

Soils Technician Course Tennessee Department of Transportation 2020 Manual

Soils Technician Course

Tennessee Department of Transportation

2020 Manual

Table of Contents

1.	Soils Classification	.7
2.	Engineering Characteristics	.13
3.	Embankment Construction	. 16
4.	Compaction	. 22
5.	Compaction Equipment	25
6.	Proctor Density Testing	29
7.	Nuclear Density Testing	34
8.	Quality Acceptance Testing	38
9.	TDOT Requirements	41
10	. Corrective Actions	45
11	. PipeInstallation	48

Derek Gaw

- Trans. Proj. Spec. SR
- Areas of Expertise:
 - Prestressed Products
 - Aggregate
- Several years of experience with both performing and teaching these test methods
- Derek.Gaw@tn.gov

David Black

TN

- Trans. Proj. Spec.
- Areas of Expertise:
 - Ready Mix
 - Mix Design
 - Producer List
 - Cement/SCM
- David.Black@tn.gov

Course Highlights

- Originally part of the aggregate technician course and formally known as the Soils and Aggregate Technician Course
- The Soils part of this class has been consolidated into this online learning module
- Slide Presentations
- No certification or exam will be provided

Soils Classification

AASHTO M1245

ASTM D2487

Classification

- Laboratory confirmation of the field determination.
- Two major soil classification systems used in the US.
 - Unified Soil Classification

TN

AASHTO Classification

Unified Soil Classification

50% retained o	n No. 200 (0.075 ED (Silts and Cl	Sands and Gravels) - more than mm) sieve ays) - 50% or more passes the	Group Symbol	Group Name [®]
GRAVELS	CLEAN GRAVELS	$C_u \!\geq\! 4$ and $1 \!\leq\! C_c \!\leq\! 3^{\text{*}}$	GW	Well-graded
More than 50% of	< 5% fines	$C_u < 4$ and/or $1 > C_c > 3^{\ast}$	GP	Poorly-grade gravel
coarse	GRAVELS	Fines classify as ML or MH	GM	Silty gravel ⁴⁴
Fraction retained on No. 4 Sieve	WITH FINES	Fines classify as CL or CH	GC	Clayey gravel ^{fga}
SANDS	CLEAN	$C_u \geq 6 \text{ and } 1 \leq C_c \leq 3^e$	SW	Well-graded Sand ⁱ
50% or more of coarse	< 5% fines ^d	$C_u < 6$ and/or $1 > C_c > 3^e$	SP	Poorly-grade sand
fraction	SANDS WITH	Fines classify as ML or MH	SM	Silty sand
passes No. 4 Sieve	FINES > 12% fines ^d	Fines classify as CL or CH	SC	Clayey sand ^{g ki}
SILTS AND	Inorganic	PI > 7 and plots on or above "A" line ¹	CL	Lean clay ^{k1,m}
CLAYS		PI < 4 or plots below "A" line	ML	Siltkim
Liquid limit lare than 50 Organic	Liquid limit - overdried < 0.75	OL	Organic clay ^{k1,m,n}	
less than 50	Organic	Liquid limit - not dried	OL	Organic silt ^{almo}
SILTS AND	Inorganic	PI plots on or above "A" line	CH	Fat clayklm
CLAYS	morpulic	PI plots below "A" line	MH	Elastic silt ^{k,th}
Liquid limit 50 or more	Organic	Liquid limit - oven dried Liquid limit - not dried < 0.75	ОН	Organic clay ^{k1mp}
	o.Bume	Laquid minit - not dried	on	Organic silt ^{a lan,q}
Highly fibrous organic soils	Primary organic organic odor	matter, dark in color, and	Pt	Peat

Coarse-grained Soils

- G gravel
- S sand

Fine-grained Soils

- M inorganic silts
- C inorganic clays
- O organic clays and silts

Subcategories

•

- W well graded, fairly clean
- C significant amounts of clay
- P poorly graded, fairly clean
- M significant amounts of silt
- L low Compressibility
- H high Compressibility

AASHTO Soil Classification

General Classification	Gra	anular Materials (35%	or less pa	issing th	e 0.075 m	m sieve)		Silt-Clay I	Materials (>3	5% passing	the 0.075 mm sieve	
Crown Classification	A-1		A-3	A-2				A-4	A-5	A-6	A-7	
Group Classification	A-1-a	A-1-b	A-D	A-2-4	A-2-5	A-2-6	A-2-7	H-4	A-D	A-0	A-7-5 A-7-6	
Sieve Analysis, % passing												
2.00 mm (No. 10)	50 max											
0.425 (No. 40)	30 max	50 max	51 min									
0.075 (No. 200)	15 max	25 max	10 max	35 max	35 max	35 max	35 max	36 min	36 min	36 min	36 min	
Characteristics of fraction passing 0.425 mm (No. 4	0)											
Liquid Limit				40 max	41 min	40 max	41 min	40 max	41 min	40 max	41 min	
Plasticity Index	6 max		N.P.	10 max	10 max	11 min	11 min	10 max	10 max	11 min	11 min ¹	
Usual types of significant constituent materials	stone fragme	ents, gravel and sand	fine sand	silty or o	layey gra	vel and sa	and	silty soils		clayey soi	IS .	
General rating as a subgrade	excellent to	good						fair to poo	r			

