Hot Weather Concreting
Best Practices

Causes of Hot Weather Concreting

- High Temperatures
 - Average daily temperature greater than 77°F (ACI)
- High Winds
- Low Relative Humidity
- Solar Radiation

Effects of Hot Weather Concreting

- Plastic shrinkage cracking
- Accelerated slump loss
- Loss of entrained air
- Quicker set time
- Thermal cracking

Best Pre-Pour Practices

- Plan and be prepared!
- Look at the upcoming weather forecast
- Hold a pre-pour conference
 - TDOT, the contractor, and the concrete producer should all be present.
 - Discuss actions that should be taken by all parties to ensure quality concrete
Best Pre-Pour Practices

- **Concrete Producer:**
 - Shade aggregate stockpiles
 - Sprinkle water on coarse aggregate stockpile
 - Adjust mix proportions due to the moisture content
 - Use chilled water or ice in place of mix water
 - Must not exceed water/cement ratio for the design
 - Use liquid nitrogen to cool the concrete
 - Submit a hot weather mix design for approval
 - Use water reducing and set retarding admixtures
 - Use of Class F fly ash or slag can lower heat generation

- **Contractor:**
 - Schedule pours for the night or early morning
 - Avoid delays in delivery, placement, and finishing of concrete
 - Have ample laborers to be able to handle the amount of concrete
 - Schedule trucks to maintain a consistent moving operation to avoid any stop/start delays
 - Have evaporation control measures on-site

Best Practices During the Pour

- **Inspector:**
 - Ensure design water/cement ratio has not been exceeded by the addition of ice or chilled water (added at the plant or on-site)
 - Ensure measures are in place when evaporation rate exceeds 0.2 Lbs/S.F./Hr (Use nomograph)
 - Check discharge time of the concrete (501.10, 604.13)
 - For example if pouring structural concrete:
 - 90 minutes if air temperature is less than 90°F
 - 60 minutes if air temperature is 90°F or above (bridge decks)
 - Test concrete temperature
 - Maximum allowable concrete temperature is 90°F (604.11)

ACI nomograph for estimating rate of evaporation of surface moisture from concrete

- Figure 604.16-1 on Page 246 in TDOT Standard Specifications for Road and Bridge Construction 2015

- Shown example:
 - 65°F Air Temperature
 - 45% Relative Humidity
 - 60°F Concrete Temperature
 - 20 mph Wind Velocity
Hot Weather Concreting
Best Practices

Best Practices During the Pour

- **Inspector:**
 - Initial curing for concrete test cylinders:
 - Immediately after molding and finishing, store specimens in a cure box for a period up to 48 hours.
 - Temperature in cure box shall range between (AASHTO T-23):
 - 60°F-80°F for mixes with design strength below 6000 psi
 - 68°F-78°F for high early strength cylinders (≥ 6000 psi)
 - Storage temperature shall be controlled by use of heating and cooling devices, as necessary.
 - Within 30 min. after removing molds, cure specimens with free water maintained on surface at all times at a temperature of 73.5°±3.5°F

- **Contractor:**
 - Dampen forms and reinforcement (604.16)
 - Use evaporation measures when required
 - Plastic sheeting
 - Fog spray
 - Windbreaks
 - Sunshades
 - Place and finish concrete ASAP!
 - Begin curing procedure immediately after the water sheen disappears from the surface (604.23)
Best Post-Pour Practices

- Keep surfaces damp and protected from the sun for (604.23):
 - 120 hours for bridge decks and other slabs
 (Use a continuously fed soaker hose system)
 - 72 hours for all other surfaces
- Protect concrete from a rapid temperature drop (40°F drop in first 24 hours-ACI 305.1-06)
- Use insulation blankets or other approved method for regulating concrete temperature