<table>
<thead>
<tr>
<th>Material</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air</td>
</tr>
<tr>
<td>Cement</td>
</tr>
<tr>
<td>Coarse Aggregate</td>
</tr>
<tr>
<td>Fine Aggregate</td>
</tr>
<tr>
<td>Water</td>
</tr>
</tbody>
</table>
Concrete Mix Design Technician Course

Tennessee Department of Transportation

Volume 19.0

Table of Contents

Introduction .. 1
Basic Concrete Ingredients.. 8
Making and Curing Concrete Test Specimens in the Laboratory ... 17
Compressive Strength of Cylindrical Concrete Specimens.. 27
Concrete Mix Design Submittal and Approval .. 41
Absolute Volume Method for Concrete Mix Design.. 51
Welcome!

Concrete Mix Design Technician Certification

Classroom Rules

- Be Respectful
- Facility Information
- Keep It Clean
- Phone Etiquette
Who Are YOU?

- Name
- Company
- Experience

Technician Certification Program

- Asphalt Roadway Inspector
- Asphalt Plant Inspector
- Asphalt Mix Design
- Concrete Field Testing
- Concrete Plant Quality Control
- **Concrete Mix Design**
- Aggregate
- Nuclear Gauge Safety
Introduction

Purpose of Certification

• To ensure proper performance of tests
• To improve reliability of results
• For quality control
• To comply with federal requirements

Course Highlights

• Course schedule
 • Slide presentations
 • Written exam
 • Results
 • Certification

• Recertification
 • Every 5 years
Introduction

Examination

• Written Exam (No Phones Allowed)
 • Open-book
 • To Pass
 • Must get 75% overall

Results

• Available within one week of completion
• Contact the Headquarters Materials & Tests (HQMT) Training Coordinator, Kim Whitby
 • kimberly.whitby@tn.gov
 • 615-350-4158
Resources

- Course materials
 - Course textbook
 - Presentation slides and videos
- TDOT
 - Standard Specifications, January 1, 2015
 - Special Provisions
- Contacts
 - Region 1: Brad Baskette
 - Region 2: Tony Renfro
 - Region 3: Kevin Isenberg
 - Region 4: Mitch Blankenship

AASHTO / ASTM Resources

- Making and Curing Concrete Test Specimens in the Laboratory: ASTM C192
- Compressive Strength of Cylindrical Concrete Specimens: AASHTO T 22 / ASTM C39
Resources

- Tennessee Department of Transportation
 - https://www.tn.gov/tdot.html
- American Road & Transportation Builders Association
 - https://www.artba.org/
- Tennessee Road Builders Association
 - www.trba.org/
- Tennessee Ready Mixed Concrete Association
 - www.tnconcrete.org/
- American Association of State Highway Transportation Officials
 - https://www.transportation.org
- American Society for Testing and Materials
 - https://www.astm.org/
- American Concrete Institute
 - https://www.concrete.org/
- Construction Materials Engineering Council
 - https://www.cmec.org/
- Portland Cement Association
 - www.cement.org/

ADA Notice of Requirements

- Can be found at the following website:

- To be in compliance with TDOTs requirements listed on the website above, it is our goal to provide reasonable accommodations to those who identify themselves as having a disability and request such accommodations

- Please feel free to bring it to any of the course instructors and accommodations will be administered as discretely as possible
Questions
1

Basic Concrete Ingredients
Basic Ingredients

Concrete is a mixture of paste and aggregates.

- 6% Air
- 11% Portland Cement
- 41% Gravel or Crushed Stone (Coarse Aggregate)
- 26% Sand (Fine Aggregate)
- 16% Water

Concrete is a mixture of paste and aggregates.
Basic Ingredients

Types of Cement

Type I – Normal Use
- Used for common applications

Type II – Moderate Sulfate Resistance and Heat of Hydration
- Where concrete contacts with soil or water with modest sulfate concentrations.
- Used when you have large volumes of concrete

Type III – High Early Strength
- Cement sets faster and produces higher early strength than Type I

Type IV - Low Heat of Hydration
- Produces less heat and generally used with massive structures
- Very few sources still exist

Type V – Sulfate Resistant
- Only used where high concentrations of sulfate in the soil or groundwater

http://www2.cement.org/basics/images/flashtour.html
Basic Ingredients

Pozzolans
(Supplementary Cementitious Materials)

- No cementing value alone, but in concrete react with lime from cement hydration to form additional cementing compounds
- Generally, reduce early strength of concrete
- Contribute to strength at later ages
- Examples: fly ash, silica fume, ground granulated blast furnace slag

Fly Ash

- Two types
 - C-ash
 - F-ash
- Reduction in water
- Increased workability
- Reduces bleeding and segregation
- Improved pumpability
- Reduced heat of hydration
Basic Ingredients

Slag Cement
(GGBFS)

- Has minimal pozzolanic properties
- Slightly less water
- Setting time delayed
- Early strengths depressed
- Later strengths increased

Silica Fume

- Used in addition to relatively high cement contents
 - Produce extremely dense, strong, concrete mixtures
- Has extremely fine particles
 - Increase in water demand
 - Normally used with high range water reducers
- Increase strength
- Reduces permeability
- High risk of shrinkage cracking due to reduction in bleeding
Effects of SCMs on Fresh Concrete Properties

<table>
<thead>
<tr>
<th>Property</th>
<th>Fly ash</th>
<th>GGBF slag</th>
<th>Silica fume</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Class F</td>
<td>Class C</td>
<td></td>
</tr>
<tr>
<td>Water requirements</td>
<td>↓ ↓</td>
<td>↓ ↓</td>
<td>↑ ↓</td>
</tr>
<tr>
<td>Workability</td>
<td>↓ ↓</td>
<td>↓ ↓</td>
<td>↑ ↓</td>
</tr>
<tr>
<td>Bleeding and segregation</td>
<td>↓ ↓</td>
<td>↓ ↓</td>
<td></td>
</tr>
<tr>
<td>Air content</td>
<td>↓ ↓</td>
<td>↓ ↓</td>
<td></td>
</tr>
<tr>
<td>Heat of hydration</td>
<td>↓ ↓</td>
<td>↓ ↓</td>
<td></td>
</tr>
<tr>
<td>Setting time</td>
<td>↑ ↓</td>
<td>↑ ↓</td>
<td></td>
</tr>
<tr>
<td>Finishability</td>
<td>↑ ↓</td>
<td>↑ ↓</td>
<td></td>
</tr>
<tr>
<td>Pumpability</td>
<td>↑ ↓</td>
<td>↑ ↓</td>
<td></td>
</tr>
<tr>
<td>Plastic shrinkage cracking</td>
<td>← →</td>
<td>← →</td>
<td></td>
</tr>
</tbody>
</table>

* Effect depends on properties of fly ash, including carbon content, alkali content, fineness, and other chemical properties

