EXECUTIVE SUMMARY TRANSPORTATION PLANNING REPORT Improvements to SR 249/Luyben Hills Road From South of I-40 to SR 249/Kingston Springs Road, Kingston Springs, TN July 2009

SR 249/Luyben Hills Road, at Exit 188 off I-40, is an important corridor for the Town of Kingston Springs and Cheatham County. It serves as a link between I-40 and portions of Cheatham County and Dickson County (along US 70), including the towns of Kingston Springs, Pegram, and White Bluff. In addition, the corridor provides access from I-40 to the Harpeth River and Montgomery Bell State Parks. Finally, Exit 188 is a well-used interchange for semi-tractor trailer (truck) traffic. Trucks use this interchange frequently to access the truck stop south of I-40, which is the first truck stop west of Nashville. Trucks and other vehicles also utilize the SR 249/Luyben Hills Road corridor as a detour route when crashes occur on I-40.

As a result of a letter from the Kingston Springs Mayor, TDOT initiated a Transportation Planning Report (TPR) to study improvements to the interchange and corridor, and a kickoff meeting with stakeholders was held on November 7, 2008. The study area is SR 249/Luyben Hills Road from just south of I-40, through the SR 249/I 40 interchange and north to Kingston Springs Road, a distance of 2,250 feet (0.426 miles).

Purpose and Need

Through coordination with local officials and stakeholders, the preliminary need for the study has been identified:

- Improve vehicular, bicycle and pedestrian safety;
- Eliminate roadway deficiencies, such as the high number of access points;
- Address local mandate to improve aesthetics, safety and roadway functions of the corridor. Mandate was derived from a 2008 American Institute of Architects Blueprint for America Community Assessment Workshop.

Options Analyzed

The TPR presents one option for improvements to the SR 249/I-40 interchange, two options for improvements to the SR 249/Luyben Hills Road corridor, and an optional roundabout at the northern project terminus (Kingston Springs Road).

<u>SR 249/I-40 Interchange</u>: The improvement proposes to replace the existing shoulders with six-foot wide sidewalks through the interchange. A handrail will be attached to the top of the existing bridge rails. A signal warrant analysis has indicated that a traffic signal is supported at the I-40 westbound ramps. No additional Right-of-Way (ROW) is required for these improvements.

<u>SR 249/Luyben Hills Road Corridor</u>: No ROW is needed for either of the options to improve the roadway through the corridor. Both options involve two 12-foot travel lanes and a 12-foot center turn lane, access management improvements, and the installation of bicycle and pedestrian facilities and landscape buffers. Other streetscaping amenities will be considered in the project design phases. The difference between the two options is:

- Option 1 has: 6-foot wide sidewalks, on-street bike lanes, curbed islands and 6-foot shoulders; and
- Option 2 has a 10-foot multi use path to accommodate pedestrians and bikes, curb and gutter and no shoulders.

<u>Roundabout</u>: The construction of a roundabout at the SR 249/Luyben Hills Road and Kingston Springs Road intersection would improve safety and provide a place for misdirected truck traffic to turn around, while also creating a strong gateway to the Kingston Springs community. The concept involves an "Urban Compact" roundabout with a 100-foot inscribed diameter that would be of sufficient size to allow truck traffic to carefully make a U-turn while minimizing impacts to adjacent properties. The roundabout would have one 18-foot travel lane and a 16-foot truck apron. The center of the roundabout would be about 32 feet in diameter, and could be landscaped with low shrubs. Although it is a tight turn for truck traffic and they will likely make the turn at very low speeds, this size roundabout can accommodate truck traffic (as well as school bus traffic).

Costs

Cost estimates based on the preliminary concepts are provided in the table below. In order to account for variation in bid prices, both high and average totals are listed, resulting in a range of costs for each alternate. Inflation costs were applied to the total estimated construction and preliminary engineering costs at a rate of six percent over five years (as per TDOT TPR cost estimating guidance).

Planning Level Costs*	Average Total	High Total
SR 249/Luyben Hills Road Option 1 (includes interchange improvements)	\$2,365,421	\$2,832,866
SR 249/Luyben Hills Road Option 2 (includes interchange improvements)	\$2,603,216	\$3,134,221
SR 249/Luyben Hills Road and Kingston Springs Road Roundabout	\$504,819	\$759,337

*It is important to note that landscaping and streetscaping are typically not eligible for state or federal funding (with the exception of enhancement funds), so alternative funding sources would need to be identified.

TRANSPORTATION PLANNING REPORT

State Route 249/Luyben Hills Road FROM INTERSTATE 40 TO STATE ROUTE 249/KINGSTON SPRINGS ROAD KINGSTON SPRINGS, CHEATHAM COUNTY PIN # 112162.00

PREPARED BY GRESHAM, SMITH & PARTNERS For the TENNESSEE DEPARTMENT OF TRANSPORTATION PROJECT PLANNING DIVISION

Approved by:	Signature	DATE
CHIEF OF ENVIRONMENT AND PLANNING	Edlole	7/2/09
TRANSPORTATION DIRECTOR PROJECT PLANNING DIVISION	Sture Ila	7-1-09
TRANSPORTATION MANAGER 2 PROJECT PLANNING DIVISION	Biel Haut	6/23/09

This document is covered by 23 USC § 409 and its production pursuant to fulfilling public planning requirements does not waive the provisions of § 409.

TABLE OF CONTENTS

1.0 PUR	POSE	OF THE TRANSPORTATION PLANNING REPORT	. 1
2.0 PRO	POSE	D PROJECT BACKGROUND	.5
3.0 EXIS	TING (CONDITIONS	.7
3 3 3 3 3	8.1. (8.2. L 8.3. (8.4. (8.5. L	Community Characteristics Land Use Crash History Geometrics Level of Service Analysis and Traffic Signal Warrant Analysis	.7 .9 .9 10 14
3	8.6. (Control of Access	18
4.0 STA	KEHOL	DER MEETING AND FIELD REVIEW	19
5.0 PRE	LIMINA	ARY PURPOSE AND NEED	20
5 5 5	5.1. S 5.2. L 5.3. F	Safety Local Mandate Roadway Deficiencies	20 21 22
6.0 OPT	IONS .		24
6	6.1. F 6 6	Features of Concept Alternatives 6.1.1 I-40/SR 249 Interchange 6.1.2 SR 249/Luyben Hills Road Corridor	24 24 28
	6	6.1.3 SR 249/Luyben Hills Road and Kingston Springs Road Intersection	34
6	6.2. (Costs	34
7.0 POT	ENTIA	L ENVIRONMENTAL IMPACTS	39
7 7 7	′.1. \ ′.2. ⊺ ′.3. ŀ	Wetlands and Floodplains Threatened and Endangered Species Hazardous Materials	39 39 39
8.0 POT	ENTIA	L CULTURAL IMPACTS	41
8 8 8	8.1. H 8.2. (8.3. E	Historic Resources Community Resources Environmental Justice	41 41 41
9.0 ASS	ESSME	ENT OF OPTIONS	43
10.0 S	SUMMA	ARY	46

APPENDICES

- A Environmental Screening
- B Level of Service Analysis and Signal Warrant Analysis
- C Stakeholder Coordination and Field Review Summary
- D Corridor Typical Sections and Business Entrance Layout Plan Sheets
- E Preliminary Cost Estimates

FIGURES

1.	Project Within Its Regional Context	2
2.	Project Location Map	3
3.	Aerial Photograph of Project Area and Setting	4
4.	Aerial Photograph of the I-40/SR 249 Interchange, A Diamond Interchange	12
5.	SR 249/Luyben Hills Road Corridor	13
6.	Definition of Level of Service	15
7.	Views of I-40/SR 249 Interchange	25
8.	Views of SR 249/Luyben Hills Road	26
9.	Views of SR 249/Luyben Hills Road and Kingston Springs Road Intersection	27
10.	Proposed Improvements to SR 249/Luyben Hills Road Bridge over I-40	29
11.	SR 249/Luyben Hills Road Option 1	31
12.	SR 249/Luyben Hills Road Option 2	33
13.	Roundabout at SR 249/Luyben Hills Road and Kingston Springs Road	35

TABLES

1.	Population Growth	7
2.	Crash Data	9
3.	Existing Roadway Geometrics	11
4.	Peak Hour LOS Analysis for SR 249/Luyben Hills Road	16
5.	Traffic and LOS Analysis for the I-40./SR 249 Interchange,	
	Westbound Ramp	16
6.	Traffic and LOS Analysis for the I-40./SR 249 Interchange,	
	Eastbound Ramp	17
7.	Comparison of Typical Sections for Options 1 and 2	32
8.	SR 249/Luyben Hills Road Option 1	36
9.	SR 249/Luyben Hills Road Option 2	37
10	. SR 249/Luyben Hills Road and Kingston Springs Road Roundabout	38
11.	. Poverty Status in 1999 for Project Area, Kingston Springs, Cheatham	
	County, and Tennessee	42
12	. Summary of Environmental Screening Results	47

1.0 PURPOSE OF THE TRANSPORTATION PLANNING REPORT

The subject of this Transportation Planning Report (TPR) is a 0.426 mile segment of the State Route (SR) 249/Luyben Hills Road corridor in the Town of Kingston Springs, Cheatham County, Tennessee. For the purposes of this TPR, the corridor improvements considered have been divided into three study sections: the Interstate 40 (I-40) and SR 249/Luyben Hills Road Interchange (I-40/SR 249 Interchange) (Exit 188); the SR 249/Luyben Hills Road corridor from the I-40/SR 249 Interchange to SR 249/Kingston Springs Road, and the SR 249/Luyben Hills Road and Kingston Springs Road intersection. Figure 1 depicts the project in its regional context, while Figures 2 and 3 depict the proposed project's location.