Note (1): Plasticity index of A-7-5 subgroup is equal to or less than the LL - 30. Plasticity index of A-7-6 subgroup is greater than LL - 30

Soil	Group	Co	mparable Soil G	
AAS	n — HTO —	Most Probable	in Unified Syste Possible	Possible but Improbable
	l-a	GW, GP	SW, SP	GM, SM
	1-b	SW, SP, GM, SM	GP GP	-
A	-3	SP	-	SW, GP
A-	2-4	GM, SM	GC, SC	GW, GP SW, SP
۸-	2-5	GM, SM	-	GW, GP, SW, SP
A-	2-6	GC, SC	GM, SM	GW, GP SW, SP
A-:		GM, GC, SM, SC	-	GW, GP, SW, SP
۸.	4	ML, OL	CL, SM, SC	GM, GC
A.		OH, MH, ML, OL	-	SM, GM
Α.	-6	CL	ML, OL, SC	GC, GM, SM
A-7	7-5	он, мн	ML, OL., CH	GM, SM, GC, SC
A-1	7-6	CH, CL	ML, OL, SC	ОН, МН, GC, GM, SM

Г

Engineering Characteristics

<section-header><section-header><list-item><list-item><list-item><list-item>

TN

Embankment Construction

TDOT Standard Specifications (Section 205)

Major Embankment Materials

- Rock fragments
- Gravel
- Sand
- Silt
- Clay

TN

Organic Materials

 Topsoil or other organic material should never be used as embankment material.

Graded Solid Rock (Item 203-02.01)

- Sometimes embankments are constructed out of rock to bridge soft soils or to provide a steeper slope than permitted by conventional fill.
- Graded Solid Rock is typical and is defined in the spec book as follows:
 - Max Particle Size of 3 Feet in any direction.
 - Particle size distribution in which at least 50% of the rock is uniformly distributed between 1
 - between 1 foot and 3 feet in diameter, and no more than
 - nore than 10% is less than 2 inches in diameter.
 - Roughly equi-dimensional in shape.
 - No thin, slabby material.

- Construct embankments so as to provide adequate surface drainage at all times.
- Keep placing and compacting area separate.
- Compact each layer of embankment to the required density.
- Obtain engineers approval before proceeding with each succeeding layer.
- Do not incorporate or bury any perishable materials or obstructions.
- Embankments must be built up in uniform, wellmixed layers for the full width of the roadway.

TN

Embankment Placement Equipment and Procedures

- The equipment and procedures involved in the dumping and spreading of the embankment material will depend on the type of equipment available and material used.
- The contractor must have enough equipment and use procedures that will enable proper moisture and compaction requirements to be met.

Compaction

Why Do We Compact?

- To improve the engineering properties of the soil mass, which in turn will:
 - Increase the strength and stiffness of t he embankment
 - Increase the bearing capacity of foundations
 - Decrease the settlement of the roadway embankment
 - Reduce movement of water
 - Increase the stability of slopes and embankments
 - Provide uniformity

Compaction Equipment

Tamping-Foot Roller

- A tamping-foot roller is a modification of the sheepsfoot roller
- The tamping feet are trapezoidal pads attached to a drum
- Tamping-foot rollers are normally self-propelled, and the drum may be capable of vibrating
- The tamping-foot roller is suitable for use with a wide range of soil types

Pneumatic Rollers

- Variants include: pneumatictired roller & self-propelled pneumatic-tired roller
- Suitable for granular materials; however, it is not recommended for finegrained clay soils except as necessary for sealing the surface after a sheepsfoot roller has "walked out"
- It compacts from the top down and is used for finishing all types of materials, following immediately behind the blade and water truck

TN

Self-Propelled, Smooth-Drum Vibratory Roller

- Compacts with a vibratory action that rearranges the soil particles into a denser mass
- The best results are obtained on cohesionless sands and gravels
- Compaction efficiency is impacted by the ground speed of the roller and the frequency and amplitude of the vibrating drum

Proctor Density Testing

AASHTO T99

AASHTO T180

Test Method	Mold Diam (in)	Mold Height (in)	Mold Vol. (ft ³)	Rammer Wt. (lbs.)	Rammer Drop Height (in)	No of Layers	Blows/ Layer	Energy (ft- lbs/ft ³)
AASHTO T99 - Standard Proctor	4	4.5	1/30	5.5	12	3	25	12375
AASHTO T180 - Modified Proctor	4	4.5	1/30	10	18	5	25	56250

7

Nuclear Density Testing

SOP 7-1

AASHTO T310

TDOT Certification

- In order to perform Nuclear Density testing on a TDOT project. The individual performing the test must take the Nuclear Gauge Field Technician Course.
- This half-day course is designed to cover TDOT policy on the proper testing procedure for Nuclear Density Gauges as well as covering random testing for density on a project site.

