
Project Scoping Guide (PSG)

Module 2: Chapters 5 through 7 and Appendices

1

Outline

- Chapter 1: Introduction and Overview
- Chapter 2: Decision-Making Framework and Documentation
- Chapter 3: Identifying Design Year Context
- Chapter 4: Multimodal Planning and Design
- Chapter 5: Intersection Planning and Design
- Chapter 6: Context Design Guidance and Criteria
- Chapter 7: Case Studies

Chapter 5: Intersection Planning and Design

3

Chapter 5: Intersection Planning and Design

- Intersection Control Types
- Intersection and Interchange Evaluation (IIE)
- Intersection Design Principles
- Intersection Context Considerations
- TDOT 20-Flag Intersection Evaluation Guide

Chapter 5: Intersection Planning and Design

Intersection Control Types

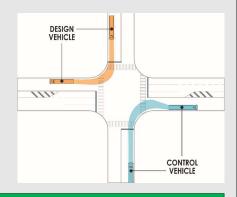
- Yield
- Two-Way Stop-Control (TWSC)
- All-Way Stop-Control (AWSC)
- Roundabout
- Traffic Signal

5

Chapter 5: Intersection Planning and Design

Intersection and Interchange Evaluation (IIE)

- Highway System Access Manual Volume 2 focused on IIE
- IIE provides framework, steps, and tools for assessing trade-offs between intersection forms and control types
- IIE typically applied when modifying or creating a new intersection
- IIE recommended as part of PDN Stage 0



Chapter 5: Intersection Planning and Design

Intersection Design Principles

- Intersection Alignment
 - Horizontal Curves
 - Intersection Angle
 - Tangent Approach
- Lanes at Intersections
- Design Vehicles
- Intersection Profile
 - Grade
 - Cross Slope Transitions
- Intersection Crossing Elements

Additional information in: TDOT Roadway Design Guidelines TDOT Standard Drawings TDOT Highway System Access Manual AASHTO Green Book

7

Chapter 5: Intersection Planning and Design

Intersection Context Considerations

- Intersection designs vary by context
- Context influences:
 - · Design controls
 - Geometry
 - · Pedestrian facilities
 - Bicycle facilities

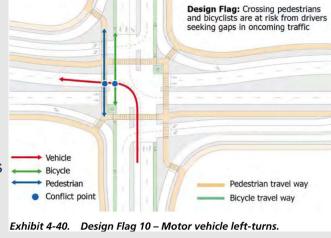
Design Element	Examples of Context Considerations		
Pedestrian Facilities	In all contexts, make the crossing distance as short as possible along the natural walking path. This may lead to some out-of-direction patterns, especially at alternative intersection forms. Appropriate wayfinding guidance should be provided for pedestrians. In all contexts, intersections should be accessible to pedestrians of all ages and abilities, and ramps should be provided when pedestrian facilities exist. Designs should not preclude ramp construction later. Consider including pedestrian-scale lighting in all contexts, when possible. In Urban and Urban Core, consider wider sidewalks to serve higher pedestrian volumes and activities. In addition, consider pedestrian timing strategies, including leading pedestrian intervals or exclusive pedestrian phasing in these contexts. Refer to Chapter 4 of the PSG for more information on context considerations for pedestrians.		
Bicycle Facilities	Bicyclists should experience the same quality of service at the intersection as they experience along the approaching segments in all contexts. In all contexts, bicyclists are exposed going through intersections, especially when turning vehicles cross their travel paths. Bicyclists movements typically follow the vehicle or the pedestrian patterns in various contexts. When bicyclists have separated approaching facilities, intersections may include dedicated and protected movements in all contexts. Consider bicyclist and/or pedestrian leading intervals and other traffic control devices in all contexts, but specifically in Suburban, Urban, and Urban Core contexts. Refer to Chapter 4 of PSG for more information on context considerations for bicyclists.		

Chapter 5: Intersection Planning and Design

TDOT 20-Flag Intersection Evaluation Guide

- NCHRP 948 includes 20 design flags to streamline pedestrian and bicyclist safety evaluation
- TDOT 20-Flag Intersection Evaluation Guide provides guidance for conducting design flag evaluation

→ Coming Soon!