In a letter dated September 16, 2008, Kingston Springs' Mayor John McLeroy wrote to the Tennessee Department of Transportation (TDOT) requesting planning assistance for the I-40/SR 249 Interchange and SR 249/Luyben Hills Road corridor. On October 7, 2008, TDOT Commissioner Gerald Nicely responded that the Department would work with the community to provide planning assistance for the I-40/SR 249 Interchange and SR 249/Luyben Hills Road corridor. As a result, TDOT began the TPR process for the interchange and corridor, and a kickoff meeting with stakeholders was held on November 7, 2008.

This TPR is intended to identify:

- The proposed project's history;
- The context (setting) of the study area;
- The preliminary need and purpose (goals);
- Stakeholder issues identified early in planning;
- Options developed to satisfy the need;
- Costs of options;
- Potential environmental issues; and
- The proposed project's adherence to TDOT's guiding principles.

The completed TPR will provide the data needed to take the project to the next step, which may be a National Environmental Policy Act (NEPA) document if federal funding assistance is identified (or a Tennessee Environmental Evaluation Report [TEER] if state funding assistance is identified). As previously stated, this TPR will present and evaluate options developed in the planning process. It will also provide a planning level cost estimate that can be used for budgeting purposes. Lastly, through the use of screening for environmental issues, avoidance of sensitive resources or community impacts can be addressed and considered early in the planning process.

Figure 1. Proposed Project Within its Regional Context

Figure 3. Aerial Photograph of Proposed Project Area and Setting

2.0 PROPOSED PROJECT BACKGROUND

SR 249/Luyben Hills Road, which is designated as a Rural Major Collector, is a critical corridor for the Town of Kingston Springs and Cheatham County. It serves as an important link between I-40 and portions of Cheatham County and Dickson County (along US 70); including the Towns of Kingston Springs, Pegram and White Bluff (refer to Figure 1). In addition, the I-40/SR 249 Interchange and SR 249/Luyben Hills Road corridor provides access to the Harpeth River State Park and the Montgomery Bell State Park from I-40. The corridor, which is lined by gas stations, restaurants and hotels and provides access to some of the town's largest undeveloped commercially-zoned lots, is also a critical commercial corridor for the Town of Kingston Springs. Finally, the I-40/SR 249 Interchange is a well-used interchange for semi-tractor trailer (truck) traffic. Trucks use this interchange frequently to access the truck stop south of I-40, which is the first truck stop west of Nashville. Trucks, as well as other vehicles, also utilize the SR 249/Luyben Hills Road corridor as a detour route when crashes occur on I-40.

The SR 249/Luyben Hills Road corridor and its deficiencies have been a matter of discussion in the Kingston Springs community for a long time. Over the years, community discussions revealed the fact that the corridor does not adequately act as a gateway reflecting the character of their community. Community discussions have also centered on how the corridor can safely accommodate its high volumes of truck traffic while also safely serving pedestrians and vehicles.

Over the years, the Town of Kingston Springs and its residents have had several conversations with TDOT about possible improvements to the SR 249/Luyben Hills Road corridor and the topic was discussed at the public hearing for improvements to SR 249/Kingston Springs Road. The installation of sidewalks along SR 249/Kingston Springs Road has resulted in an increased number of pedestrians in the area, including

Participants of the AIA Workshop assessed the Town of Kingston Springs' strengths, weaknesses, opportunities and risks. (Source: *AIA 150 Blueprint for America Community Assessment and Visioning Workshop Summary Report*)

along the SR 249/Luyben Hills Road corridor. As the number of pedestrians along the SR 249/Luyben Hills Road has increased, the community's concerns about and desire for pedestrian accessibility and safety have continued to grow.

In March 2008, an American Institute of Architects (AIA) 150 Blueprint for America Community Assessment and Visioning Workshop (AIA Workshop) was conducted for the Town of Kingston Springs. This workshop was the result of a partnership between the Town of Kingston Springs, AIA Middle Tennessee, Cumberland Region Tomorrow, the Greater Nashville Regional Council (GNRC), the Nashville Civic Design Center and the University of Tennessee College of Architecture and Design. One of

the main goals of this planning process was to address the interrelated challenges of revitalizing town centers and conserving open land. This issue is particularly salient in the Town of Kingston Springs, given its rapid growth in recent years. The I-40/SR 249

Interchange and corridor was a frequent topic of discussion over the course of the twoday AIA workshop, and there was consensus that, while the SR 249/Luyben Hills Road corridor is generally regarded as one of the town's two vital "town centers", the corridor is characterized by strip commercial development that the community finds unattractive and in conflict with Kingston Springs' quaint, small-town character. In addition, the community expressed consensus that the interchange and corridor do not function well. As a result, the workshop's report calls for the town's leadership to work with TDOT on roadway design recommendations that employ Context Sensitive Design (CSD) principles.

As discussed in Section 1.0 of this report, Mayor John McLeroy formally contacted TDOT requesting planning assistance for the I-40/SR 249 Interchange and SR 249/Luyben Hills Road corridor on September 16, 2008. In a letter dated October 7, 2008, TDOT Commissioner Gerald Nicely responded that TDOT would work with the community to provide planning assistance for the I-40/SR 249 Interchange and SR 249/Luyben Hills Road corridor. In response, TDOT began the TPR process for the interchange and corridor, and a kickoff meeting with stakeholders was held on November 7, 2008.

3.0 EXISTING CONDITIONS

3.1 Community Characteristics

As previously stated, the study area for the proposed project is located in the Town of Kingston Springs, Cheatham County, Tennessee. Kingston Springs is generally regarded as a bedroom community of Nashville, which is approximately 15 miles to the east. The Harpeth River flows through the town, and Kingston Springs is surrounded by farms and open space. Kingston Springs is known for its rich history, its small town character and its scenic beauty. According to the 2008 AIA Workshop, Kingston Springs' residents value its small town sense of community, its parks and natural resources and its convenient access to I-40.

Population and Growth

In 2007, Kingston Springs had a population of 2,923 people. For comparison purposes, the population for both Cheatham County and the State of Tennessee are shown in Table 1. Between 1990 and 2007, Kingston Springs experienced a 91.2 percent increase in population, as compared to 44.1 percent for Cheatham County and 26.2 percent in Tennessee as a whole.

		Population		Porcont Chango
	1990	2000	2007	1990-2007
Tennessee	4,877,185	5,689,283	6,156,719	26.2%
Cheatham County	27,140	35,912	39,112	44.1%
Kinaston Sprinas	1.529	2.773	2.923	91.2%

Table 1: Population Growth

Source: US Census 1990 and 2000 and 2007 US Census Population Estimates

According to the Tennessee Department of Economic and Community Development, the population in Cheatham County in 2008 is 39,957, and it is forecasted to grow by six percent to 42,355 by 2013.

As reflected in the above statistics, the Town of Kingston Springs (and Cheatham County as a whole) has faced a tremendous amount of growth pressure in recent years. During the 2008 AIA workshop, there was a clear consensus amongst participants that growth needs to be guided in a way that conserves open space and preserves community character.

Major Employers and Traffic Generators

The largest employment sector in Cheatham County is manufacturing. According to statistics compiled by the US Department of Labor, 35.0 percent of Cheatham County's employed population work in the manufacturing sector, which is considerably higher than the statewide percentage of 13.8; however, these manufacturing jobs (e.g., A.O. Smith, Triton Boats and Trinity Marine) are located in north Cheatham County and they rarely utilize the SR 249/Luyben Hills Road corridor. Instead, most of the traffic on SR 249/Luyben Hills Road is generated from the US 70 corridor, which connects Kingston Springs, Pegram and White Bluff to I-40, and from commercial activity along SR 249/Luyben Hills Road itself.

SR 249/Luyben Hills Road is a highway commercial corridor that serves as an important link in the region's transportation system. It not only provides access to I-40 for the Town of Kingston Springs, it also connects I-40 and US 70, which serves the towns of

SR 249/Luyben Hills Road is a highway commercial corridor that serves as an important link between I-40 and US 70.

Pegram and White Bluff. This is a critical link in the area's transportation network given that 59 percent of Cheatham County residents commute to Nashville-Davidson County for work (2000 Census). The Town of Kingston Springs estimates that 75 percent of their workforce commutes to Nashville-Davidson County for work. Accordingly, the SR 249/Luyben Hills Road experiences considerable volumes of peak hour traffic as residents commute to and from work via I-40. SR 249/Luyben Hills Road also provides access to the Harpeth River State Park and the Montgomery Bell State Park, two important travel destinations in Middle Tennessee.

SR 249/Luyben Hills Road is also one of two primary commercial areas serving the Town of Kingston Springs (the other is downtown Kingston Springs). Residents frequently utilize the corridor to access commercial and retail services, such as the Kingston Springs U.S. Post Office, Heritage Bank and area restaurants.

Exit 188, the I-40/SR 249 Interchange, is a well-used interchange for truck traffic. A large truck stop, which is the first truck stop west of Nashville, is located south of I-40 on SR 249/Luyben Hills Road (see Figure 3). Truck traffic uses this interchange at all hours of the day to access the truck stop's restaurant, gas station, weigh stations, or overnight parking. Often, trucks mistakenly turn north on SR 249/Luyben Hills Road and then have difficulty turning around. Truck traffic also utilizes the SR 249/Luyben Hills Road corridor as a detour route when there is a crash on I-40.

Finally, there is a mobile home park located on the west side of the corridor, behind the Midtown Inn and Suites (see Figure 3). While this development does not generate a substantial amount of traffic, Cheatham County school buses stop on SR 249/Luyben Hills Road in front of the Midtown Inn and Suites regularly during the school year.