TN

TN

Nuclear Density/Moisture Testing

Soils and Aggregate Technician Certification

- Regardless of gauge manufacturer (Troxler, Humbolt, Instrotek, etc.), all gauges utilize the same basic components.
- All tests performed on soil and aggregate will be using the Direct Transmission method.

Quality Acceptance Testing

SOP 1-1

Quality Acceptance Testing: Procedure

- Identify Density/Moisture Requirements
 - Based on type of material being placed
 - Target values are determined by Materials and Tests and submitted to Project Supervisor.
 - These values may change during the course of the project, so be sure to make sure you have the most current numbers.
- Determine Required Lot Size/Number of Tests
- Determine Test Locations
- Perform Test(s)
- Report Results

TN

Determine Required: Lot Size/Number of Tests/Test Locations

- S.O.P. 1-1: Sampling and Testing Guide
 - Describes the testing frequency for all materials
 - Lists the person responsible for either obtaining the sample or performing the test.
 - Available in PDF format at:
 - <u>https://www.tn.gov/tdot/materials-and-</u> tests/standard-operating-procedures.html

Quality Acceptance Testing: Soil Best Practices

- Use a "test strip" to determine the approximate number of passes needed to attain proper densities
- Test every lift as soon as compaction is completed
- Test obvious weak spots
- Remove all oversized materials
- Remove any pockets of organic or unsuitable soil material

TDOT Requirements

TDOT Standard Specifications for Road and Bridge Construction (2015)

TDOT Requirements

 TDOT requires that a certain percentage of the maximum dry density ("relative compaction") be obtained while the moisture content of the soils is held within certain limits.

Relating Laboratory Tests to Field Test Results

- Relative Compaction (RC) is used to express laboratory-measured compaction parameters in terms of field compaction.
- RC is simply the ratio of the desired field dry unit weight to the maximum dry density measured in the laboratory.

$$RC = \frac{\gamma_{d \text{ field}}}{\gamma_{d \text{ max}}} \times 100\%$$

TN

Minimum 95% Max Density Standard Specifications Section 205.04

- Compact each layer to a minimum of 95% maximum density.
- When a minimum of 95 percent maximum density is required, the moisture content of the material must be within the range of values at which this density can be obtained

- The contractor is required to aerate the material or distribute and incorporate water uniformly to control moisture content within appropriate limits
- If the moisture is within the appropriate limits but the density is not, additional compaction is necessary

10

Corrective Actions

Over Compaction

- Occurs when material is densified • Too many passes in excess of specified range.
- Wasted construction effort and time.

- Causes:
- with construction equipment.
- Change in soil type.

Under Compaction

- Occurs when material is not densified sufficiently.
- Could be localized or throughout entire layer, depending on the cause.
- Causes:
- A missed roller pass.
- Insufficient roller weight.
- A change in operating frequency or amplitude.
- A defective roller drum.
- Improper type of compaction equipment.
- Change in soil type.

11

Pipe Installation

TDOT Standard Specifications

TDOT Standard Drawings

General Pipe Installation Procedure

- Locate Utilities
- Excavate trench
- Explore foundation
- Place loose bedding under pipe
- Install pipe
- Compact bedding
- Backfill

Trenching Best Practices

- When installing your trench, make sure to keep in mind the following:
 - Safety First: follow all applicable OSHA requirements
 - For trenches with in-situ soils walls, the soil shall be firm and able to stand up on its own
 - Don't over or under excavate trench
 - Ensure the proper width of trench is dug as it relates to the pipe diameter
 - Brace as needed and don't get too far ahead of installation

TN

Compaction

- It is important to get the same amount of compaction across the entire area of soil
- If one part of the foundation is hard and another is soft, the pipe will settle unevenly

- If the foundation is found unacceptable or the water table is found to be high during excavation:
 - Improved foundation or excavatable flowable fill may be used at the engineers discretion

Unclassified Backfill Requirements

• Unclassified backfill shall be placed and compacted in layers not exceeding a 6 inch loose lift thickness and brought up evenly and simultaneously on both sides of the pipe to an elevation not less than one foot above the top of the pipe

Trenchless Technology Installation Applications

- New Installations:
 - Jack and Bore
 - Pipe Ramming
 - Moles and Small Rammers
 - Pipe Jacking
 - Microtunneling
 - Horizontal Directional Drilling (HDD)