Effects of SCMs on Hardened Concrete Properties

<table>
<thead>
<tr>
<th>Property</th>
<th>Fly ash</th>
<th>GGBF slag</th>
<th>Silica fume</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Class F</td>
<td>Class C</td>
<td></td>
</tr>
<tr>
<td>Early strength</td>
<td>↓ ↓</td>
<td>← →</td>
<td>↑ ↓</td>
</tr>
<tr>
<td>Long-term strength</td>
<td>↑ ↓</td>
<td>↑ ↓</td>
<td>↑ ↓</td>
</tr>
<tr>
<td>Permeability</td>
<td>↓ ↓</td>
<td>↓ ↓</td>
<td>↓ ↓</td>
</tr>
<tr>
<td>Chloride ingress</td>
<td>↓ ↓</td>
<td>↓ ↓</td>
<td>↓ ↓</td>
</tr>
<tr>
<td>ASR</td>
<td>↓ ↓</td>
<td>↓ ↓</td>
<td>↓ ↓</td>
</tr>
<tr>
<td>Sulfate resistance</td>
<td>↑ ↓</td>
<td>↑ ↓</td>
<td></td>
</tr>
<tr>
<td>Freezing and thawing</td>
<td>← →</td>
<td>← →</td>
<td></td>
</tr>
<tr>
<td>Abrasion resistance</td>
<td>← →</td>
<td>← →</td>
<td></td>
</tr>
<tr>
<td>Drying shrinkage</td>
<td>← →</td>
<td>← →</td>
<td></td>
</tr>
</tbody>
</table>
Basic Ingredients

Chemical Admixtures

- **Type A - Water Reducers**
 - Reduce mixing water 5%-30%
 - Increase ultimate strength
 - Improve workability

- **Type B - Retarders**
 - Longer set time
 - Improve hot weather workability

- **Type C - Accelerators**
 - Shorter set time
 - Increase early strength

- **Type D = Type A + Type B**

- **Type E = Type A + Type C**

- **Type F - High Range Water Reducer**
 - Min. 12% reduction in mixing water
 - Increase ultimate strength
 - Improve workability

- **Type G = Type F + Type B**

- **Type S - Specific Performance**
 - Viscosity modifying
 - Shrinkage reducing
 - Corrosion inhibitor
 - Etc.

Air Entrainment

- Improves durability
- Improves workability
- Reduces water demand
- Generally, for every 1% air, concrete loses about 5% strength

Entrapped air

Entrained air
Coarse Aggregate

- Crushed Limestone, Gravel, Granite, Sandstone, and Slag available in Tennessee
- Retained on #4 sieve
- Desire well graded aggregates
 - Less water to produce workable mix
 - Increased compressive strengths with comparable cement
- Must be sound and resistant to abrasion

Coarse Aggregate Sizes

- Concrete Pavement requires a No. 467 aggregate blend
- Must submit a written request to Regional Materials & Tests with justification for use of a stone size other than in Table 903.03-1

<table>
<thead>
<tr>
<th>Application</th>
<th>Coarse Aggregate Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Structural concrete</td>
<td>No. 57</td>
</tr>
<tr>
<td>Self-Consolidating Concrete</td>
<td>Maximum No. 67</td>
</tr>
<tr>
<td>Prestressed concrete</td>
<td>No. 57 or 67</td>
</tr>
<tr>
<td>Prestress concrete</td>
<td>Any size fraction</td>
</tr>
<tr>
<td>Concrete for Bridge Repair</td>
<td>No. 5, 57, 67, or 78</td>
</tr>
<tr>
<td>Concrete curbing placed by mechanized extraction methods</td>
<td>No. 5, 57, 67, or 78</td>
</tr>
<tr>
<td>Cement treated permeable base</td>
<td>No. 57</td>
</tr>
</tbody>
</table>

(1) Gradation shall conform to 903.22.
(2) Aggregate shall meet the quality requirements specified below.
Basic Ingredients

Fine Aggregate

• Natural sand
 • Dredged river sand
 • Pit sand
 • Processed sandstone
• Manufactured Sand
 • Processed limestone
• Passing #4 sieve
• Must be sound

Surface Aggregates
(TDOT Specification 903.24)

• Resistant to polishing
• Maintains high frictional properties
• Natural sand required for any concrete riding
 • TDOT Specifications 501.02 and 604.03
• Coarse surface aggregate must be used in:
 • Concrete pavement travel lanes including mainline pavements and ramps
 • Bridge decks and approach slabs on interstates and 4 or more lane highways
Questions
Making and Curing Concrete Test Specimens in the Laboratory

ASTM C 192
Making Specimens

TDOT Standard Method of Test for
Making and Curing Concrete Test
Specimens in the Laboratory

References
TDOT Standard Specifications
ASTM C192

Apparatus

- Cylinder molds
- Beam and prism molds
- Tamping rods
- Mallets
- Vibrators
- Scoops
- Testing equipment
- Sampling and mixing pan
- Scales
- Concrete mixer
Preparation of Materials
(Temperature)

All materials in the mix should be at room temperature in the range of 68°F to 86°F

Preparation of Materials
(Cementitious Material)

• Storage
 • A dry place
 • Moisture-proof containers
• Pass through a #20 sieve to remove all lumps, remixed on a tarp or plastic sheet, and returned to containers
• Mix thoroughly for uniformity
Making Specimens

Preparation of Materials
(Aggregates)

• Maintain aggregate in SSD condition
• Obtain the specific gravity and absorption from the aggregate facility
• Determine moisture content of aggregates
• Free Moisture = Moisture Content - Absorption
• Determine moisture corrections for aggregates and batching water
• Moisture corrections are important for maintaining an accurate w/cm

Preparation of Materials
(Chemical Admixtures)

• Consult with admixture manufacturer to determine if powered admixtures should be mixed with cement or sand before incorporating in the mix
Preparation of Materials
(Chemical Admixtures)

- Water-soluble and liquid admixtures should be added in solution to the mixing water before use
- Incompatible admixtures (i.e. in concentrated form) should not be combined before adding to the mixer
- Time, sequence, and method of adding the admixtures should remain constant from batch to batch

Machine-Mixing

- Mix so that there is 10% excess
- Sequence
 1) Coarse aggregate
 2) Small amount of mixing water and solution of admixture
 3) Start mixer
 4) Fine aggregate, cement, and water
 5) 3 minutes mixing
 6) 3 minutes rest (covered, to avoid evaporation)
 7) 2 minutes final mixing
 8) Deposit in clean, damp mixing pan, and remix to uniformity
Making Specimens

Fresh Concrete Testing

• Determine air content, slump, temperature, unit weight, and yield of the batch
 • Air Content
 • Achieving the target air content and air void system is one of the most challenging aspects of controlling concrete mixtures
 • Entrained air adds to the durability of hardened concrete and the workability of fresh mixtures
 • Slump
 • Measures consistency of freshly mixed concrete
 • Not determined for no-slump concrete (< 1/4”)
 • Temperature
 • Check that temps are within tolerances
 • Unit Weight
 • Mass per cubic foot of freshly-mixed concrete
 • Yield
 • Volume of concrete produced from a mixture of known quantities of component materials