Potential Future Coordination

Close coordination regarding utilities in the area must occur. In addition, Kingston Springs Elementary School, Harpeth Middle School and Harpeth High School are all located on Kingston Springs Road, at the north end of the project corridor. School buses regularly utilize the corridor, so coordination with the Cheatham County School District should be undertaken in future planning phases.

3.2 Land Use

The subject segment of SR 249/Luyben Hills Road consists of commercial and retail land uses that are characteristic of a highway commercial district. Corridor businesses include gas stations, fast-food restaurants, motels, and restaurants. The Kingston Springs U.S. Post Office is located near the project's northern terminus (refer to Figure 3), and Harpeth Bank is located in the southwest quadrant of the SR 249/Luyben Hills Road and Kingston Springs Road intersection. Single-family residences are located north and south of the study corridor, and, as previously mentioned, a mobile home park is located on the west side of the corridor, behind the Midtown Inn and Suites. As shown on Figure 2 (page 3),

The land uses along SR 249/Luyben Hills Road corridor consist of commercial land uses that are characteristic of a highway commercial district.

three schools are located north of the study area as well, South Cheatham Junior High School, Harpeth Middle School and Harpeth High School.

According to the Town of Kingston Springs, several undeveloped or underdeveloped parcels are located in the vicinity of the project corridor. The parcel that was discussed at the greatest length during the field review is located east of the SR 249/Luyben Hills Road businesses, and is accessed via the gravel drive between the I-40 westbound exit ramp and McDonald's. This parcel, as well as the other undeveloped and underdeveloped parcels, represents an important future commercial development opportunity for the town. As previously stated, the Town of Kingston Springs is concerned with guiding growth and conserving open land. Since the study corridor is one of the town's two "Town Centers", much of the future growth will likely be directed towards this corridor.

3.3 Crash History

The Tennessee Roadway Information Management System (TRIMS) provides data for use in calculating crash rates for comparison to statewide averages. **Table 2** presents a summary of currently available crash data for the study segment.

Location	Actual Crash	Statewide	Total	Fatal	Incapacitating
	Rate	Average	Crashes	Crashes	Injury Crashes
I-40 to Kingston Springs Road	9.830	1.701	33	0	1

Table 2. Crash Data

The statewide average crash rate for a roadway of the same functional classification as SR 249/Luyben Hills Road (Rural Major Collector) is 1.701, while the actual rate for the corridor from I-40 to Kingston Springs Road is 9.830. The actual rate is derived from a formula that takes into account factors such as total number of crashes, length of roadway and the time period over which the crashes occurred. An actual crash rate three times

greater than the statewide average for a similar roadway indicates a safety deficiency. In this case, the actual rate for this segment of roadway is much greater than three times the statewide average, indicating a safety deficiency along the SR 249/Luyben Hills Road corridor.

From 2004 to 2006, the most recent years for which data had been compiled at the start of this study, 33 crashes occurred along the subject segment of SR 249/Luyben Hills Road. Nine of those crashes were rear end crashes, eight were angle crashes, six were sideswipe same direction crashes, two were head-on crashes and one was a sideswipe opposite direction crash. The relatively high number of rear end, angle and sideswipe crashes can be attributed, in part, to the large numbers of curb cuts in the study area, which result in vehicles constantly slowing to turn in and out of parking lots.

Of the 33 crashes that occurred during the three study years, over half took place in the vicinity of the I-40/SR 249 Interchange. Thirteen took place along the SR 249/Luyben Hills Road corridor, and three occurred at the intersection of SR 249/Luyben Hills Road and Kingston Springs Road.

Finally, the number of crashes along the subject segment of SR 249/Luyben Hills Road grew each year between 2004 and 2006. In 2004, there were four crashes along this segment of roadway, compared to nine in 2005 and 20 in 2006. This represents a four hundred percent increase in the number of crashes between 2004 and 2006. According to TDOT traffic counts, the Annual Average Daily Traffic (AADT) grew by approximately 13 percent between 2004 and 2006. As the population and traffic in Kingston Springs and Cheatham County continues to grow, safety concerns associated with the I-40/SR 249 Interchange will likely continue to increase as well.

3.4 Geometrics

SR 249/Luyben Hills Road is classified as a Rural Major Collector. The study corridor is approximately 0.31 mile long, extending from the I-40/SR 249 Interchange at log mile 0.00 to SR 249's 90-degree turn onto Kingston Springs Road at log mile 0.31. Data from TDOT's Tennessee Roadway Information Management System (TRIMS) database was used as the basis for the geometric analysis. A field review was conducted to verify TRIMS data that was easily verifiable in the field. This field review was supplemented by a review of TDOT plans for the I-40/SR 249 Interchange (dated 1959) and Kingston Springs Road (dated May 17, 2001), as well as consulting GIS. The review of the plans has revealed that some areas along the roadway have right-of-way (ROW) that differs from that included in the TRIMS database.

A summary of geometric data is provided in Table 3. There are currently no provisions for bicycles or pedestrians along the corridor, which features rolling terrain and numerous commercial driveways. The only existing traffic signal in this segment is at Kingston Springs Road at the northern project terminus.

Transportation Planning Report, SR 249/Luyben Hills Road, Kingston Springs, TN

Roadways	Log Miles	ROW in Feet	Total Lanes	Average Lane Width in Feet	Average Shoulder Width in Feet	Median Type	Average Median Width in Feet	Bicycle Facilities	Average Sidewalk Width in Feet	Topography
Begin SR S49/Luyben Hills Road to I-40 Westbound Ramps	0.00 - 0.07	120′	2-3	,71	,9	Left Turn Lanes	0'-12'	None	None	Rolling
I-40 West Bound Ramps to Kingston Springs U.S. Post Office (USPS)	0.07 - 0.24	100′	3	12'	9,	2-Way Left Turn Lane	12′	None	None	Rolling
Kingston Springs USPS to Kingston Springs Road Intersection	0.24 – 0.31	70'-80'	3	11	0' (curb & gutter)	2-Way Left Turn Lane/ Signalized Left Turn Lane	11,	None	None	Rolling

Table 3: Existing Roadway Geometrics

Source: TDOT TRIMS Database and February 5, 2009 field review by project team.

I-40/SR 249 Interchange

The I-40/SR 249 Interchange is a standard diamond interchange. A diamond interchange is a four-legged interchange with each leg operating as a one-way roadway into the intersection (see Figure 4). North of I-40, the interchange has two ramps for westbound traffic entering or exiting I-40. South of I-40, the interchange has two ramps for eastbound traffic entering or exiting I-40. SR 249/Luyben Hills Road is elevated over I-40, allowing thru traffic on the interstate to continue unimpeded. Through the interchange, SR 249/Luyben Hills Road consists of two 12-foot travel lanes with six-foot shoulders. In the vicinity of the eastbound I-40/SR 249 Interchange ramps, there is a striped median that transitions into a 12-foot left-turn lane for vehicles traveling westbound on I-40 (see photographs on page 12).

Currently, the interchange is unsignalized. A signal warrant analysis was prepared for the I-40/SR 249 Interchange, and is discussed in Section 3.5 of this report. Typically, as traffic increases on diamond interchanges, they are signalized so that the traffic operation for the vehicles turning left onto and off of the interchange is not impeded.

Figure 4. Aerial Photograph of the SR 249/Luyben Hills Road Interchange. Source: Microsoft Live Search Maps

SR 249/Luyben Hills Road Corridor

From the I-40/SR 249 Interchange northward to the Kingston Springs U.S. Post Office, SR 249/Luyben Hills Road consists of two 12-foot travel lanes, a 12-foot two-way left-turn lane and six-foot shoulders within 100 feet of ROW.

Between the U.S. Post Office and the traffic signal for Kingston Springs Road, SR 249/Luyben Hills Road consists of a southbound 11-foot travel lane, an 11-foot dedicated right-turn lane, and 11-foot combined left-turn and through lane and curb and gutter within 70 to 80 feet of ROW.

Figure 5 contains photographs of the corridor.

Figure 5. SR 249/Luyben Hills Road Corridor

View of SR 249/Luyben Hills Road from the south.

View of the I-40 and SR 249/Luyben Hills Road interchange from north of I-40.

View north at the Kingston Springs Road and US 249/Luyben Hills Road intersection.

3.5 Level of Service Analysis & Traffic Signal Warrant Analysis

Traffic data for the SR 249/I-40 interchange was provided by TDOT for this study. The AADT and the Design Hour Volumes (DHV) for the AM and PM peak hours for the base year of 2010 and the design year of 2030 were provided for each of the major movements within the I-40/SR 249 Interchange area. The full traffic study, including a level of service (LOS) analysis and a signal warrant analysis, is in Appendix B. The growth rate used by TDOT to project the traffic to the design year was 2.686 percent.

In addition to the TDOT-provided traffic data, a 12-hour turning movement count at each of the intersections at the interchange was performed (SR 249/Luyben Hills Road and I-40 westbound ramps, and SR 249/Luyben Hills Road and I-40 eastbound ramps) as part of this study. The data, collected on February 4, 2009, is broken down by numbers of automobiles, trucks and buses and is included in Appendix B. The purpose of collecting 12 hours of traffic data was to have adequate data to perform a signal warrant analysis for each of the ramp intersections. The collected traffic data was projected to the base year of 2014 and the design year of 2034 using the same growth rate that TDOT used for SR 249/Luyben Hills Road (i.e., 2.686 percent). This growth rate was also used for the LOS analysis of SR 249/Luyben Hills Road and the ramp intersections.