9

Chapter 5: Intersection Planning and Design

TDOT 20-Flag Intersection Evaluation Guide

- Design flags reflect level of exposure and risk of injury
 - 3 flags just apply to pedestrians
 - 7 flags just apply to on-street bicyclists
 - 10 flags apply to both
- TDOT 20-Flag Intersection
 Evaluation Guide can be used
 to compare design alternatives
 as part of PDN Stage 0 or
 Stage 1

Source: NCHRP Research Report 948

11

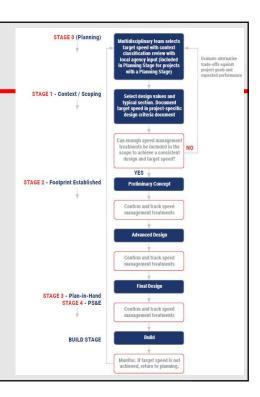
Chapter 6: Context Design Guidance and Criteria

- Target Speed
- Cross Section Realms
- Cross Section Design Criteria
- Selecting and Documenting Design Values

Target Speed

"Target Speed: The highest speed at which vehicles should operate on a thoroughfare in a specific context." – PSG

Table 6-1: Recommended Target and Design Speeds (mph)


Context	Local	Collector	Arterial
Rural	20–45	20–55	≥40
Rural Town	20–25	20–35	25–35
Suburban	20–30	25–35	30–45 ¹
Urban	20–30	25–35	25–40
Urban Core	20–25	20–25	25–30

1 In commercial areas where walking, biking, and transit are more common, start at the low end of the target speed range.

13

Chapter 6: Context Design Guidance and Criteria Target Speed

- Target speed identified during PDN Stage 0
- PSG includes guidance on determining target and posted speeds

TN TDOT
Department of

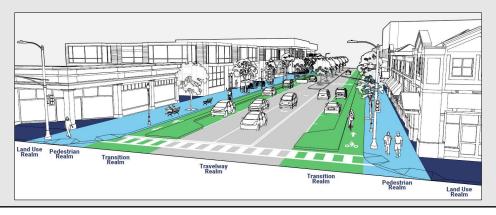
Target Speed

PSG includes guidance on:

- Aligning posted speed with target speed
- Speed management to achieve a desired target speed

Table 6-2: Speed Management Treatments by Context

Context	Treatments
Rural	Speed feedback signs, transverse pavement markings, lane narrowing
Rural Town	Roundabouts, lane narrowing, speed feedback signs, on-street parking, street trees, median islands, curb extensions, chicanes, speed tables, roac diets
Suburban	Roundabouts, transverse pavement markings, lane narrowing, speed feedback signs, road diets, median islands
Urban	Roundabouts, lane narrowing, speed feedback signs, on-street parking, street trees, median islands, curb extensions, chicanes, textured surface, coordinated signal timing, road diets
Urban Core	Roundabouts, lane narrowing, speed feedback signs, on-street parking, street trees, median islands, curb extensions, chicanes, textured surface, coordinated signal timing, speed tables, road diets



15

Chapter 6: Context Design Guidance and Criteria

Cross Section Realms

- TDOT roadway cross sections are organized into four realms
- PSG includes a table with the function and design characteristics of each realm

Cross Section Realms

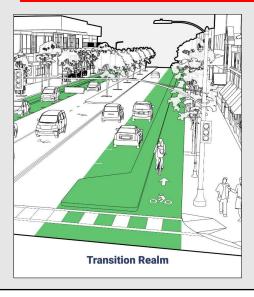


Table 6-6: Design Element Considerations within the Transition Realm

Design Element	Transition Realm Considerations		
Edge Zone	The edge zone is the transition between the pedestrian realm and the roadway. Curbs are often present in Rural Town, Suburban, Urban, and Urban Core contexts. Curbside uses may include parking, transit stops, loading/unloading zones, and pickup/drop-off zones. Curb uses may serve multiple functions in the same block or vary by time of day. At intersections and driveways, the edge zone includes Americans with Disabilities Act (ADA) compliant ramps.		
Right Side Shoulder	There may be a need for roadside recoverable area or shy distance based on the context, target speed, and/or likelihood of run-off-the-road crashes. Shoulders can limit stormwater encroachment into travel lanes. In Rural Town, Suburban, Urban, and Urban Core contexts, the right-side shoulder is often eliminated or replaced with a dedicated bicycle facility.		
Bicycle Facility Width and Separation	When speeds and volumes are higher and/or there is a high percentage of trucks, the project team should consider additional separation, such as extra buffer width or physical separation. Minimum bicycle lane widths should not be used adjacent to minimum travel lane widths. In constrained areas, buffer widths can be minimized by providing higher vertical barriers.		