• Look for signs of segregation

Cylindrical Specimens

• Concrete pavement cylinders shall be 6”x12”
• Make all other cylinders 4”x8”
• Cylinder diameter must be at least 3 times the nominal maximum size of the aggregate
Prismatic Specimens

- Beams for flexural strength
 - Typically, 6”x6” cross-section with 18” span
- Prisms for freezing and thawing, length change, volume change

Number of Cylinders

TDOT Specifications require test results for compressive strength at 7, 14, and 28 days

- 2 cylinders per test
- For high early mixes, need results for early breaks (e.g. 18 hours)
Making Specimens

TABLE 1 Number of Layers Required for Specimens

<table>
<thead>
<tr>
<th>Specimen Type and Size</th>
<th>Mode of Consolidation</th>
<th>Numbers of Layers of Approximate Equal Depth</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cylinders:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diameter, mm [in.]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>75 to 100 [3 or 4]</td>
<td>rodding</td>
<td>2</td>
</tr>
<tr>
<td>150 [6]</td>
<td>rodding</td>
<td>3</td>
</tr>
<tr>
<td>225 [9]</td>
<td>rodding</td>
<td>4</td>
</tr>
<tr>
<td>up to 225 [9]</td>
<td>vibration</td>
<td>2</td>
</tr>
<tr>
<td>Prisms and horizontal creep Cylinders:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Depth, mm [in.]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>up to 200 [8]</td>
<td>rodding</td>
<td>2</td>
</tr>
<tr>
<td>over 200 [8]</td>
<td>rodding</td>
<td>3 or more</td>
</tr>
<tr>
<td>up to 200 [8]</td>
<td>vibration</td>
<td>1</td>
</tr>
<tr>
<td>over 200 [8]</td>
<td>vibration</td>
<td>2 or more</td>
</tr>
</tbody>
</table>

Making Specimens (Continued)

TABLE 2 Diameter of Rod and Number of Roddings to be Used in Molding Test Specimens

<table>
<thead>
<tr>
<th>Cylinders: Diameter of Cylinder, mm [in.]</th>
<th>Diameter of Rod mm [in.]</th>
<th>Number of Roddings/Layer</th>
</tr>
</thead>
<tbody>
<tr>
<td>150 [6]</td>
<td>16 ± 2 [± 0.14]</td>
<td>25</td>
</tr>
<tr>
<td>250 [10]</td>
<td>16 ± 2 [± 0.14]</td>
<td>50</td>
</tr>
<tr>
<td>Top Surface Area of Specimen, cm² [in.²]</td>
<td>Diameter of Rod mm [in.]</td>
<td>Number of Roddings/Layer</td>
</tr>
<tr>
<td>160 [6] or less</td>
<td>10 ± 2 [± 0.14]</td>
<td>25</td>
</tr>
<tr>
<td>185 to 310 [25 to 48]</td>
<td>10 ± 2 [± 0.14]</td>
<td>one for each 7 cm² [1 in.²] of surface</td>
</tr>
<tr>
<td>320 [60] or more</td>
<td>16 ± 2 [± 0.14]</td>
<td>one for each 14 cm² [2 in.²] of surface</td>
</tr>
<tr>
<td>Horizontal Creep Cylinders</td>
<td>Diameter of Cylinder mm [in.]</td>
<td>Number of Roddings/Layer</td>
</tr>
<tr>
<td></td>
<td>150 [6]</td>
<td>16 ± 2 [± 0.14]</td>
</tr>
</tbody>
</table>
Methods of Consolidation

- Rod or vibrate: Slump ≥ 1”
- Vibration: Slump < 1”

Making Drycast Cylinders

- When concrete is too stiff to be consolidated via rodding or internal vibration, use the method in ASTM C497
 - Vibrating table
 - 3 layers
 - Vibrate with cylindrical hammer on surface of each lift until cement paste oozes around hammer
Making Specimens

Finishing Specimens

• Strike-off the surface
• No depressions or projections larger than 1/8”
• Cover immediately to prevent evaporation
 • Nonabsorptive, nonreactive cover
 • Plastic sheeting
 • Wet burlap
• Ensure cardboard molds do not get wet
• Mold specimens near storage area
• Store specimens immediately after striking off
• Storage area should be free of vibration

Curing

• Remove from molds within 24 ± 8 hours after casting
• Moist cure at 73.5 ± 3.5°F until tested
• Free water on entire surface at all times
 • Immersion in saturated-lime water
 • Moist room or cabinet
 • No dripping or running water
• Vibration-free area for first 48 hours
• *Flexural strength test specimens* shall be saturated in lime solution at least 20 hours prior to testing
3

Compressive Strength of Cylindrical Concrete Specimens

AASHTO T 22
ASTM C 39
Compressive Strength

TDOT Standard Method of Test for Compressive Strength of Cylindrical Concrete Specimens

References
- TDOT Standard Specifications
- AASHTO T 22
- ASTM C39

Summary of Method
- A compressive axial load is applied to concrete cylinders or cores at a prescribed rate until failure occurs
- The maximum load divided by the cross-sectional area of the cylinder is considered to be the compressive strength
Significance & Use

- This test method is used to determine the compressive strength of cylinders that have been properly prepared and cured.
- The compressive strength is used as a basis for performance of a mix.
- The results are also used to determine compliance with TDOT Specifications.

Compressive Strength Testing Machine

- Bearing blocks
- Load indicator
Compressive Strength

Testing Machine Requirements

- Sufficient capacity
- Proper rate of loading (35 ± 7 psi/s)
- Calibration
 - Upon installation, repair, or relocation
 - Annually
 - When accuracy is in question

Bearing Block Requirements

Typical Spherical Bearing Block
Load Indication Requirements

- Digital indicators must have numerical increments ≤ 0.1% of full scale load
- Analog indicators must have a graduated scale readable to the nearest 0.1% of full scale load
- Dial must have a zero adjustment
- 1% accuracy of maximum load

Cylinder Diameters

Specimens are not tested if any diameter of the cylinders differs from any other diameter of the same cylinder by more than 2%
Cylinder Requirements

- The ends must not depart from perpendicularity to the axis by more than 0.5°
- 6”x12” cylinder
 - 0.12” for 12”
- 4”x8” cylinder
 - 0.08” for 8”
- Cap, saw, or grind the ends

Cylinder Requirements

The ends of cylinders to be tested for compressive strength must be plane to within 0.002”
Specimens

- Measure length to the nearest 0.05” at three locations around circumference
- Record average length to nearest 0.05”

Time Tolerances

- Test specimens shall be broken within the permissible time tolerance for a given test age
- 2% tolerance for any age not specified