SR 249/Luyben Hills Road, a two-lane highway with a two-way left-turn lane, is projected to carry a 2009 AADT of 6,330 (south) to 12,183 (north) vehicles per day, using the TDOT provided traffic data and the growth rate mentioned above, in the vicinity of the I-40/SR 249 Interchange. SR 249/Luyben Hills Road is projected to carry a 2014 AADT of 7,227 (south) to 13,910 (north) vehicles per day and a 2034 AADT of 12,280 (south) to 23,635 (north) vehicles per day in the vicinity of the I-40/SR 249 Interchange. From 2009 to 2014, the AADT is projected to increase 14.2 percent, and between 2009 and 2034, the increase projected is 94.0 percent. According to TDOT traffic data, the I-40/SR 249 Interchange carries approximately 18 percent truck traffic.

Level of Service Analysis of SR 249/Luyben Hills Road

An LOS analysis for SR 249/Luyben Hills Road was used to gauge the operational performance of the existing roadway. The proposed project's purpose and need is to address safety issues and roadway deficiencies along SR 249/Luyben Hills Road while improving pedestrian accessibility and safety (see Section 5.0 of this report). Because the study is not intended to address poor vehicle levels of service, the LOS analysis does not include a Build and No Build Scenario. Furthermore, there is no available traffic analysis tool that will analyze the impact of sidewalk and access management improvements on LOS.

LOS is a qualitative measure that describes traffic conditions related to speed and travel time, freedom to maneuver and traffic interruptions. There are six levels, ranging from "A" to "F" with "F" being the worst. Each level represents a range of operating conditions. Figure 6 illustrates the traffic flow conditions and approximate driver comfort level at each LOS.

The traffic analysis for the segment of SR 249/Luyben Hills Road from the I-40/SR 249 Interchange to the intersection with Kingston Springs Road was performed using HCS+ software for both the AM and PM Peak Hour conditions for the present year (2009), the base year (2014) and the design year (2034). The traffic collected on February 4, 2009

Figure 6. Definition of Level of Service

was used for the analysis and was projected to the base year and design year using the TDOT growth rate of 2.686 percent.

Table 4 summarizes the peak hour LOS analysis for the SR 249/Luyben Hills Road Corridor in the present year (2009), the base year (2014) and the design year (2034).

	Two-Way Flow Rate (pc/h)	Level of Service		
2009 (AADT=18,513)				
AM	1,138	С		
РМ	1,203	С		
2014 (AADT=21,137)				
AM	1,285	D		
PM	1,374	D		
2034 (AADT=35,915)				
AM	1,977	D		
PM	2,045	D		

 Table 4. Peak Hour LOS Analysis for SR 249/Luyben Hills Road Corridor

Source: SR 249/Luyben Hills Road LOS Analysis (see Appendix B)

Unsignalized Intersection Analysis

In order to determine how the I-40/SR 249 Interchange is functioning in its current configuration, an unsignalized intersection analysis was performed using the Highway Capactiy Software (HCS+) for the AM and PM Peak Hour conditions for the present year (2009), the base year (2014) and the design year (2034). The traffic collected on February 4, 2009 was used for the analysis and was projected to the base year and design year using the TDOT growth rate of 2.686 percent. The HCS printouts are included in Appendix B. The results of the analysis are presented in terms of LOS and Approach Delay (seconds per vehicle) and are illustrated in Tables 5 and 6.

Table 5. Traffic and LOS Analysis for theI-40/SR 249 Interchange, Westbound Ramp

SR 249 and the I-40/SR 249 Interchange Westbound (WB) Ramp			
Analysis Year	WB Approach LOS		
2009 (Unsignalized)			
AM	В		
РМ	С		
2014 (Unsignalized)			
AM	В		
PM C			
2034 (Unsignalized)			
AM	D		
PM	PM F		

Source: SR 249/Luyben Hills Road LOS Analysis (see Appendix B)

SR 249 and the I-40/SR 249 Interchange Eastbound (EB) Ramp*				
Analysis Year	Analysis Year Time of Day EB Approach LOS			
g AM F				
20	PM	С		
AM F 20 MA				
				AM F
^ℵ PM F				
* It should this interse warrant; h on engine experience	be noted that, ba ection does not m owever, a signal ering judgment du ed by the eastbou	ased on traffic volumes, leet the MUTCD signal may be warranted based ue to the amount of delay und approach.		

Table 6. Traffic and LOS Analysis for I-40/SR 249 Interchange, Eastbound Ramp

Source: SR 249/Luyben Hills Road LOS Analysis (see Appendix B)

Traffic Signal Warrant Analysis for the I-40/SR 249 Interchange

The Manual of Uniform Traffic Control Devices (MUTCD), 2003 Edition developed eight traffic signal warrants to determine if a traffic signal is justified at a given location. The HCS+ Traffic Signal Warrant module, which is based on the eight traffic signal warrants developed for the MUTCD, was used to evaluate the need for a traffic signal at the eastbound and westbound ramps of I-40 and SR 249. The traffic volumes were obtained from 12 hours of turning movement counts that were collected on February 4, 2009. The results of the Signal Warrant Analysis are included in Appendix B (including the warrant volume sheets). It should be noted, based on guidance provided in the MUTCD, that a Signal Warrant Analysis should be performed within one year of putting the signal into operation. Therefore, it may be necessary to re-perform the traffic signal warrants within the year that the signal(s) will be installed.

<u>I-40 Westbound Ramps and SR 249:</u> Based on collected traffic counts, the intersection of SR 249/Luyben Hills Road and the I-40 westbound ramps meets Warrant 2 - Four Hour Vehicular Volume and Warrant 3 - Peak Hour. If four plotted points based on the approach volumes (vehicles per hour) are above the line shown in Figure 4C-2 in the *MUTCD*, then Warrant 2 is met. Five hours met this requirement:

- 7AM to 8AM;
- 2PM to 3PM;
- 3PM to 4PM;
- 4PM to 5PM; and
- 5PM to 6PM.

In order to meet Warrant 3 for peak hour, at least one hour must be above the line on Figure 4C-4 of the *MUTCD*. Based on the collected traffic, three hours met this requirement:

- 3PM to 4PM;
- 4PM to 5PM; and
- 5PM to 6PM.

<u>I-40 Eastbound Ramps and SR 249:</u> Based on the collected traffic counts, the intersection of SR 249/Luyben Hills Road and the I-40 eastbound ramps does not currently meet any of the eight traffic signal warrants; however, based on engineering judgment and the amount of approach delay experienced for the eastbound approach, a signal may be warranted at this location.

Furthermore, the truck/travel center, located in the southeast quadrant of the interchange, is a major attraction for large volumes of truck traffic. Due to these high volumes of trucks, the operation of the interchange may be negatively impacted if the westbound ramps are signalized and the eastbound ramps are not. If traffic signals are installed at both sets of ramps, they could be coordinated together allowing for all approaches of the interchange to operate efficiently, thereby reducing vehicular delay. During the design phase it is recommended that a detailed operational analysis of the interchange be performed both with a traffic signal located only at the westbound ramps and with traffic signals installed at both sets of ramps.

3.6 Control of Access

The west side of SR 249/Luyben Hills Road corridor has open highway frontage and undefined driveway access points.

As previously discussed, the SR 249/Luyben Hills Road Corridor is a highway commercial corridor that provides access to numerous businesses, including gas stations, restaurants and hotels. Many of these businesses have no defined access points and instead have open frontage along SR 249, which creates numerous traffic conflict points and thereby reduces safety and may hinder traffic flow along the corridor.

There are several existing access points within 100 feet of the I-40 entrance and exit ramps that are in violation of TDOT's *Policy on Control of Access at Interchange Ramps*, including the Shell Gas Station, and the gravel access point to the undeveloped land between the I-40 westbound ramp and McDonald's. In addition, Harpeth Hills Drive (see Figure 2) is

located immediately south of the eastbound exit ramp of the I-40/SR 249 Interchange and is also in violation of TDOT's *Policy on Control of Access at Interchange Ramps*. After discussions with TDOT, it was decided that the plan for sidewalks on the SR 249/Luyben Hills Road bridge over I-40 included in this report (see section 6.1.1 of this report) would not alter or change existing driveways and access to properties.

4.0 STAKEHOLDER MEETING AND FIELD REVIEW

A stakeholder meeting and field review of the study corridor were held on February 11, 2009 to gather input that would assist in the development of this TPR. Representatives from the Town of Kingston Springs and TDOT were in attendance. A summary of the meeting, including the sign-in sheet, is in Appendix C.

The meeting and field review provided a valuable venue for identifying issues, clearly defining the purpose and need for the study, and gathering information. Meeting participants were invited to comment on the project purpose and need, identify issues and constraints, and offer suggestions for corridor improvements.

The purpose and need discussion focused heavily on the need to accommodate the corridor's various users, including pedestrians, truck traffic, local traffic and through traffic. Additional input to the proposed project purpose and need included: safety, access control, aesthetics, and future development. Stakeholders

The February 11, 2009 stakeholder meeting and field review provided a valuable venue for identifying issues, clearly defining the project need and gathering information.

identified issues and constraints in the study area including grade issues, drainage concerns, safety concerns and economic considerations.

Following the stakeholder meeting, attendees were invited to participate in a field review of the study area to visually examine many of the issues and constraints identified during the meeting and to ensure that none had been overlooked. A van carried representatives of Kingston Springs, TDOT and the project consultant through the study area. Access, land use, drainage and other constraints were noted.