17

Chapter 6: Context Design Guidance and Criteria Cross Section Design Criteria

- Design Controls
- Project-Specific Design Criteria for Each Context
- Horizontal and Vertical Design Considerations
- Sight Distance Design Considerations

Cross Section Design Criteria – Design Controls

- · Context influences design controls
- PSG includes context considerations for:
 - Design Speed
 - Design/Control Vehicle
 - Traffic Volumes
- Non-Motorized User Needs
- Vehicle Access Points and Density
- Terrain
- TDOT's Roadway Design Guidelines provide additional design guidance

19

Chapter 6: Context Design Guidance and Criteria

Cross Section Design Criteria - Project-Specific Design Criteria for Each Context

- Travelway Realm:
 - Number of Lanes
 - Travel Lane Width
 - Right-Turn Lane Width
 - Left-Turn Lane Width
 - Two-Way Left-Turn Lane Width Median
- · Left Side Shoulder on Divided Roadways (paved)
- Right Side Shoulder (paved)
- Shy Distance

Cross Section Design Criteria – Project-Specific Design Criteria for Each Context

- Transition Realm:
 - Bicycle Facility Type and Width
 - Buffer and Separation
- On-Street Paring
- Curb/Gutter

- Pedestrian Realm:
 - Frontage Zones
 - Pedestrian Facility Type
 - Pedestrian Zone Width
 - Buffer Zone

- Target Pedestrian Crossing Spacing Range
- · Shared-Use Path

21

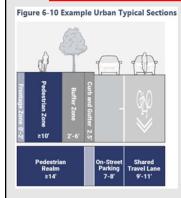
Chapter 6: Context Design Guidance and Criteria

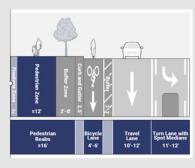
Cross Section Design Criteria – Project-Specific Design Criteria for Each Context

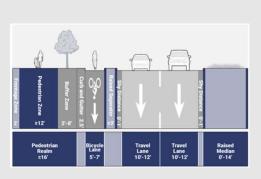
Table 6-12: Design Criteria by Facility Type—Urban Context

Design Element	Local	Collector	Arterial
Travelway Realm ¹			
Number of Lanes	2	Primarily 2	Primarily 2-4
Travel Lane Width ²	9'-10', 11' if transit	9'-11', 11' if transit	10'-12', 11'-12' if transit
Right-Turn Lane Width	9'-10', 11' if transit	9'-11'	10'-12'
Left-Turn Lane Width	9'-10', 11' if transit	9'-11'	11'-12'
Two-Way Left- Turn Lane Width	10′–11′	10'-12'	11′-12′
Left Side Shoulder on Divided Roadways (paved)	N/A	N/A	N/A
Right Side Shoulder	N/A	N/A	N/A
Shy Distance	0'-1'	0'-1'	0'-1'
Median ³	0'-8'	0'-12'	0'-14'

Cross Section Design Criteria – Project-Specific Design Criteria for Each Context


Design Element	esign Element Local Collector		Arterial	
Transition Realm				
Bicycle Facility Type and Width ^{4,5,6}	Buffered bicycle lane: • Width 4'-5' • Buffer: 2-3' striping Shared lane markings if target speed is 25 mph or less and two- lane roadway	Buffered bicycle lane: • Width 4'-5' • Buffer: 2-3' striping Separated bicycle lane: • Width: 5'-7' if one-way or 8'- 12' if two-way • Buffer: 23' physical separation including parking, raised island, flexible delineator posts, rigid bollards, parking stops, planters, and landscape Shared lane markings if target speed is 25 mph or less and two- lane roadway	Buffered bicycle lane: Width 4'-6' Buffer: 2-3' striping Separated bicycle lane: Width: 5'-7' if one-way or 8'-12' if fwo-way suffer: 2-3' physical separation including parking, raised island, flexible delineator posts, rigid bollards, parking stops, planter and landscape	
Parallel On-Street Parking ⁷	Limited and typically informal	7'-8', where provided	7'-8', where provided	
Curb/Gutter	Curb: 0.5' Gutter: 2.0'	Curb: 0.5' Gutter: 2.0'	Curb: 0.5' Gutter: 2.0'	


Pedestrian Realm			
Frontage Zone	2'	2'	2'
Pedestrian Facility Type	Sidewalk on both sides	Sidewalk on both sides	Sidewalk on both sides
Pedestrian Zone Width	≥8′	≥10′	≥12′
Buffer Zone	0'-6'	2'-6'	2'-8'
Target Pedestrian Crossing Spacing Range	250-550 (1-2 blocks)	250-550 (1-2 blocks)	250-550 (1-2 blocks)
Shared-Use Path	N/A	N/A	N/A


23

Chapter 6: Context Design Guidance and Criteria

Cross Section Design Criteria – Project-Specific Design Criteria for Each Context

Example Urban Typical Sections

Cross Section Design Criteria – Horizontal and Vertical Design Considerations

Horizontal Design

- Minimum Radius
- Spiral Curve
- Superelevation
- Minimum Horizontal Clearances

Vertical Design

- Length of Vertical Curve (Sag or Crest)
- Maximum Grades
- Minimum Vertical Clearances

Examples:

Spiral curves are typically discouraged except in Rural contexts and on freeways. The **lengths of sag and/or crest curves** in Urban and Urban Core contexts may be shorter but are typically adjusted based on intersection and/or driveway locations.