<table>
<thead>
<tr>
<th>Test Age</th>
<th>Permissible Tolerance</th>
</tr>
</thead>
<tbody>
<tr>
<td>24 hour</td>
<td>± 0.5 hours</td>
</tr>
<tr>
<td>3 days</td>
<td>± 2 hours</td>
</tr>
<tr>
<td>7 days</td>
<td>± 6 hours</td>
</tr>
<tr>
<td>28 days</td>
<td>± 20 hours</td>
</tr>
<tr>
<td>90 days</td>
<td>± 2 days</td>
</tr>
</tbody>
</table>
Procedure

• Compression tests of moist-cured specimens shall be made as soon as possible after removal from moist storage
• Cylinders shall be tested in the moist condition

Procedure

• Wipe clean the faces of the upper and lower plates
• Wipe both ends of the cylinder
• If using compression pads, keep record of use and replace when required
Procedure

- Place the cylinder on the lower plate
- Align the axis of the cylinder with the center of the upper plate

Procedure

Rotate the bearing block to ensure freedom of movement
Compressive Strength

Procedure

- Apply a continuous load without shock
- Apply the load until the cylinder fails

Point of Failure

Rate of Loading

- Hydraulic machines
 - 35 ± 7 psi/s
- Screw-type machines
 - Preliminary testing necessary to establish required rate of movement
 - Less common
Compressive Strength

Measured Strength

If cylinder breaks lower than expected, examine the fracture for:

• Large air voids
• Segregation
• Verify end preparation
• Cracking of aggregate

Cylinder Fractures

![Cylinder Fractures Diagram]

- Cone
- Cone and Split
- Cone and Shear
- Shear
- Columnar
Calculating Compressive Strength

\[f'_c = \frac{F_{\text{max}}}{A} \times C \]

- \(f'_c \): compressive strength
- \(F_{\text{max}} \): maximum load
- \(A \): cross-sectional area
- \(C \): correction factor

L/D Correction Factor

<table>
<thead>
<tr>
<th>L/D:</th>
<th>>1.75</th>
<th>1.75</th>
<th>1.50</th>
<th>1.25</th>
<th>1.00</th>
</tr>
</thead>
<tbody>
<tr>
<td>Factor:</td>
<td>1.00</td>
<td>0.98</td>
<td>0.96</td>
<td>0.93</td>
<td>0.87</td>
</tr>
</tbody>
</table>
Compressive Strength

L/D Correction Factor

Example 1

Given:
- A standard 4"x8" cylinder of Class D concrete
- No preparation of the cylinder is required
- The cylinder fails at a maximum force of 53,259 pounds

4" 8"
Example 2

Given:
- A standard 6”x12” cylinder of Class CP
- The ends were prepared so that the length of the cylinder is 9 inches
- The cylinder fails at a maximum force of 92,075 pounds

Report

- Identification number
- Diameter
- Cross-sectional area
- Maximum load
- Compressive strength to nearest 10 psi
- Type of fracture
- Defects in specimen or caps
- Age of specimen
Questions
4

Concrete Mix Design
Absolute Volume Method for Concrete Mix Design

References
TDOT Standard Specifications
TDOT Supplemental Specifications
PCA, *Design and Control of Concrete Mixtures*, 13th Ed.
NRMCA, *Proportioning Concrete Mixtures*

Before Designing a Mix

Need the following:
- Class of concrete/Type of construction
 - Slump
 - Maximum w/c ratio
 - Minimum cement
 - Air content
- Cement
 - Specific gravity
- Other cementitious materials
 - Pozzolans
 - GGBFS
 - Silica fume
- Fine aggregate
 - Specific gravity
 - Gradation
 - Fineness modulus
- Coarse aggregate
 - Specific gravity
 - Gradation
 - Nominal maximum size
Step 1: Class of Concrete

Determine the class of concrete:
- Class CP – Concrete Pavement
- Class A – Structural, General Use
 - Class A Paving
- Class D, DS – Bridge Decks
- Class L – Lightweight
- Class S – Seal
- Class X – Plans Specific
- Class SCC, SH-SCC – Self Consolidating Concrete
- Class P-SCC
- Class P – Prestressed/Precast Bridge Members
- HE – High Early Strength
- Precast Concrete

Class CP

(TDOT Specifications Table 501.03-1)

Concrete Pavement

Table 501.03-1: Class CP – Paving Concrete

<table>
<thead>
<tr>
<th>28 Day Compressive Strength, min (PSI)</th>
<th>Minimum Cementitious Content (pounds per cubic yard)</th>
<th>Maximum Water/Cement Ratio (pound/pound)</th>
<th>Air Content (%)</th>
<th>Slump (inch)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3000</td>
<td>526<sup>1</sup></td>
<td>0.49</td>
<td>5% design 3 – 8% production</td>
<td>0 - 2<sup>3</sup></td>
</tr>
<tr>
<td></td>
<td>545<sup>2</sup></td>
<td></td>
<td></td>
<td>3 ± 1<sup>4</sup></td>
</tr>
</tbody>
</table>

¹ 526 pounds required when the coarse aggregate is crushed stone
² 545 pounds required when the coarse aggregate is gravel
³ Allowable slump for slipform paving
⁴ Allowable slump for other than slipform paving
Class A
(TDOT Specifications Table 604.03-1)

- General Use Structural Concrete
- Class A Slipform has different slump requirements
- Class A Paving requires surface aggregate

<table>
<thead>
<tr>
<th>Class of Concrete</th>
<th>Min 28-Day Compressive Strength (psi)</th>
<th>Min Cement Content (pound per cubic yard)</th>
<th>Maximum Water/Cement Ratio (pound/pound)</th>
<th>Air Content % (Design + production tolerance)</th>
<th>Slump (inches)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>3,000</td>
<td>564</td>
<td>0.45</td>
<td>6 ± 2</td>
<td>3 ± 1 (1)</td>
</tr>
</tbody>
</table>

(1) For slip forming, the slump shall range from 0 to 3 inches.

Class D, DS
(TDOT Specifications Table 604.03-1)

- Bridge Deck Concrete
- Class DS requires surface aggregate

<table>
<thead>
<tr>
<th>Class of Concrete</th>
<th>Min 28-Day Compressive Strength (psi)</th>
<th>Min Cement Content (pound per cubic yard)</th>
<th>Maximum Water/Cement Ratio (pound/pound)</th>
<th>Air Content % (Design + production tolerance)</th>
<th>Slump (inches)</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>4,000</td>
<td>620</td>
<td>0.40</td>
<td>7 (5)</td>
<td>8 max (4)</td>
</tr>
</tbody>
</table>

(2) Use Class D concrete in all bridge decks except box and slab type structures unless otherwise shown on the Plans.

(3) Design Class D and Class L concrete at 7% air content. Acceptance range for pumping and other methods of placement is 4.5-7.5%. Sampling will be at the truck chute.