During the kickoff meeting, the stakeholder meeting and the field review, the community also expressed safety concerns about the continuous center turn lane on SR 249/Kingston Springs Road, from the intersection of Kingston Springs Road and Luyben Hills Road to where SR 249/Kingston Springs Road transitions to a two-lane roadway east of Harpeth Middle School (see Figures 2 and 3). The existing typical section along this portion of SR 249/Kingston Springs Road consists of two 12-foot travel lanes, a 12-foot center turn lane, and six-foot shoulders with curb and gutter and sidewalks. The Town of Kingston Springs stated that drivers speed through the corridor, in which two schools are located, and drivers utilize the center turn lane as a passing lane. The conversion of the continuous center turn lane into a median was discussed at length and, as a result, a feasibility study is being prepared independent of this TPR to determine the possibility of converting the existing three-lane SR 249/Kingston Springs Road into a two-lane roadway with a landscaped median, bike lanes, curb and gutter, and sidewalks within the existing ROW.

5.0 PRELIMINARY PURPOSE AND NEED

Through coordination with local officials and stakeholders, the preliminary need for the study has been identified. The project is needed to improve safety, meet local mandates and correct roadway deficiencies. These identified needs are described below.

5.1 Safety

In its current configuration, the SR 249/Luyben Hills Road corridor lacks pedestrian accommodations, such as sidewalks and bicycle facilities. Although TDOT crash data does not contain evidence of crashes involving pedestrians, conversations with local officials and stakeholders, as well as a field review, provided evidence that pedestrians travel through the area and need safer accommodations.

According to local officials, the installation of sidewalks along SR 249/Kingston Springs Road has resulted in an increased number of pedestrians, including school-age children, walking along the shoulders of the SR 249/Luyben Hills Road corridor. In addition, pedestrians frequently travel from the Petro gas station and truck stop south of I-40 north to access restaurants and hotels located in the project corridor. To reach their destination, pedestrians walk across the bridge over I-40 on the shoulder, continuing north on the shoulders of SR 249/Luyben Hills Road. The SR 249/Luyben Hills Road corridor is an uncomfortable pedestrian environment due to the lack of pedestrian facilities and the frequent curb cuts.

As previously stated, school buses regularly utilize the SR 249/Luyben Hills Road They are typically corridor. present in the area between 6:00 and 8:00 a.m. and again in the afternoons between 2:30 and 4:00 p.m. During the field review. project planners witnessed а school bus dropping children off just north of the McDonald's. Children dropped off at this location travel either to the mobile home park on the west side of the corridor cross SR or 249/Luyben Hills Road to reach their ride or access McDonald's on the east side of the roadway. Improvements are needed along the corridor to safely accommodate pedestrians, particularly near school bus stops where children are present.

Children dropped off on SR 249/Luyben Hills Road either walk to the Mobile Home Park on the west side of the corridor, or cross to the east side of the road (as shown in the photograph above).

5.2 Local Mandate

There is no federal or state mandate for improvement of SR 249/Luyben Hills Road. On a local level, the Town of Kingston Springs participated in an AIA Workshop which resulted in a local mandate for improvements to the corridor.

In March 2008, the Town of Kingston Springs participated in the AIA Blueprint for America Workshop. (Source: AIA Blueprint for America Summary Report)

The March 2008, AIA Workshop gave the Town of Kingston Springs the opportunity to develop the early stages of a plan to address the interrelated challenges of revitalizing town centers and conserving open land. As discussed in Section 3.1 of this report, the town has experienced rapid growth in recent years (see Table 1). The AIA workshop gave the community an opportunity to come to a consensus on a number of key Smart Growth strategies to accommodate growth while preserving the community's rural character.

After the workshop, the participating leadership of the workshop sponsors identified nine general observations.

Three of the nine observations, which are listed in the workshop report, relate specifically to the study corridor. They are as follows:

- There is a general perception of "two differing town centers", one historic near the former downtown rail depot and the other commercial strip leading north from the interstate interchange [SR 249/Luyben Hills Road Corridor];
- The interstate and commercial strip leading north from the interchange does not reflect the character of the town, is unattractive, and doesn't function well. Employ "Context Sensitive Design" on this strip, and engage in dialogue with TDOT environmental planning leadership regarding funding potential, using the workshop outcomes as a community consensus and mandate"; and
- Reinforce all of Kingston Springs as a walkable, interconnected community linking its town centers, neighborhoods, schools and natural features.

The town's planning efforts have identified the SR 249/Luyben Hills Road Corridor as one of its two "town centers" where future commercial development is likely to be concentrated. The existing roadway, which lacks curb and gutter and sidewalks, is not reflective of the character of the rest of Kingston Springs. The community feels that the existing roadway does not provide an aesthetically pleasing gateway into the community or an attractive environment for businesses that might locate in the area. Improvements are needed to make this important commercial center a safe and attractive area for existing and future businesses. Attracting business to the already existing town centers will also help the community preserve its open space and rural character.

5.3 Roadway Deficiencies

Much of the corridor's west side has open highway frontage and undefined driveway access points

As discussed in Section 3.3 of this report, the crash rate for SR 249/Luyben Hills Road indicates a safety deficiency exists along the SR 249/Luyben Hills Road corridor. Between 2004 and 2006. 33 crashes occurred along this segment of roadway, 24 of which were either rear-end, angle or sideswipe crashes. These types of crashes are often associated with open highway frontage and undefined driveway access points such as those found along the west side of SR 249/ Luyben Hills Road.

The lack of access control along the corridor was mentioned frequently during conversations with local officials and stakeholders. The open highway frontage and undefined driveway access points along the

corridor result in vehicles constantly slowing to turn in and out of parking lots and in vehicles entering the roadway from many locations. This lack of access control poses safety concerns, including:

- An uncomfortable/unsafe pedestrian and bicycling environment;
- Unclear driver expectations;
- A high number of potential conflict points;
- A lack of dedicated travel paths; and
- Unclear sight lines.

Access management strategies are needed to provide the necessary access points to the development along the corridor, but do so in a manner that preserves the safety and efficiency of the roadway system. Good access management strives to provide a reasonable distance between adjacent driveways, which will reduce the number of existing traffic conflict points and improve traffic flow along the corridor. If the corridor qualifies for safety funding, the proposed project will address access control issues.

When combined with the lack of sidewalks and bike facilities along the corridor, poor access management on SR 249/Luyben Hills Road also results in an unsafe environment for pedestrians and bicyclists. Restricted access would limit the number and type of conflicts between vehicles, vehicles and pedestrians, and vehicles and bicyclists.

Conversations with local officials and stakeholders revealed issues with truck traffic mistakenly turning northbound on SR 249/Luyben Hills Road from the I-40/SR 249 Interchange. Once trucks make this turn, it is very difficult for them to find a place to turn

around. At times, the trucks end up in downtown Kingston Springs and someone from Town Hall has to come out and stop traffic while the truck turns around in the road. The Town has added signage that was intended to keep trucks from making the northbound turn onto SR 249/Luyben Hills Road, but it has not worked. This issue poses safety concerns for the community and interferes with the corridor's ability to function efficiently.

As the population and traffic in Kingston Springs and Cheatham County continue to grow (see Section 3.1 of this report), safety concerns associated with the SR 249/Luyben Hills Road corridor will likely continue to increase as well. According to TDOT crash data, the number of crashes along the roadway increased approximately 400 percent between 2004 and 2006 while traffic grew by only 13 percent over the same period.

In addition, there is no signalization at the intersection of the I-40 ramps with SR 249/Luyben Hills Road. This results in traffic back-ups during rush hours and at times when traffic must be detoured off I-40.

6.0 OPTIONS

Several options were considered and evaluated as a means of addressing the transportation needs within the study area, including a No Build Option.

The No Build Option involves making no improvements to the existing roadway other than regular maintenance activities. The No Build Option does not meet the identified purpose and need for the proposed project. It does not address safety issues, roadway deficiencies, or pedestrian accessibility. The No Build Option also does not help Kingston Springs with implementing its gateway vision and economic development plans.

The Build Options are slated to occur along the existing alignment of SR 249/Luyben Hills Road. Thus, the study corridor is centered on the existing roadway. For the purposes of this TPR, the corridor improvements considered were broken down into three sections: the I-40/SR 249 Interchange; the SR 249/Luyben Hills Road corridor (from the I-40/SR 249 Interchange to SR 249/Kingston Springs Road); and the SR 249/Luyben Hills Road and Kingston Springs Road intersection. Photographs representing the three study sections are included as Figures 7-9.

Early meetings with the Town of Kingston Springs and TDOT to develop Build Options revealed that ROW acquisition should be avoided or kept to a minimum. A traffic analysis was completed to assist with the study's purpose and need, and a signal warrant analysis was used to evaluate the need for a traffic signal at the eastbound and westbound ramps of the I-40/SR 249 Interchange (see Section 3.5 of this report). Research was then conducted to identify the existing ROW along the three segments of the study corridor. The next step involved fitting the appropriate typical sections into the existing ROW. Designers developed option(s) that would accomplish this for each proposed project segment. Finally, preliminary cost estimates were developed for each option.

The Build Options developed for each section are described below and are depicted in graphics that accompany the discussion. It is important to note that these sections are "typical," and variances from the typical are likely to occur as the proposed project moves forward in the planning and design stages.

6.1 Features of Build Option Concepts

6.1.1 SR 249/I-40 Interchange

One concept is under consideration for the I-40/SR 249 interchange. The proposed interchange improvements involve constructing six-foot wide sidewalks in place of the existing shoulders on SR 249/Luyben Hills Road through the I-40/SR 249 Interchange (see Figure 10). The existing bridge will not need to be widened as part of this option, nor will the lane widths through the interchange need to be modified; however, the existing barrier will need to have handrails attached to the tops in order to allow pedestrian-safe access across the bridge. The addition of the sidewalk between the existing guardrail and the travel lane may require the guardrail to be raised.