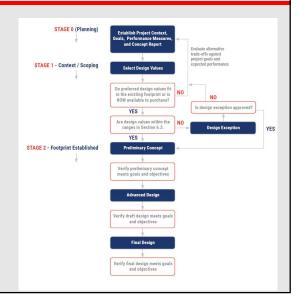
25

Chapter 6: Context Design Guidance and Criteria

Cross Section Design Criteria – Sight Distance Design Considerations

Table 6-16: Sight Distance Considerations

Design Element	Context Considerations
Stopping Sight Distance (SSD)	Based on design speed and assumptions for driver reaction time, the braking ability of most vehicles under wet pavement conditions, and the friction provided by most pavement surfaces. Influenced by both vertical and horizontal alignment. Higher speeds typically in Rural contexts will require increased sight distance; less sight distance will be needed in Urban and Urban Core contexts due to lower speeds
Passing Sight Distance (PSD)	Passing sight distances only apply to two-lane highways and generally to low-volume roadways in a Rural context. Minimum passing sight distance is sufficient only for the passing of a single isolated vehicle. Passing sight distances coincide with the vertical alignment that is determined by the speed associated with the various contexts.
Intersection Sight Distance (ISD)	Dimensions are affected by the operating speed and clear sight lines from the stopped vehicle. Landscape, signs, and appurtenances should be positioned and maintained to avoid blocking needed sight lines. Providing adequate sight distance can influence intersection design outside the TDOT footprint including obstacles on private property.



26

TN TDOT

Selecting and Documenting Design Values

- Align design values with project's goals and intended outcomes
- Evaluate trade-offs when needed
- Request Design Exceptions/ Deviations/Waivers when criteria cannot be reasonably met
- Clearly document decisions

27

Chapter 6: Context Design Guidance and Criteria

Selecting and Documenting Design Values

- Roadways may be constrained and trade-offs need to be evaluated
- PSG includes potential considerations, including:

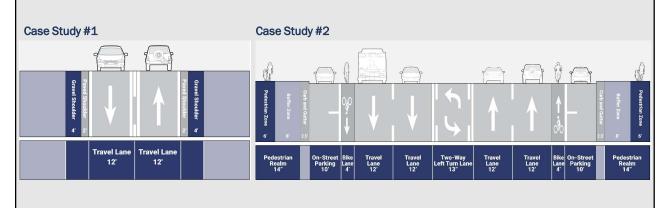
Is there an opportunity to reduce or remove shy distance?

 On low-speed streets in many Urban or Urban Core contexts, shy distance can be minimized or removed.

Is there an opportunity to narrow or remove the two-way left-turn lane?

• On low-speed streets in many Urban or Urban Core contexts, 10' is sufficient width for a two-way left-turn lane. Turn lanes may not be needed as higher levels of vehicle congestion are expected.

Chapter 7: Case Studies



TN TDOT
Department of
Transportation

29

Chapter 7: Case Studies

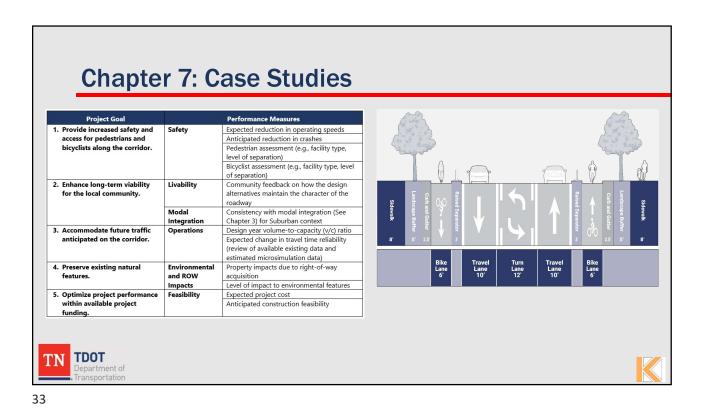
- Case Study #1: Transition from Rural to Suburban Context
- Case Study #2: Urban Transit Corridor

Chapter 7: Case Studies

Case studies use the following steps:

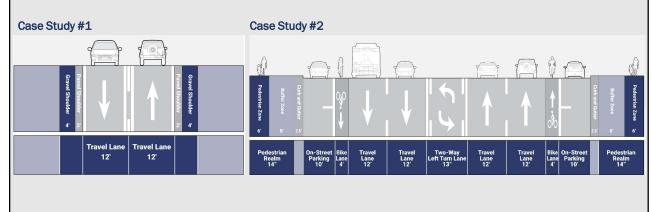
- 1. Establish project goals and performance measures (PDN Stage 0)
- 2. Concept development (PDN Stage 0)
- 3. Evaluation and selection (PDN Stage 1)
- 4. Design phase (PDN Stage 2)

31


Chapter 7: Case Studies

7.1.3 STEP 2: Concept Development (PDN Stage 0)

Step 2 focuses on developing alternative concepts. The alternatives are intended to represent a range of options and may be refined through the evaluation process. Project alternative concepts are initially identified in the Final Concept Report in Stage 0 and further refined in Stage 1 as part of the Draft Project Commitment Documentation.



Chapter 7: Case Studies PEDESTRIAN AND BICYCLE MODAL INTEGRATION Improvement Rating Performance Measure Alt 1 Alt 1 Anticipated change in crashes Pedestrian LTS LTS 3 or 4 LTS 2 LTS 1 Pedestrian assessment M Bicycle LTS LTS 3 or 4 LTS 2 LTS 1 Safety М Distance between crossings meets or is Bicyclist assessment Distance between Distance between Average distance between Design flag assessment (pedestrian) crossings is crossings is more than significantly more than marked crossings less than target Design flag assessment (bicyclist) М М target spacing spacing Pedestrian LTS М M Pedestrian/ Bicyclist Bicycle LTS Modal Integration Average distance between marked crossings Presence of transit priority treatments Transit Mobility Expected delay from transit stops Expected change in transit travel time reliability М Н Н Proximity of marked street crossings to transit Н Transit Modal stop locations Integration Sidewalk effective width Н Vehicle Mobility/ Design year v/c ratio Traffic Operations Expected change in vehicle travel time reliability М Feedback from local business owners М Н Revitalization Market analysis of expected development M Н Financial Investment Life cycle cost Expected mode share М Н Presence of placemaking elements (trees, art. М н Livability М benches, vegetation, micromobility hubs, etc.) TDOT Feedback from local community members М

Chapter 7: Case Studies

- Case Study #1: Transition from Rural to Suburban Context
- Case Study #2: Urban Transit Corridor

35

Chapter 7: Case Studies

Case studies use the following steps:

- 1. Establish project goals and performance measures (PDN Stage 0)
- 2. Concept development (PDN Stage 0)
- 3. Evaluation and selection (PDN Stage 1)
- 4. Design phase (PDN Stage 2)

Project Background

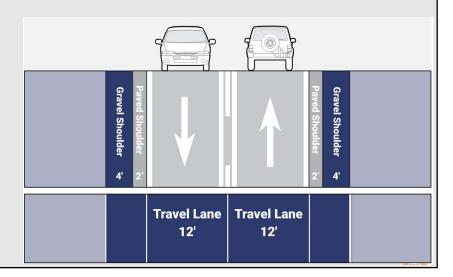
- Two lanes, high-speed arterial
- Area currently rural with low-density residential development
- Winds through forested area with natural features
- Connects established metropolitan area and growing suburban development

37

Case Study #1: Transition from Rural to Suburban Context

Project Background

- TDOT evaluating potential improvements to address increase in crashes and to better serve all users and ongoing development
- Residents concerned about maintaining character and aesthetic of roadway



Characteristics

- · Paved width 28'
- Existing ROW 60'

39

Case Study #1: Transition from Rural to Suburban Context

Characteristics

- Density: low but increasing
- **Users**: through vehicles, moderate truck traffic, recreational bicyclists, occasional pedestrians
- Land Use: mix of low-density residential and denser neighborhoods and commercial clusters
- Speed: posted speed 45 mph, observed 85th percentile speed 48 mph

Future Context: Suburban

Target Speed: 35 mph

Step 1: Establish Project Goals and Performance Measures (PDN Stage 0)

- Goals determined based on community input and project background
- Resource: Chapter 2 of the PSG

TDOT PROJECT SCOPING GUIDE

41

Case Study #1: Transition from Rural to Suburban Context

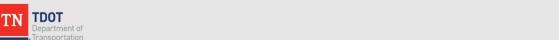
Step 1: Establish Project Goals and Performance Measures (PDN Stage 0)

GOALS

- 1. Provide increased safety and access for pedestrians and bicyclists along the corridor.
- 2. Enhance long-term viability for the local community.
- 3. Accommodate future traffic anticipated on the corridor.
- 4. Preserve existing natural features.
- 5. Optimize project performance within available project funding.