(4) Water reducing admixtures are acceptable; however, do not exceed the maximum water/cement ratio in order to achieve the required slump.
Class L
(TDOT Specifications Table 604.03-1)

Lightweight Concrete

<table>
<thead>
<tr>
<th>Class of Concrete</th>
<th>Min 28-Day Compressive Strength (psi)</th>
<th>Min Cement Content (pound per cubic yard)</th>
<th>Maximum Water/Cement Ratio (pound/pound)</th>
<th>Air Content % (Design ± production tolerance)</th>
<th>Slump (inches)</th>
</tr>
</thead>
<tbody>
<tr>
<td>L</td>
<td>4,000</td>
<td>620</td>
<td>0.40</td>
<td>7 (5)</td>
<td>8 max (4)</td>
</tr>
</tbody>
</table>

(1) Design Class D and Class L concrete at 7% air content. Acceptance range for pumping and other methods of placement is 4.5-7.5%. Sampling will be at the truck chute.

(4) Water reducing admixtures are acceptable; however, do not exceed the maximum water/cement ratio in order to achieve the required slump.

(5) The unit weight of air dried Class L concrete (lightweight concrete) shall not exceed 115 pounds per cubic foot as determined according to ASTM C567.

Class S
(TDOT Specifications Table 604.03-1)

- Seal Concrete
- Underwater foundation applications
- Used when washout of cement is a concern

<table>
<thead>
<tr>
<th>Class of Concrete</th>
<th>Min 28-Day Compressive Strength (psi)</th>
<th>Min Cement Content (pound per cubic yard)</th>
<th>Maximum Water/Cement Ratio (pound/pound)</th>
<th>Air Content % (Design ± production tolerance)</th>
<th>Slump (inches)</th>
</tr>
</thead>
<tbody>
<tr>
<td>S (Seal)</td>
<td>3,000</td>
<td>682</td>
<td>0.47</td>
<td>6 ± 2</td>
<td>6 ± 2</td>
</tr>
</tbody>
</table>

(6) The use of fly ash as a cement replacement will be allowed in Class S (Seal) concrete.
Class X

- Plans Specific Requirements
 - For local programs, mix design approved by Local Government

Class SCC & SH-SCC

(TDOT Specifications Table 604.03-4)

- Class SCC can be used as a replacement for Class A
- Class SH-SCC is used in drilled shafts

Table 604.03-4: Composition of Self-Consolidating Concrete

<table>
<thead>
<tr>
<th>Class of Concrete</th>
<th>Max 28-Day Compressive Strength (psi)</th>
<th>Min Cement Content (pound per cubic yard)</th>
<th>Maximum Water/Cement Ratio (pound/pound)</th>
<th>Air Content % (Design ± production tolerance)</th>
<th>Slump Flow (inches)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCC (2.5 A)</td>
<td>4,500</td>
<td>620</td>
<td>0.45</td>
<td>6 ± 2</td>
<td>26 ± 5</td>
</tr>
<tr>
<td>SH-SCC (2.5 A)</td>
<td>4,500</td>
<td>620</td>
<td>0.45</td>
<td>6 ± 2</td>
<td>26 ± 5</td>
</tr>
</tbody>
</table>

1. Or as shown on the Plans or approved shop drawings.
2. Acceptance range for the T50 test in accordance with ASTM C1611 shall be between 2-2.5 seconds.
3. Passing ability in accordance with ASTM C1621 shall be less than 2 inches for acceptance.
4. Visual Stability Index (VSI) shall not exceed 1.0 as per ASTM C1611 for acceptance.
5. Static segregation as measured by ASTM C1610 shall not exceed 20%.
6. Air Content may be reduced if placed under water or underground if approved by the Engineer.
Mix Design

Class P-SCC
(TDOT Specifications Table 615.09-1)

For prestressed members

Table 615.09-1: Class P Concrete

<table>
<thead>
<tr>
<th>Class of Concrete</th>
<th>Min 28-Day Compressive Strength (psi)</th>
<th>Min Cement Content (pound per cubic yard)</th>
<th>Maximum Water/Cement Ratio (pound/pound)</th>
<th>Air Content % (Design ± production tolerance)</th>
<th>Slump or Slump Flow (inches)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-SCC</td>
<td>5,000(^{(1)})</td>
<td>658</td>
<td>0.45</td>
<td>0-6(^{(2)})</td>
<td>26 ± 5</td>
</tr>
</tbody>
</table>

(1) Or as shown on the Plans or approved shop drawings.
(2) Air entraining is optional with the Contractor, unless otherwise shown on the Plans or shop drawings.

Class P
(TDOT Specifications Table 615.09-1)

- Prestressed Concrete Bridge Members
- Strengths will be dictated by approved plans or shop drawings

Table 615.09-1: Class P Concrete

<table>
<thead>
<tr>
<th>Class of Concrete</th>
<th>Min 28-Day Compressive Strength (psi)</th>
<th>Min Cement Content (pound per cubic yard)</th>
<th>Maximum Water/Cement Ratio (pound/pound)</th>
<th>Air Content % (Design ± production tolerance)</th>
<th>Slump or Slump Flow (inches)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>5,000(^{(1)})</td>
<td>658</td>
<td>0.45</td>
<td>0-8(^{(2)})</td>
<td>2 ± 1(^{(3)})</td>
</tr>
</tbody>
</table>

(1) Or as shown on the Plans or approved shop drawings.
(2) Air entraining is optional with the Contractor, unless otherwise shown on the Plans or shop drawings.
(3) Not to exceed 3 inches before the addition of high range admixtures, and not to exceed 10 inches after the addition of high range admixtures. If water-cement ratio is equal to or less than 0.35 then the maximum slump is 10 inches. If the water-cement ratio is 0.36 – 0.45, the maximum slump is 8 inches.
High Early Strength Concrete

(TDOT Specifications 604.03.C)

- Concrete strength requirement prior to 28 days
- Concrete repair applications
- Minimum Cement Content:
 - Type I – 714 lbs/yd³
 - Type III – 620 lbs/yd³
- Contractor can elect to use in place of Class A

Precast Concrete

(SOP 5-3)

- Different precast products have different design requirements
- Noise walls panels: Class A
- Retaining wall panels, junction boxes, and spring boxes: Class D
- Mix designs for all other products are in accordance with:
 - Applicable AASHTO/ASTM Standards
 - Approved Shop Drawings
 - Contract Plans
 - TDOT Standard Drawings and Specifications
 - All mix design submittals shall include acceptance tolerances
Fine Aggregate Proportioning

• For most classes of concrete, the fine aggregate shall not exceed 44% of the total aggregate by volume

• Exceptions
 • Class A Slipform: 46% max
 • Class SCC, SH-SCC, P-SCC: 50% max
 • Curb and gutter: 40 - 65%
 • Drycast used for precast products: 60% max

