i.e. shopping plazas, office parks), shall provide a cross access drive and pedestrian access to allow circulation between sites.

Section 9. Access Connection and Driveway Design

1) Driveway grades shall conform to the requirements of FDOT Standard Index, Roadways and Traffic Design Standard Indices, latest edition.
2) Driveway approaches must be designed and located to provide an exiting vehicle with an unobstructed view.
3) Construction of driveways along acceleration or deceleration lanes and tapers is discouraged due to the potential for vehicular weaving conflicts (see Figure 6).
4) Driveways with more than one entry and one exit lane shall incorporate channelization features to separate the entry and exit sides of the driveway. Double yellow lines may be considered instead of medians where truck off-tracking is a problem.
5) Driveways across from median openings shall be consolidated wherever feasible to coordinate access at the median opening.
6) Driveway width and flair shall be adequate to serve the volume of traffic and provide for rapid movement of vehicles off of the major thoroughfare, but standards shall not be so excessive as to pose safety hazards for pedestrians, bicycles, or other vehicles. (Suggested standards appear in Table 4).

Figure6: Driveway Location

Table 4: Suggested Access Connection Design From

Trips/Day	1-20		21-600		601-4000*	
Trips/Hour	Or 1-5		Or 6-60		Or 61-400	
	Urban	Rural	Urban	Rural	Urban	Rural
Connection Width (2-way)	12 ' min 24' max	12' min 24' max	24' min 36' max	24' min 36^{\prime} max	24' min 36^{\prime} max	24' min 36' max
Flare	101 min	N/A	$10^{\prime} \mathrm{min}$	N/A	N/A	N/A
Returns (Radius)	N/A	15 ' min 25' std 50' max	Small radii may Be used	25' min 50' std 75' max	25^{\prime} min 50' std 75' max	25' min 50' std 75' max
Angle of Drive			60-90	60-90	60-90	60-90
Divisional Island			4-22' wide	4-22' wide	4-22' wide	4-22' wide

*Note: These standards are not intended for major access connections carrying over 4000 vehicles per day.

Section 13. Nonconforming Access Features

1) Permitted access connections in place as of (date of adoption) that do not conform with the standards herein shall be designated as nonconforming features and shall be brought into compliance with applicable standards under the following conditions:
a. When new access connection permits are requested;
b. Substantial enlargements or improvements;
c. Significant change in trip generation; or
d. As roadway improvements allow.

Section 23. Site Plan Review Procedures

1) Applicants shall submit a preliminary site plan for review by (name of department responsible for conducting review). At a minimum, the site plan shall show:
a. Location of access point(s) on both sides of the road where applicable;
b. Distances to neighboring constructed access points, median openings, traffic signals, intersections, and other transportation features on both sides of the property;
c. Number and direction of lanes to be constructed on the driveway plus striping plans;
d. All planned transportation features (such as auxiliary lanes, signals, etc.);
e. Trip generation data or appropriate traffic studies;
f. Parking and internal circulation plans;
g. Plat map showing property lines, right-of-way, and ownership of abutting properties; and
h. A detailed description of any requested variance and the reason the variance is requested.
2) Subdivision and site plan review shall address the following access considerations:
a. Is the road system designed to meet the projected traffic demand and does the road network consist of hierarchy of roads designed according to function?
b. Does the road network follow the natural topography and preserve natural features of the site as much as possible? Have alignments been planned so grading requirements are minimized?
c. Is access properly placed in relation to sight distance, driveway spacing, and other related considerations, including opportunities for joint and cross access? Are entry roads clearly visible from the major arterials?
d. Do units front on residential access streets rather than major roadways?
e. Is automobile movement within the site provided without having to use the peripheral road network?
f. Does the road system provide adequate access to buildings for residents, visitors, deliveries, emergency vehicles, and garbage collection?
g. Have the edges of the roadways been landscaped? If sidewalks are provided alongside the road, have they been set back sufficiently from the road, and has a landscaped planting strip between the road and the sidewalk been provided?
h. Does the pedestrian path system link buildings with parking areas, entrances to the development, open space, and recreational and other community facilities?

Commentary: The subdivision and site plan review process provides local governments with the most effective opportunity for addressing access considerations and preventing access problems before they occur. This should be done as early as possible in the process. Developers will be far less amenable to
revising the access plan later in the process or after the site plan or plat has been approved.
3) The (city/county) reserves the right to require traffic and safety analysis where safety is an issue or where significant problems already exist.

Section 24. Variance Standards

1) The granting of the variation shall be in harmony with the purpose and intent of these regulations and shall not be considered until every feasible option for meeting access standards is explored.
2) Applicants for a variance from these standards must provide proof of unique or special conditions that make strict application of the provisions impractical. This shall include proof that:
a. indirect or restricted access cannot be obtained;
b. no engineering or construction solutions can be applied to mitigate the condition; and
c. no alternative access is available from a street with a lower functional classification than the primary roadway.
3) Under no circumstances shall a variance be granted, unless not granting the variance would deny all reasonable access, endanger public health, welfare or safety, or cause an exceptional and undue hardship on the applicant. No variance shall be granted where such hardship is self-created.

APPENDIX F: RECOMMENDATIONS

[^0]: * Spot speed study should be conducted to justify speed limit reduction.

[^1]: * Spot speed study should be conducted to justify speed limit reduction.

[^2]: *Source: AASHTO

[^3]: AFS: Air Facility System
 LUST: Leaking Underground Storage Tank
 RCRA: Resource Conservation and Recovery Act
 TRI: Toxic Release Inventory

[^4]: *Sources: TDOT Local Programs Funding Options website, Jackson Area MPO 2040 Long Range Transportation Plan

[^5]: Blake White, Secretary

[^6]: Signed:
 Attest:

[^7]: * Includes incapacitating and non-incapacitating injuries