Figure 7. Views of I-40/SR 249 Interchange

View north from south side of I-40/SR 249 Interchange

View north of I-40/SR 249 Interchange

Figure 8. Views of SR 249/Luyben Hills Road

View north on SR 249/ Luyben Hills Road

View south toward I-40 on SR 249/Luyben Hills Road

View of commercial uses on SR 249/ Luyben Hills Road

Figure 9. Views of SR 249/Luyben Hills Road and Kingston Springs Road Intersection

View southeast at SR 249/Luyben Hills Road and Kingston Springs Road Intersection

View north along SR 249/Luyben Hills Road toward Intersection with Kingston Springs Road As part of these improvements, a four- to six-foot wide sidewalk is proposed from the bridge over I-40 southward to the Petro gas station and truck stop (see Appendix D). The sidewalks will replace the existing paved shoulder and be placed between the existing guardrail and the edge of the travel lane. This width between the edge of the travel lane and the guardrail will be the limiting factor as to how wide the sidewalk can be. If the guardrail was relocated, the impact to the fill slope and stream below would be significant. A four-foot sidewalk is acceptable in this context and will greatly reduce construction costs. The roadway will not need to be widened as part of this option, nor will the lane widths through the interchange need to be modified.

Currently, the interchange is unsignalized. A signal warrant analysis was prepared for the I-40/SR 249 Interchange, and is discussed in Section 3.5 of this report. Based on the collected traffic counts, signals are warranted at this time for the intersection of SR 249/Luyben Hills Road and the I-40 westbound ramps; however, traffic signals are not warranted at this time for the intersection of SR 249/Luyben Hills Road and the I-40 westbound ramps; however, traffic signals are not warranted at this time for the intersection of SR 249/Luyben Hills Road and the I-40 eastbound ramps. As outlined in Section 3.5 of this report, a Signal Warrant Analysis should be performed within one year of putting the signal into operation. Therefore, it may be necessary to re-perform the traffic signal warrants within the year that the signal(s) will be installed. Typically, as traffic increases on diamond interchanges, they are signalized so that the traffic operation for the vehicles turning left onto and off of the interchange is not impeded.

As previously stated, pedestrians frequently travel from the Petro gas station and truck stop south of I-40 north to access restaurants and hotels located in the study corridor. The proposed improvements will improve pedestrian connectivity and safety through the I-40/SR 249 Interchange.

6.1.2 SR 249/Luyben Hills Road Corridor

The following text describes and depicts concept options for improvements to the SR 249/Luyben Hills Corridor between north of the I-40 ramps and Kingston Springs Road. The total project is 0.426 mile in length. Appendix D contains the business entrance layout plans, which illustrate the recommended driveway locations throughout the corridor.

All Options

This section describes features that are common to the two SR 249/Luyben Hills Corridor options (and also the roundabout discussed in the next section). It is important to note that landscaping and streetscaping are typically not eligible for state or federal funding (with the exception of enhancement funds), so alternative funding sources will need to be identified.

• Landscaping: Each option includes landscaped buffers of varying widths. Estimated landscaping costs, such as the installation of shrubs and street trees, are included in the planning level cost estimates outlined in Section 6.2 of this report. The exact nature of the corridor's landscaping will be determined in future phases of project development. Maintenance of landscaping in these buffers is an issue that will need to be worked out between TDOT, the Town of Kingston Springs and corridor business/property owners.

- *Streetscaping:* Each of the options for SR 249/Luyben Hills Road includes decorative, pedestrian-scaled lighting in the outside landscaping buffer of the typical sections, and the estimated cost of these lights are included in the planning level cost estimates. This type of lighting is typically spaced every 75 to 100 feet along the corridor, depending on the wattage and fixture type selected. These details, in addition to the style of lighting chosen, can vary in price and will be determined in future phases of project development. Other streetscaping elements, such as benches, trash receptacles and bicycle amenities (such as bicycle racks) which are not typically covered by TDOT funding, will be considered and addressed in the future project design phase, as funding availability permits.
- *Sidewalks:* Both options include the addition of sidewalks along the project corridor. The typical section for each option specifies the width of the landscape buffers on either side of the sidewalk. It should be noted, however, that the location of the sidewalk can vary throughout the corridor as the corridor's context deems appropriate (e.g., to avoid costly utility relocations).
- *Utilities:* Figures 11 and 12 illustrate the typical section for each option. Each typical section shows Nashville Electric Service (NES) utility poles along each side of the SR 249/Luyben Hills Road corridor. In some locations, the location of the utility poles may be an obstacle to the installation of sidewalks. In these instances, the sidewalk should be shifted to avoid the utility or the utility should be relocated. The cost of relocating aboveground utilities is not included in the preliminary cost estimates presented in Section 6.2 of this report.

Option 1—Six-foot Shoulders with Curbed Islands

Option 1 allows for access management improvements through the use of curbed islands and includes the installation of sidewalks and bicycle lanes on both sides of the roadway to accommodate pedestrians and bicyclists.

The proposal for this segment, shown in Figure 11, involves the following:

- Two 12-foot travel lanes;
- A 12-foot center turn lane;
- Six-foot bicycle lanes;
- A 10-foot landscape buffer between the shoulders and the sidewalk;
- Six-foot sidewalks; and
- A 10-foot buffer between the sidewalks and edge of ROW, which can accommodate landscaping and lighting.

Option 2— Curb & Gutter

Option 2 allows for access management improvements through the use of curb and gutter, and it includes the installation of multi-use paths on both sides of the roadway to accommodate pedestrians and bicyclists.

The proposal for this segment, shown in Figure 12, involves the following:

- Two 12-foot travel lanes;
- A 12-foot center turn lane;
- Two-foot curb and gutter on both sides of the roadway;
- A 10-foot landscape buffer between the curb and the sidewalk;
- Ten-foot multi-use paths on both sides of the roadway; and
- A 10-foot buffer between the sidewalks and edge of ROW, which can accommodate landscaping and lighting.

Comparison between Options 1 and 2

Both options fulfill the purpose and need for the project by:

- 1. Addressing safety issues and roadway deficiencies along SR 249/Luyben Hills Road through the use of access management;
- 2. Improving pedestrian accessibility and safety along the SR 249/Luyben Hills Road corridor by including sidewalks and landscape buffers (for a more comfortable walking environment); and
- 3. Implementing the results of the AIA Workshop by providing a more multi-modal and aesthetically pleasing gateway to Kingston Springs.

Table 7 describes elements of the two options that differ.

	OPT	OPTION	
FEATURE	1	2	
Sidewalks	6 feet	10 feet	
Drainage System	Curbed Islands with Shoulders	Curb and Gutter	
Shoulder	6 feet	None	
Bicycle Facilities	On-Street	Multi-Use Path	

Table 7. Comparison of Typical Sections for Options 1 and 2

Figure 12. SR 249/Luyben Hills Road Option 2 includes multi-use path and curb and gutter.

6.1.3 SR 249/Luyben Hills Road and Kingston Springs Road Intersection

As previously stated, the Town of Kingston Springs has an issue with truck traffic mistakenly turning north on SR 249/Luyben Hills Road from I-40. Once truck traffic has made this turn, it is difficult for them to turn around. At the request of Kingston Springs, the possibility of constructing a roundabout at the intersection of SR 249/Luyben Hills Road and Kingston Springs Road was evaluated. Not only would a roundabout allow truck traffic to turn around, it would also create an opportunity for Kingston Springs to create a corridor that acts as a strong gateway and reflects the unique character of their community. This intersection is currently signalized.

As illustrated in Figure 13 and Appendix D, an "Urban Compact" roundabout with a 100-foot inscribed diameter would be of sufficient size to allow truck traffic to carefully make a U-turn while minimizing impacts to adjacent properties. The roundabout would have one 18-foot travel lane and a 16-foot truck apron. The center of the roundabout would be about 32 feet in diameter, and could be landscaped with low shrubs.

Although it is a tight turn for truck traffic and they will likely make the turn at very low speeds, this size roundabout can accommodate truck traffic (as well as school bus traffic). This design could accommodate the business entrance on the north side of the SR 249/Luyben Hills Road and Kingston Springs Road intersection; however, the residential drive north of Kingston Springs Road would need to be relocated, as shown in Appendix D.

A roundabout, requiring minimal maintenance, would reduce vehicular speeds and would likely also reduce crashes. A roundabout would also address the issue of long queues of cars at the light, particularly in the evenings and mornings. If, in the future, it is determined that the construction of a roundabout in this location is not preferred, the signal timing at the intersection could be adjusted to address some of the queuing issues at the intersection. However, adjusting the signal timing would not address the need for a place for truck traffic to turn around.

6.2 Costs

Planning level cost estimates for the two corridor options (including the interchange improvements in each option) and the roundabout have been developed and are summarized in Tables 8 through 10. In order to account for variation in bid prices, both high and average totals are listed, resulting in a range of costs for each alternate. Inflation costs were applied to the total estimated construction and preliminary engineering costs at a rate of six percent over five years (as per TDOT TPR cost estimating guidance).

As previously noted, landscaping and streetscaping are typically not eligible for state or federal transportation funding, so alternative funding sources would need to be identified.¹ A summary of total costs is included below. Detailed cost estimates are in Appendix E.

	<u>Ave</u>	<u>erage Total / High Total</u>
SR 249/I-40 Interchange and	Option 1	\$2,365,421 / \$2,832,886
SR 249/Luyben Hills Corridor	Option 2	\$2,603,216 / \$3,134,221
Roundabout at Kingston Springs Road		
and US 249 Intersection (Optional)		\$504,819 / \$759,337

¹ For example, Transportation Enhancement Funds will fund landscaping and streetscaping.