Step 2: Water Content

• Determine the minimum amount of cement required and the maximum w/cm ratio
• Water/Cementitious Materials ratio on design is the maximum
• Determine the maximum allowable water content using the equation below

\[
\frac{w}{cm} = \frac{\text{weight of water}}{\text{weight of cementitious material}}
\]

weight of water = w/cm ratio × weight of cementitious material
Step 3: Absolute Volumes

Calculate the absolute volume of any material

\[V_{ft^3} = \frac{W_{lbs.}}{G \times U} \]

- \(V_{ft^3} \) = absolute volume of material, ft\(^3\)
- \(W_{lbs} \) = weight of material, lbs
- \(G \) = specific gravity of material
- \(U \) = unit weight of water (usually assumed 62.4 lbs/ft\(^3\))

Step 4: Weight of Material

Calculate the weight of any material

\[W_{lbs} = V_{ft^3} \times G \times U \]

- \(W_{lbs} \) = weight of material, lbs
- \(V_{ft^3} \) = absolute volume of material, ft\(^3\)
- \(G \) = specific gravity of material
- \(U \) = unit weight of water (usually assumed 62.4 lbs/ft\(^3\))
Step 5: Unit Weight of Mix

Calculate the unit weight of the mix

\[U_{\text{lbs/ft}^3} = \frac{W_{\text{total, lbs.}}}{V_{\text{total, ft}^3}} \]

- \(U_{\text{lbs/ft}^3} \) = unit weight of mix, lbs/ft\(^3\)
- \(W_{\text{total, lbs.}} \) = total weight of all the materials, lbs
- \(V_{\text{total, ft}^3} \) = total volume of the mix, ft\(^3\) (should be 27 ft\(^3\))
Concrete Mix Design
Submittal & Approval
TDOT Process for

Concrete Mix Design Submittal & Approval

References
TDOT Standard Specifications
TDOT Supplemental Specifications
SOP 4-4

SOP 4-4

- Submittal and approval process for concrete mixes
 - Ready mix
 - Volumetric mobile mixers
 - Prestressed
 - Precast
Trial Batch
(SOP 4-4)

- Prepare trial batches for design, including admixtures in the proper proportions, no more than 90 days before the design submittal
- Gradations and specific gravity for coarse and fine aggregates used in trial batch shall reflect the characteristics of stockpiles to be used in the mix
- Any trial batch mixed for Class SCC, P-SCC, SH-SCC shall be verified in the presence of Regional Materials & Tests
 - The field trial must simulate expected field conditions including expected transport time
 - Static Segregation Test (ASTM C 1610) shall be performed in addition to acceptance tests for verification of the mix design

Trial Batch Testing
(SOP 4-4)

- Tests shall be conducted to determine:
 - Slump (Slump Flow for SCC)
 - Temperature
 - Air Content
 - Unit Weight and Yield
 - Passing Ability (SCC)
 - Static Segregation (SCC)
 - T-50 (SCC)
- The hardened specimens, after proper curing, shall then be tested for compressive strength
Types of Designs
(SOP 4-4)

• New
 • Submit mix design template including all data from trial batch

• Temporary
 • Submit like a new design
 • 7 or 14 day breaks must exceed 28-day requirement
 • Design expires if 28-day breaks are not submitted

• Same As
 • A “same as” design is associated to multiple projects for a plant instead submitting a new one each time
 • Must be approved design from current year
 • Concrete Design Contract Association Request Form
 • Not permitted for Class X, SCC, P-SCC, and SH-SCC designs

Design Submittals
(SOP 4-4)

• Submit to HQMT at least 14 days prior to mix production via email
• Ready Mix or Prestressed: TDOT.Concrete.Email@tn.gov
• Precast: TDOT.PrecastMTR@tn.gov
 • Subject line
 • New or Same as
 • Contract, Pin, or Bridge Grant Number
 • Include:
 • If required, include “Surface Aggregates Required”
 • Attach design template/same-as form
 • Contact information
 • Must be submitted by:
 • TDOT Concrete Mix Design Technician
 • PE licensed in TN
Expiration of Mix Designs
(SOP 4-4)

- Approved concrete mix designs will expire at the end of each calendar year (i.e. December 31st)
- Mix designs will be subject to expiration if the following are not satisfied:
 - Design strength
 - Field requirements/performance

Mix Design Template

- Use the newest version
- Mix designs are plant specific
- Include the following on each template:
 - Required compressive strength
 - If Class X, also send a copy of the plans sheet
 - All fresh concrete properties from trial batch
 - Compressive strength results from the trial batch at 7, 14, and 28 days
 - High early designs need breaks for specified early strength time
 - e.g. 3000 psi at 18 hours
 - All material sources must be TDOT approved
 - Producer List
 - Qualified Products List (QPL)
 - Batch weights of all materials
Cementitious Materials
(Mix Design Template)

- Cement, Fly Ash, Slag
 - Type, class, grade
 - Specific Gravity (G_s) from producer, typically 3.15
- Fly ash outage
 - New trial batch required with the exception of an emergency (project may be delayed)
 - Only submit new designs as necessary for each project

Cement
(TDOT Specification 901.01)

- The maximum allowable equivalent alkalis is 0.6% for all cements and blended cements used in concrete riding surfaces that include surface aggregates
- Equivalent alkalis are found on the Mill Test Report
Cement Replacement

Table 604.03-3: Type I or Type II Cement Modified by Fly Ash or Ground Granulated Blast Furnace Slag (GGBFS)

<table>
<thead>
<tr>
<th>Modifier</th>
<th>Maximum Cement Replacement Rate % (by weight)</th>
<th>Minimum Modifier Cement Substitution Rates (by weight)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GGBFS (grade 100 or 120)</td>
<td>35.0</td>
<td>1:1</td>
</tr>
<tr>
<td>Class “F” Fly Ash</td>
<td>25.0</td>
<td>1:1</td>
</tr>
<tr>
<td>Class “C” Fly Ash</td>
<td>25.0</td>
<td>1:1</td>
</tr>
</tbody>
</table>

The Contractor may use ternary cementitious mixtures (mixtures with Portland cement, ground granulated blast furnace slag, and fly ash) for Class A and Class D concrete provided that the minimum Portland cement content is 50%. The maximum amount of fly ash substitution in a ternary cementitious mixture shall be 20%. The Department will allow Type IS cement with ternary cementitious mixtures. When using a Type IS cement, do not use any additional slag as a partial replacement for the hydraulic cement.