Step 1: Establish Project Goals and Performance Measures (PDN Stage 0)

- Performance measures reflect project goals and desired outcomes for the area
- Used to evaluate alternative's ability to meet users' needs
- Resource: Chapter 2 of the PSG


TDOT PROJECT SCOPING GUIDE

43

Case Study #1: Transition from Rural to Suburban Context

Step 1: Establish Project Goals and Performance Measures (PDN Stage 0)

Project Goal	Performance Measures	
Provide increased safety and access for pedestrians and bicyclists along the corridor.	Safety	 Expected reduction in operating speeds Anticipated reduction in crashes Pedestrian assessment (e.g., facility type, level of separation) Bicyclist assessment (e.g., facility type, level of separation)

Step 1: Establish Project Goals and Performance Measures (PDN Stage 0)

Project Goal		Performance Measures
2. Enhance long-term viability for the local community.	Livability	Community feedback on how the design alternatives maintain the character of the roadway
	Modal Integration	 Consistency with modal integration (See Chapter 3) for Suburban context

45

Case Study #1: Transition from Rural to Suburban Context

Step 1: Establish Project Goals and Performance Measures (PDN Stage 0)

Project Goal		Performance Measures
3. Accommodate future traffic anticipated on the	Operations	 Design year volume-to-capacity (v/c) ratio
corridor.		 Expected change in travel time reliability (review of available existing data and estimated microsimulation data)

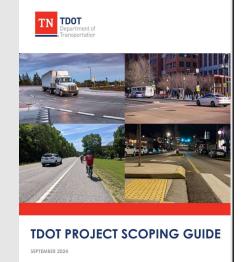
Step 1: Establish Project Goals and Performance Measures (PDN Stage 0)

Project Goal		Performance Measures
4. Preserve existing natural features.	Environ- mental and ROW Impacts	 Property impacts due to right-of- way acquisition Level of impact to environmental features

47

Case Study #1: Transition from Rural to Suburban Context

Step 1: Establish Project Goals and Performance Measures (PDN Stage 0)


Project Goal		Performance Measures		
5. Optimize project performance within available project funding.	Feasibility	•	Expected project cost	
	•		•	Anticipated construction feasibility

Step 2: Concept Development (PDN Stage 0)

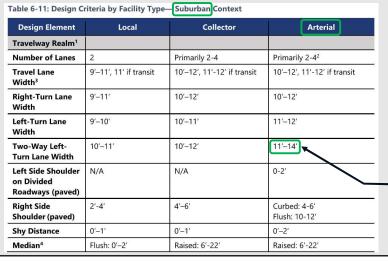
- Alternatives developed based on TDOT design guidance and collaboration with community members
- Resource: Chapter 6 of the PSG