	Option 1	
ITEM	Average Total	High Total
Right-of-Way ²	\$3,300	\$4,400
Construction	\$1,277,190	\$1,516,232
Utilities	\$63,859	\$75,812
Mobilization	\$62,474	\$90,649
Contingency	\$201,157	\$238,807
Total Construction	\$1,604,680	\$1,921,500
Preliminary Engineering	\$160,468	\$192,150
BASE YEAR (2009) TOTAL	\$1,765,148	\$2,113,650
Inflation (6 % per year over 5 years)	\$596,973	\$714,836
TOTAL COSTS ³	\$2,365,421	\$2,832,886

Table 8. SR 249/Luyben Hills Road Option 1

 ² The ROW costs shown only include costs associated with proposed ROW. The costs do not include costs for temporary easements.
 ³ Detailed estimates can be found in Appendix E.

Transportation Planning Report, SR 249/Luyben Hills Road, Kingston Springs, TN

	Option 2	
ltem	Average Total	High Total
Right-of-Way ⁴	\$3,300	\$4,400
Construction	\$1,406,166	\$1,680,327
Utilities	\$70,308	\$84,016
Mobilization	\$68,277	\$97,213
Contingency	\$221,474	\$264,651
Total Construction	\$1,766,223	\$2,126,208
Preliminary Engineering	\$176,222	\$212,621
BASE YEAR (2009) TOTAL	\$1,942,845	\$2,338,829
Inflation (6 % per year over 5 years)	\$657,070	266'062\$
TOTAL COSTS ⁵	\$2,603,216	\$3,134,221

Table 9. SR 249/Luyben Hills Road Option 2

⁴ The ROW costs shown only include costs associated with proposed ROW. The costs do not include costs for temporary easements. ⁵ Detailed estimates can be found in Appendix E.

	Roundabout	
ltem	Average Total	High Total
Right-of-Way ⁶	0\$	\$0
Construction	\$269,815	\$389,456
Utilities	\$13,491	\$19,473
Mobilization	\$17,142	\$45,578
Contingency	\$42,496	\$61,339
Total Construction	\$342,943	\$515,847
Preliminary Engineering	\$32,294	\$51,585
BASE YEAR (2009) TOTAL	\$377,237	\$567,431
Inflation (6 % per year over 5 years)	\$127,582	\$191,905
	\$504 819	\$750 337

Table 10. SR 249/Luyben Hills Road and Kingston Springs Road Roundabout

⁶ The ROW costs shown only include costs associated with proposed ROW. The costs do not include costs for temporary easements. ⁷ Detailed estimates can be found in Appendix E.

7.0 POTENTIAL ENVIRONMENTAL IMPACTS

7.1 Wetlands and Floodplains

The United States Fish and Wildlife Service (USFWS) National Wetland Inventory (NWI) map (shown in Map A-1, Appendix A) was reviewed, and no known wetlands were identified in the project area.

Federal Emergency Management Association (FEMA) Flood Insurance Rate Map (FIRM) Number 47021C0280C (dated December 6, 1999) was reviewed, and there are no 100-year or 500-year floodplains located within the project area (shown in Map A-2, Appendix A).

7.2 Threatened and Endangered Species

The Tennessee Department of Environment and Conservation (TDEC) Division of Natural Areas maintains records of rare, threatened and endangered species located throughout the state. Division of Natural Areas' files were examined in an attempt to identify threatened and endangered species recorded in the general vicinity of the project. No federally listed, threatened or endangered species are known to exist in the general project area.

The TDEC Division of Natural Areas records check, conducted on January 20, 2009, revealed two state-listed species reported within one mile of the project study area. The Sweet-scented Indian-plantain (*Hasteola suaveolens*), a flowering plant found near alluvial woods and moist slopes, is listed threatened at the state level. The Geniculate River Snail (*Lithasia geniculata fuliginosa*), a flowering plant found in cultivated fields, is also listed threatened at the state level. The project area is fully developed and neither of these habitats is present in the project study area.

Thirteen additional state-listed plant species have been observed within four miles of the proposed project area; however, none these species habitat can be found in the project area due to extensive commercial development.

7.3 Hazardous Materials

Project planners reviewed Environmental Protection Agency (EPA) records and contacted the TDEC Nashville Environmental Field Office to check for the presence of any hazardous materials sites in the proposed project area. In addition, a field review of the project area was conducted on January 28, 2008 to check for the presence of dry cleaners and other services that are associated with potentially hazardous chemicals.

There are four gas stations located along the project corridor that have underground storage tanks (USTs). The locations of these facilities are depicted on Map A-3 in Appendix A. The approximate locations of the USTs along the study corridor are shown on the layout graphics in Appendix D. Three of the four gas stations have reported a Leaking Underground Storage Tank (LUST).

The Mapco gas station (111 Luyben Hills Road) has had five LUST cases, but all five cases are now closed (Facility ID 5-110078). The most recent case was a diesel release

that spread into the soil and drainageway in front of the store. This case was closed in July 2008.

The BP gas station, located at 121A Luyben Hills Road, reported a LUST in October 2008 (Facility ID 5-110051)⁸. There was groundwater contamination on the entire site, but the contamination has been corrected and the case will be closed when the monitoring wells are abandoned.

There have been no cases filed at the Shell gas station located immediately north of the westbound entrance ramp to I-40.

The Petro gas station, located south of the I-40/SR 249 Interchange, is currently under an active ongoing investigation for a LUST; however contamination is limited to the area immediately surrounding the LUST and this area is located outside the study area for this project (Facility ID 5-110082).

Confirmation of potential UST and other hazardous site locations should be further identified in future phases of project development.

⁸ The BP gas station is registered in the TDEC database as the "Former Loteurs #4".

8.0 POTENTIAL CULTURAL IMPACTS

8.1 Historic Resources

A review of the Tennessee Historical Commission's (THC) National Register Geographic Information Systems (GIS) website was conducted on January 22, 2008 to check for the presence of historic resources. A review of State Historic Preservation Office (SHPO) records at the THC was also conducted. No properties listed in the NRHP are located within the project's Area of Potential Effect (APE).

A field review of the project area and its viewshed was conducted on January 28, 2008, and no structures over 50 years old were identified, so it is unlikely any sites within the project's study area would be eligible for the NRHP. Due to the developed nature of the project corridor, it is unlikely any archeological sites are present along the project corridor.

8.2 Community Resources

South Cheatham Junior High School and Harpeth Middle School are located northeast of the project area on SR 249/Kingston Springs Road. Harpeth High School is located northwest of the project area on Kingston Springs Road. The location of these schools is shown on Figure 2. As previously stated, school buses serving these schools travel the SR 249/Luyben Hills Road corridor, stopping in the vicinity of the Midtown Inn and Suites and McDonald's. Buses are typically present in the area between 6:00 and 8:00 a.m. and again in the afternoons between 2:30 and 4:00 p.m.

The Kingston Springs U.S. Post Office is located on the east side of the project corridor at 110 Luyben Hills Road (see Map A-4 in Appendix A).

8.3 Environmental Justice

U.S. Census Data was reviewed for the project area to determine whether the proposed project would have disproportionately high and adverse human health or environmental effects on minority populations and low-income populations. Based on information gathered and supported by a field review and conversations with local government, there are presently no minority or low income concentrations in the corridor.

Minority Populations

According to the 2000 US Census, approximately 2.2 percent of Kingston Springs' population considered themselves to be a minority. The county-wide minority population for Cheatham County was 2.5 percent. Both of these averages are considerably lower than the statewide average of 19.8 percent.

Map A-5 in Appendix A illustrates the minority population in the project area by Census Block for the 2000 US Census. The two Census Blocks that are located adjacent to the study corridor have minority population percentages higher than that of Cheatham County and Kingston Springs as a whole. The percentage of the population that identified themselves as a minority in these two Blocks is 4.0 percent (Block 5011) and 6.3 percent (Block 2003).

No impacts to minority populations are anticipated as a result of the proposed options discussed in Section 6.0 of this report because there are no minority populations in the immediate project area. The only residences in the vicinity of the study corridor are the homes in the mobile home park behind the Midtown Inn and Suites and the homes on Kingston Springs Road, north of the subject project's northern terminus (see Figure 3). Based on a review of Census data, conversations with local officials, and field reviews, these residences do not appear to constitute a minority population.

Low Income Populations

Table 11 outlines the percent of the population living below poverty in 2000 (based on 1999 income) for the two Census Block Groups that border the study area, the Town of Kingston Springs, Cheatham County, and the state of Tennessee. The percent of the population living below poverty within Kingston Springs averages 8.4 percent. This is slightly higher than the County average of 7.4 but considerably lower than the statewide average of 13.5 percent. The percent of the population below poverty in the two Census Block Groups that border the project area is considerably lower than the Town and County averages.

Poverty Status in 1999				
Location	Income Below Poverty Level	Total Population*	Percent Living Below Poverty	
Census Tract 704, Block Group 2, Cheatham County	77	1,798	4.3%	
Census Tract 704, Block Group 5, Cheatham County	182	2,948	6.2%	
Kingston Springs	231	2,758	8.4%	
Cheatham County	2,635	35,399	7.4%	
Tennessee	746,789	5,539,896	13.5%	

Table 11. Poverty Status in 1999 for Project Area, Kingston Springs, Cheatham County and Tennessee

* US Census data on poverty status is only provided for the portion of the population for which poverty status can be determined. Thus the percent living below poverty level is calculated using the population for which status can be determined rather than the total population of the Block Group in 2000.

Source: U.S. Census Bureau Census 2000; Summary File 3; Table P87.

As previously stated, the only residences in the vicinity of the study corridor are the homes in the mobile home park behind the Midtown Inn and Suites and the homes on Kingston Springs Road, north of the subject project's northern terminus (see Figure 3). Although not reflected in the Census data, mobile home parks are sometime indicative of a low-income population. As a result, impacts to the mobile home park should be closely considered in future phases of project development.