Cement Replacement Examples

- **Example 1:**
 - 620 lbs cement
 - Maximum class C fly ash replacement
 \[
 620 \text{ lbs} \times 25\% = 155 \text{ lbs ”C” Fly Ash}
 \]

- **Example 2:**
 - 564 lbs cement
 - 20% class F fly ash replacement
 \[
 564 \text{ lbs} \times 20\% = 113 \text{ lbs ”F” Fly Ash}
 \]
Coarse & Fine Aggregates
(Mix Design Template)

- Type and size: crush stone, gravel, surface, lightweight
- Specific gravities and absorptions from producer(s)
- Allow 1 change in coarse aggregate:
 - If like material, and SG is within 0.15 of original
- Coarse and fine aggregate gradations
 - Fine aggregate Fineness Modulus (2.3-3.1)

Water
(Mix Design Template)

- Municipal or non-municipal
- For non-municipal also submit most recent water results per TDOT Specification 921.01

<table>
<thead>
<tr>
<th>Maximum Concentration in Mixing Water</th>
<th>Limits</th>
<th>ASTM Test Method (1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chloride Ion Content, ppm</td>
<td>500</td>
<td>C114</td>
</tr>
<tr>
<td>Alkalies as (Na2O + 0.658 K2O), ppm</td>
<td>600</td>
<td>C114</td>
</tr>
<tr>
<td>Sulfates as SO4, ppm</td>
<td>3000</td>
<td>C114</td>
</tr>
<tr>
<td>Total Solids by mass, ppm</td>
<td>50000</td>
<td>C1603</td>
</tr>
<tr>
<td>pH</td>
<td>4.5-8.5</td>
<td>(2)</td>
</tr>
</tbody>
</table>

(1) Other methods (EPA or those used by water testing companies) are generally acceptable.
(2) No ASTM method available.
Admixtures
(Mix Design Template)

• Brand and type
• Dosage rates used in trial batch
• Concrete mixtures using multiple admixture manufacturers must prove compatibility
 • 3 months of field data from non TDOT projects
 • Trial and field batch witnessed by HQ Materials & Tests or designee

Precast & Prestressed Mix Designs

• Submit designs for the following year by November 1st
• If resubmitting the previous year mix design, provide trial batch data or project break data from the past 90 days
• Precast mix design requirements are listed in SOP 5-3
• Prestressed mix design requirements are listed in SOP 5-4 and TDOT Specifications 615.09
 • Prestressed producers may use a mix design with a higher strength than that called for by contract plans, shop drawings, etc.
 • Approved prestressed designs will designate the maximum strength requirement it can be used for
Volumetric Mobile Mixers
(TDOT Specification 604.04B)

- Individual performing calibration must have BOTH of the following certifications:
 - VMMB Volumetric Mixer Operator
 - TDOT Concrete Mix Design Technician

- Perform the calibration of gate settings according to the manufacturer’s recommendations for the mix design to be used
 - All calibrations shall be kept with truck

- Inspections and calibrations shall be performed at a minimum of every 6 months, every 2500 cubic yards, or when a new mix design is to be used

Materials & Tests Website

Click on Field Operations
Materials & Tests Website
(continued)

Approved surface aggregate list

Mix design template (ready mix & volumetric)

Mix design template (precast & prestressed)

Questions
Table 604.03-1: Composition of Various Classes of Concrete

<table>
<thead>
<tr>
<th>Class of Concrete</th>
<th>Min 28-Day Compressive Strength (psi)</th>
<th>Min Cement Content (pound per cubic yard)</th>
<th>Maximum Water/Cement Ratio (pound/pound)</th>
<th>Air Content % (Design + production tolerance)</th>
<th>Slump (inches)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>3,000</td>
<td>564</td>
<td>0.45</td>
<td>6 ± 2</td>
<td>$3 \pm 1^{(1)}$</td>
</tr>
<tr>
<td>D, DS$^{(2, 3)}$</td>
<td>4,000</td>
<td>620</td>
<td>0.40</td>
<td>$7^{(3)}$</td>
<td>$8 \text{ max}^{(4)}$</td>
</tr>
<tr>
<td>L$^{(3, 5)}$</td>
<td>4,000</td>
<td>620</td>
<td>0.40</td>
<td>$7^{(3)}$</td>
<td>$8 \text{ max}^{(4)}$</td>
</tr>
<tr>
<td>S (Seal)$^{(6)}$</td>
<td>3,000</td>
<td>682</td>
<td>0.47</td>
<td>6 ± 2</td>
<td>6 ± 2</td>
</tr>
<tr>
<td>X$^{(7)}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

$^{(1)}$ For slip forming, the slump shall range from 0 to 3 inches.

$^{(2)}$ Use Class DS concrete in riding surfaces as described in 903.03 and in accordance to Specification 903.24 requirements. Use Class D concrete in all other bridge decks except box and slab type structures unless otherwise shown on the Plans.

$^{(3)}$ Design Class D, Class DS, and Class L concrete at 7% air content. Acceptance range for pumping and other methods of placement is 4.5-7.5%. Sampling will be at the truck chute.

$^{(4)}$ Water reducing admixtures are acceptable; however, do not exceed the maximum water/cement ratio in order to achieve the required slump.

$^{(5)}$ The unit weight of air dried Class L concrete (lightweight concrete) shall not exceed 115 pounds per cubic foot as determined according to ASTM C567.

$^{(6)}$ The use of fly ash as a cement replacement will be allowed in Class S (Seal) concrete.

$^{(7)}$ Plan specific requirements.
TABULATION OF CONCRETE MIX DESIGN PROPORTIONS

Class of Concrete: A

Use the table in Section 604.03 of the Standard Specifications (Classification and Proportioning and Quality Assurance)

Constituent Materials

<table>
<thead>
<tr>
<th>Constituent Materials</th>
<th>Weight</th>
<th>Specific Gravity</th>
<th>Volume (ft³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paste</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cement</td>
<td>%W cm</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>Fly Ash</td>
<td>%W Flyash</td>
<td>= (W cm x %W Flyash)/100</td>
<td></td>
</tr>
<tr>
<td>Slag</td>
<td>%W Slag</td>
<td>= (W cm x %W Slag)/100</td>
<td></td>
</tr>
<tr>
<td>Water</td>
<td>w/cm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Air</td>
<td></td>
<td>Design Air</td>
<td></td>
</tr>
<tr>
<td>Aggregate</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coarse (CA)</td>
<td>W CA</td>
<td>2.79</td>
<td>%V CA</td>
</tr>
<tr>
<td>Fine (FA)</td>
<td>W FA</td>
<td>2.63</td>
<td>%V FA</td>
</tr>
<tr>
<td>TOTAL</td>
<td>W Total</td>
<td></td>
<td>%V Total</td>
</tr>
<tr>
<td>UNIT WEIGHT</td>
<td>U Concrete</td>
<td>= W Total/V Total</td>
<td></td>
</tr>
</tbody>
</table>

Weight Calculations

- **Concrete:**
 - Total Volume of Aggregate Required:
 \[V_{agg} = 27\times(V_{cm} + V_{water} + V_{air}) \]
 - Total Weight and Volume of Paste:
 \[V_{paste} = V_{cm} + V_{water} \]
 \[W_{paste} = W_{cm} + W_{water} + W_{air} \]
 \[U_{concrete} = W_{total}/V_{total} \]

Specific Gravity Calculations

- **Cement:**
 \[W_{cement} = (W_{cm} \times %W_{cement})/100 \]