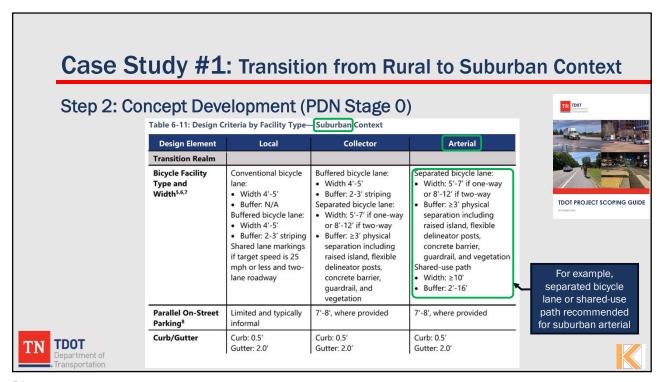
TDOT PROJECT SCOPING GUIDE

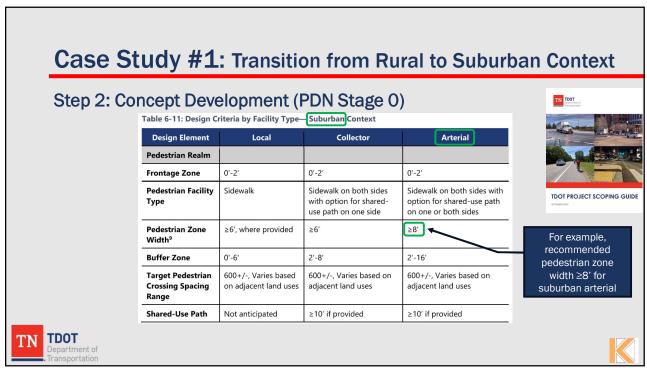
For example,

recommended

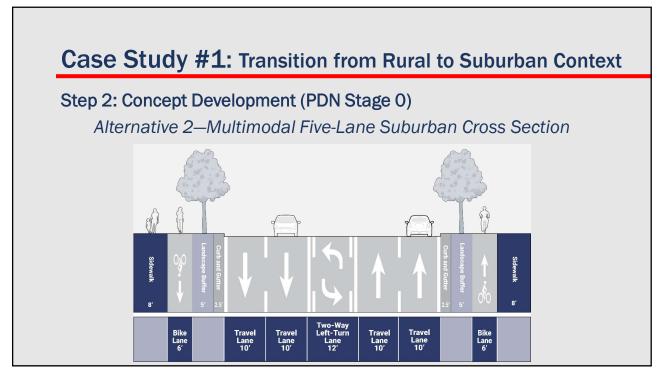
TWLTL width 11'-14'

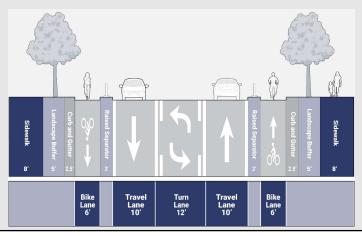

for suburban arterial


49


Case Study #1: Transition from Rural to Suburban Context

Step 2: Concept Development (PDN Stage 0)

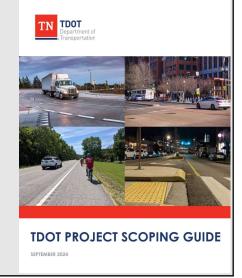



Case Study #1: Transition from Rural to Suburban Context Step 2: Concept Development (PDN Stage 0) Alternative 1—Vehicle-Oriented Five-Lane Suburban Cross Section Shared Gutter Shared Gutter Shared Lane 12 Travel Lane 12

53

Step 2: Concept Development (PDN Stage 0)

Alternative 3-Multimodal Three-Lane Suburban Cross Section



55

Case Study #1: Transition from Rural to Suburban Context

Step 3: Evaluation and Selection (PDN Stage 1)

- Alternatives evaluated using performance measures identified in Step 1
- Resource: Chapter 2 of the PSG

Step 3: Evaluation and Selection (PDN Stage 1) – Safety Rating

Performance	SAFETY Improvement Rating				
Measure	Low	Medium	High		
Expected reduction in operating speeds	with documented effective		Project includes 3 or more treatments with documented effectiveness at speed reduction		
Anticipated change in crashes	Project is not anticipated to reduce crashes	Project has a moderate value crash reduction factor	Project has a high value crash reduction factor		
Pedestrian assessment	Project provides a facility of minimum width	Project provides a wider facility with horizontal separation	Project provides a wider facility with horizontal and vertical separation		
Bicyclist assessment	Project provides a facility of minimum width	Project provides a wider facility with horizontal separation	Project provides a wider facility with horizontal and vertical separation		

57

Case Study #1: Transition from Rural to Suburban Context

Step 3: Evaluation and Selection (PDN Stage 1) - Livability Rating

Performance		LIVABILITY Improvement Rating	
Measure	Low	Medium	High
Community feedback on how the design alternatives maintain the character of the roadway	Mostly negative feedback	Neutral or mixed feedback	Mostly positive feedback

Step 3: Evaluation and Selection (PDN Stage 1) – Modal Integration Rating

Performance		MODAL INTEGRATION Improvement Rating	
Measure	Low	Medium	High
Consistency with modal integration considerations for Suburban context ¹	Modal integration is NOT consistent with expectations	Modal integration addresses some expectations	Modal integration is consistent with expectations

¹Modal integration expectations are described in Chapter 3, Table 3-3 of the PSG.

59

Case Study #1: Transition from Rural to Suburban Context

Step 3: Evaluation and Selection (PDN Stage 1) - Operations Rating

Performance	OPERATIONS Improvement Rating			
Measure	Low	Medium	High	
Design year v/c ratio	>0.90	0.75 to 0.90	<0.75	
Expected change in travel time reliability (review of available existing data and estimated microsimulation data)	Inconsistent travel time	Maintains travel time expectations	Improves travel time consistency	

Step 3: Evaluation and Selection (PDN Stage 1) – Environmental and ROW Impacts Rating