- **Fly Ash:**
 \[W_{flyash} = (W_{cm} \times %W_{flyash})/100 \]

- **Slag:**
 \[W_{slag} = (W_{cm} \times %W_{slag})/100 \]

Volume Calculations

- **Cement:**
 \[V_{cement} = W_{cement}/(G_{s,cement} \times U) \]

- **Fly Ash:**
 \[V_{flyash} = W_{flyash}/(G_{s,flyash} \times U) \]

- **Slag:**
 \[V_{slag} = W_{slag}/(G_{s,slag} \times U) \]

Water

- **Water:**
 \[W_{water} = W_{cm} \times w/cm \]
 \[V_{water} = W_{water}/(G_{s,water} \times U) \]

Aggregate

- **Coarse (CA):**
 \[W_{ca} = V_{ca} \times G_{s,ca} \times U \]

- **Fine (FA):**
 \[W_{fa} = V_{fa} \times G_{s,fa} \times U \]

Total

- **Total Weight and Volume:**
 \[W_{total} = W_{paste} + W_{ca} + W_{fa} \]
 \[V_{total} = V_{paste} + V_{ca} + V_{fa} \]
TABULATION OF CONCRETE MIX DESIGN PROPORTIONS

Class of Concrete: D with max ash

Use the table in Section 604.03 of the Standard Specifications (Classification and Proportioning and Quality Assurance)

Constituent Materials

<table>
<thead>
<tr>
<th>Constituent Materials</th>
<th>Weight</th>
<th>Specific Gravity</th>
<th>Volume (ft³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cement</td>
<td>(W_{\text{cm}} \times %W_{\text{Cement}} \div 100)</td>
<td></td>
<td>(V_{\text{Cement}} = W_{\text{Cement}} \div (G_s,\text{Cement} \times U))</td>
</tr>
<tr>
<td>Fly Ash</td>
<td>(W_{\text{FlyAsh}} = W_{\text{cm}} \times %W_{\text{FlyAsh}} \div 100)</td>
<td>2.55</td>
<td>(V_{\text{FlyAsh}} = W_{\text{FlyAsh}} \div (G_s,\text{FlyAsh} \times U))</td>
</tr>
<tr>
<td>Slag</td>
<td>(W_{\text{Slag}} = W_{\text{cm}} \times %W_{\text{Slag}} \div 100)</td>
<td></td>
<td>(V_{\text{Slag}} = W_{\text{Slag}} \div (G_s,\text{Slag} \times U))</td>
</tr>
<tr>
<td>Water</td>
<td>(W_{\text{Water}} = W_{\text{cm}} \times w/cm)</td>
<td></td>
<td>(V_{\text{Water}} = W_{\text{Water}} \div (G_s,\text{Water} \times U))</td>
</tr>
</tbody>
</table>

Total Weight and Volume of Paste

\[W_{\text{Paste}} = W_{\text{cm}} + W_{\text{Water}} \]

\[V_{\text{Paste}} = V_{\text{cm}} + V_{\text{Water}} + V_{\text{Air}} \]

Total Volume of Aggregate Required

\[V_{\text{Agg}} = 27 \div (V_{\text{cm}} + V_{\text{Water}} + V_{\text{Air}}) \]

Aggregate

<table>
<thead>
<tr>
<th>Aggregate</th>
<th>Weight</th>
<th>Specific Gravity</th>
<th>Volume (ft³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coarse (CA)</td>
<td>(W_{\text{CA}} = V_{\text{CA}} \times G_s,\text{CA} \times U)</td>
<td>2.79</td>
<td>(V_{\text{CA}} = (%V_{\text{CA}} \times V_{\text{Agg}}) \div 100)</td>
</tr>
<tr>
<td>Fine (FA)</td>
<td>(W_{\text{FA}} = V_{\text{FA}} \times G_s,\text{FA} \times U)</td>
<td>2.63</td>
<td>(V_{\text{FA}} = (%V_{\text{FA}} \times V_{\text{Agg}}) \div 100)</td>
</tr>
</tbody>
</table>

TOTAL

\[W_{\text{Total}} = W_{\text{Paste}} + W_{\text{CA}} + W_{\text{FA}} \]

\[V_{\text{Total}} = V_{\text{Paste}} + V_{\text{CA}} + V_{\text{FA}} \]

UNIT WEIGHT

\[U_{\text{Concrete}} = \frac{W_{\text{Total}}}{V_{\text{Total}}} \]
TABULATION OF CONCRETE MIX DESIGN PROPORTIONS

A Ternary w/ max ash

Use the table in Section 604.03 of the Standard Specifications (Classification and Proportioning and Quality Assurance)

Constituent Materials

<table>
<thead>
<tr>
<th>Constituent</th>
<th>Weight</th>
<th>Specific Gravity</th>
<th>Volume (ft³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cement</td>
<td>(W_{cm} \times \text{%W}_{Cement} / 100)</td>
<td>(V_{Cement} = W_{Cement} / (G_{s,Cement} \times U))</td>
<td></td>
</tr>
<tr>
<td>Fly Ash</td>
<td>(W_{cm} \times \text{%W}_{Flyash} / 100)</td>
<td>(2.55)</td>
<td>(V_{Flyash} = W_{Flyash} / (G_{s,Flyash} \times U))</td>
</tr>
<tr>
<td>Slag</td>
<td>(W_{cm} \times \text{%W}_{Slag} / 100)</td>
<td>(2.63)</td>
<td>(V_{Slag} = W_{Slag} / (G_{s,Slag} \times U))</td>
</tr>
<tr>
<td>Water</td>
<td>(W_{cm} \times \text{w/cm})</td>
<td></td>
<td>(V_{Water} = W_{Water} / (G_{s,Water} \times U))</td>
</tr>
<tr>
<td>Air</td>
<td></td>
<td></td>
<td>(V_{Air} = (\text{Design Air} \times 27) / 100)</td>
</tr>
</tbody>
</table>

Volume of Aggregate Required

\(V_{Agg} = 27 \times (V_{cm} + V_{water} + V_{air}) \)

Aggregate

<table>
<thead>
<tr>
<th>Aggregate</th>
<th>Weight</th>
<th>%</th>
<th>Volume (ft³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coarse (CA)</td>
<td>(V_{CA} = %V_{CA} \times V_{Agg} / 100)</td>
<td>(56%)</td>
<td>(V_{CA} = %V_{CA} \times V_{Agg} / 100)</td>
</tr>
<tr>
<td>Fine (FA)</td>
<td>(V_{FA} = %V_{FA} \times V_{Agg} / 100)</td>
<td>(44%)</td>
<td>(V_{FA} = %V_{FA} \times V_{Agg} / 100)</td>
</tr>
</tbody>
</table>

TOTAL

\(V_{Total} = V_{Paste} + V_{CA} + V_{FA} \)

UNIT WEIGHT

\(U_{Concrete} = W_{Total} / V_{Total} \)