Performance	ENVIRONMENTAL AND ROW IMPACTS Improvement Rating			
Measure	Low	Low Medium Hig		
Property impacts due to right-of-way acquisition	Right-of-way acquisition impacts the function and/or structures on adjacent properties	Right-of-way acquisition required but no impacts to function and/or structures	No right-of-way acquisition	
Level of impact to environmental features	Significant environmental impacts that require extensive mitigation	Minimal environmental impacts that can be mitigated	No environmental impacts	

61

Case Study #1: Transition from Rural to Suburban Context

Step 3: Evaluation and Selection (PDN Stage 1) - Feasibility Rating

Performance	FEASIBILITY Improvement Rating				
Measure	Low	Medium	High		
Expected project cost	Project costs exceed available funding	Project costs align with available funding	Project costs are below available funding		
Anticipated construction feasibility	Project poses significant construction challenges	Project poses moderate construction challenges	Project poses no construction challenges		

Step 3: Evaluation and Selection (PDN Stage 1) – Safety Evaluation

Performance	SAFETY Improvement Rating			
Measure	Low	Medium	High	
	Low Project includes 0-1 treatments with documented	High Project includes 3 or more treatments with documented	High Project includes 3 or more treatments with documented	
Expected reduction in operating speeds	effectiveness at speed reduction: • Curbs, sidewalks, and bicycle lanes	effectiveness at speed reduction: Curbs, sidewalks, and separated bicycle lanes Narrower travel lanes (from 12' to 10') Landscaped buffer	effectiveness at speed reduction: Curbs, sidewalks, and bicycle lanes Narrower travel lanes (from 12' to 10') Narrower pavement width and cross section Landscaped buffer	

63

Case Study #1: Transition from Rural to Suburban Context

Step 3: Evaluation and Selection (PDN Stage 1) – Livability Evaluation

Performance	LIVABILITY Improvement Rating			
Measure	Low	Medium	High	
Community feedback on how the design alternatives maintain the character of the roadway	Low Wide cross section with limited aesthetics Minimum pedestrian and bicycle facilities adjacent to roadway	Medium Wide cross section but pedestrian and bicycle facilities have a landscape buffer that reduces impervious pavement	High Narrower cross section with fewer travel lanes and improved pedestrian and bicycle facilities with buffers	

Step 3: Evaluation and Selection (PDN Stage 1) - Evaluation Summary

		Impro	Improvement Ratings		
	Performance Measure			Alt 3	
	Expected reduction in operating speeds	L	Н	Н	
Cofoh	Anticipated change in crashes	М	Н	Н	
Safety	Pedestrian assessment	L	Н	Н	
	Bicycle assessment	М	Н	Н	
Livability	Community feedback on how the design alternatives maintain the character of the roadway		М	Н	
Modal Integration	Consistency with modal considerations for Suburban context	L	М	Н	
Onematicus	Design year v/c ratio	Н	Н	L	
Operations	Expected change in travel time reliability	Н	Н	L	
Environmental and	Property impacts due to right-of-way acquisition	М	L	М	
ROW Impacts	Level of impact to environmental features	L	М	Н	
Foodibility.	Expected project cost	М	L	Н	
Feasibility	Anticipated construction feasibility	М	М	L	

65

Case Study #1: Transition from Rural to Suburban Context

Step 3: Evaluation and Selection (PDN Stage 1) – Evaluation Summary Key considerations and trade-offs include:

- Alternative 2 has highest ratings
- Alternative 1 eliminated due to low ratings
- Alternative 3 not as highly rated as Alternative 2, but preferred by community
 - Potential vehicle capacity constraints
 - Construction feasibility
- May be opportunities to combine Alternative 2 and Alternative 3

Case Study #1: Transition from Rural to Suburban Context Step 3: Evaluation and Selection (PDN Stage 1) – Evaluation Summary Alternative 3—Multimodal Three-Lane Suburban Cross Section Travel lanes could be Turn lanes could be increased to 11' to added in advance of serve moderate intersections freight volumes expected Cross section could be Bike Lane 6' Bike Lane 6' reduced in areas with environmental features

Case Study #1: Transition from Rural to Suburban Context

Step 4: Design Phase (PDN Stage 2)

- May need to revisit and refine concept if constraints become apparent
- Revisit the context and goals if changes made to ensure consistency with project purpose
- Document changes and review
- Resource: Chapter 2 of the PSG

68

Outline

- Chapter 1: Introduction and Overview
- Chapter 2: Decision-Making Framework and Documentation
- Chapter 3: Identifying Design Year Context
- Chapter 4: Multimodal Planning and Design
- Chapter 5: Intersection Planning and Design
- Chapter 6: Context Design Guidance and Criteria
- Chapter 7: Case Studies

69

Questions?

TDOT PROJECT SCOPING GUIDE

TN TDOT
Department of