9.0 ASSESSMENT OF OPTIONS

TDOT has adopted seven guiding principles against which all transportation projects are to be evaluated. These guiding principles address concerns for system management, mobility, economic growth, safety, community, environmental stewardship, and fiscal responsibility. These guiding principles are discussed in the following paragraphs as they relate to the options for the proposed SR 249/Luyben Hills Road improvements.

Guiding Principle 1: Preserve and Manage the Existing Transportation System

SR 249/Luyben Hills Road is a critical corridor for the Town of Kingston Springs. It is not only a key commercial corridor for area residents and I-40 truck traffic, but it also connects portions of Cheatham and Dickson counties (including the Towns of Kingston Springs, Pegram, and White Bluff) to I-40 and the regional transportation network. The options discussed in this report are consistent with TDOT's goal of preserving and managing the existing transportation system. Kingston Springs' and Cheatham County's population is growing at a pace that far exceeds that of the State (see Table 1), and with that growth comes additional traffic on area roadways.

The increased access management provided for in the options discussed in this report will reduce congestion and traffic flow issues that result from vehicles slowing to turn in and out of the corridor's numerous access points. The proposed roundabout discussed in Section 6.1.3 of this report will allow truck traffic that mistakenly turned northbound on SR 249/Luyben Hills Road to turn around more easily and will consequently reduce the number of misdirected trucks in downtown Kingston Springs.

The option to signalize one or both of the intersections at SR 249/Luyben Hills Road and the eastbound and westbound ramps of I-40 can also help to preserve the life of the interchange by better directing the flow of traffic on and off the interstate in the proposed project area, ensuring that the interchange continues to function at an adequate LOS in the future.

Guiding Principle 2: Move a Growing, Diverse, and Active Population

As discussed in Section 3.1 of this report, the Town of Kingston Springs grew by 91.2 percent between 1990 and 2007 and Cheatham County grew by 44.1 percent, figures higher than the State of Tennessee as a whole (26.2 percent). This growth is anticipated to continue. According to the Tennessee Department of Economic and Community Development, the population in Cheatham County is forecasted to increase to 42,355 by 2013. The options presented in this report are intended to provide improved traffic flow to support the area's growing population and increasing amounts of externally generated traffic, such as truck traffic traveling on I-40.

The proposed improvements will also create a safer and more hospitable environment for pedestrians and bicyclists. The installation of sidewalks and access management will make it easier and more comfortable for both visitors and local residents to travel the corridor on foot or bicycle. The proposed improvements will support a diverse and active population by offering all citizens a safe roadway corridor environment, will consider all users and will improve multi-modal accessibility in the area.

Guiding Principle 3: Support the State's Economy

SR 249/Luyben Hills Road is an important commercial corridor for residents of Kingston Springs. As one of Kingston Springs' two "town centers", the corridor houses retail and services that contribute to the town's economy and provide jobs for some area residents. The options discussed in this report will better manage access to properties along the roadway, making it easier for customers to access businesses and services along the corridor. The sidewalks and other proposed pedestrian improvements will enhance the safety and pedestrian appeal of the corridor and increase the foot traffic to existing businesses. The improvements will also help to transform the corridor into a more appropriate gateway for Kingston Springs which would serve to attract new businesses to the area. The additional infrastructure provided by the proposed project improvements will better accommodate existing pedestrian and vehicular traffic, ensuring that the SR 249/Luyben Hills Road corridor remains an economic asset to Kingston Springs and the surrounding region.

Guiding Principle 4: Maximize Safety and Security

The proposed project will help address several different safety issues associated with the SR 249/Luyben Hills Road corridor. As discussed in Section 3.3 of this report, the relatively high number of rear end, angle and sideswipe crashes along the corridor can be attributed, in part, to the large numbers of curb cuts in the study area, which result in vehicles constantly slowing to turn in and out of parking lots. The access management improvements included in the options for the corridor are intended to improve safety by better controlling traffic flow and reducing the number of conflict points along the corridor. The proposed project will also result in improved pedestrian safety and mobility. The installation of sidewalks will result in a safe, attractive and welcoming pedestrian environment for those traveling through the corridor.

Guiding Principle 5: Build Partnerships for Livable Communities

This project was initiated as a result of the AIA Blueprint for America Workshop in Kingston Springs. As discussed in Section 2.0 of this report, the I-40/SR 249 Interchange and SR 249/Luyben Hills Road corridor was a frequent topic of discussion over the course of the two-day AIA workshop. There was consensus among attendees that, while the SR 249/Luyben Hills Road corridor is generally regarded as one of the town's two vital "town centers", the corridor is characterized by strip commercial development that the community finds unattractive and in conflict with Kingston Spring's quaint small-town character. In addition, the community expressed consensus that the interchange and corridor do not function well. As a result, the workshop's report called for the town's leadership to work with TDOT on roadway design recommendations that employ CSD principles.

Coordination with local leaders and stakeholders to identify their concerns and objectives for the proposed project was conducted throughout the planning process (see section 6.0 of this report). The Town of Kingston Springs expressed their concerns about safety and access along the SR 249/Luyben Hills Road corridor and the need to

create a better gateway to the Kingston Springs community. Conversations with local officials and stakeholders revealed a desire for improvements that will increase the safety of the pedestrian environment and reduce access control issues while improving traffic flow. The proposed improvement options discussed in this report will work toward achieving better travel conditions for both pedestrians and motorists.

In keeping with TDOT's *Public Involvement Process*, the provisions of NEPA and *Safe, Accountable, Flexible, Efficient Transportation Equity Act – A Legacy for Users* (*SAFETEA-LU*) and the provisions of the *Tennessee Environmental Streamlining Agreement (TESA)*, this project will be coordinated with the public and additional governmental agencies, beginning in the next project phase (NEPA if federal funding is identified and a TEER is state funding is identified).

Guiding Principle 6: Promote Stewardship of the Environment

Potential adverse environmental impacts have been considered in the development of the options included in this study. Detailed studies are needed to fully address the impacts of each option considered in this report. Sections 7.0 and 8.0 of this report outline potential environmental and cultural impacts based on preliminary environmental screening. Should federal funding be obtained for the project, a NEPA document will be prepared in future phases of the project. Should state funding be obtained for the project, a TEER will be prepared in future phases of the project. The NEPA document or TEER will assess the project's impacts on the natural, social and built environment. All efforts will be made to avoid adverse impacts to natural and cultural resources. If impacts cannot be avoided, they will be minimized and mitigated. Early and continuous coordination will continue to take place with the appropriate federal, state and local agencies and the public. This coordination will assist with the identification of important resources early in the planning process and help ensure the proposed project promotes stewardship of the environment.

Guiding Principle 7: Promote Financial Responsibility

The cost estimates shown in Tables 8 through 10, pages 36 through 38 of this report, are offered for comparison purposes and will fluctuate with inflation and any unexpected conditions. It is the Department's goal to follow a comprehensive transportation planning process, promote coordination among public and private operators of transportation systems and support efforts to provide stable funding for the public component of the transportation system. This entails exercising financial responsibility in the development and implementation of roadway projects and minimizing cost to taxpayers.

10.0 SUMMARY

SR 249/Luyben Hills Road, which is designated as a Rural Major Collector, is a vital corridor for the Town of Kingston Springs and Cheatham County. It serves as an important link between I-40 and portions of Cheatham County and Dickson County (along US 70), including the Towns of Kingston Springs, Pegram, and White Bluff (see Figure 1). In addition, the I-40/SR 249 Interchange and SR 249/Luyben Hills Road corridor provides access to the Harpeth River State Park and the Montgomery Bell State Park from I-40. The corridor, which is lined by gas stations, restaurants and hotels and provides access to some of the town's largest undeveloped commercially-zoned lots, is also a vital commercial corridor for the Town of Kingston Springs. Finally, I-40 Exit 188 (the I-40/SR 249 Interchange) is a well-used interchange for semi-tractor trailer (truck) traffic. Trucks use this interchange frequently to access the truck stop south of I-40, which is the first truck stop west of Nashville. Trucks also utilize the SR 249/Luyben Hills Road corridor as a detour route when an accident occurs on I-40.

Through coordination with local officials and stakeholders, the preliminary need for the proposed project has been identified:

- 1. Address safety issues and roadway deficiencies on SR 249/Luyben Hills Road;
- 2. Improve pedestrian accessibility and safety along the SR 249/Luyben Hills Road corridor; and
- 3. Implement the results of the 2008 AIA Workshop.

Two options for the SR 249/Luyben Hills Road corridor were considered in this evaluation. Recommended improvements include access management improvements as well as the installation of bicycle and pedestrian facilities and landscape buffers. Other streetscaping amenities will be considered in later design phases.

In addition to the two options considered in this evaluation, recommendations for the I-40/SR 249 Interchange and the SR 249/Luyben Hills Road and Kingston Springs Road intersection were also developed. The installation of sidewalks on SR 249/Luyben Hills Road through the interchange would improve pedestrian accessibility and safety along the corridor. The construction of a roundabout at the SR 249/Luyben Hills Road and Kingston Springs Road intersection would provide a place for truck traffic to turn around, while also creating a strong gateway to the Kingston Springs community.

Issues identified in environmental screening are minimal as the project is to be undertaken within existing ROW or with a small amount of additional ROW, and improvements are intended to benefit the community by providing an attractive streetscape to support current economic development plans and enhance the surrounding community. No impacts to the natural environment are anticipated as the proposed project is in highly developed setting. However, if federal funding is identified for this proposed project, a NEPA document will be undertaken. If state funding is identified for this proposed project, a TEER will be undertaken. The NEPA document or TEER will fully address the impacts to the social and natural environment. In addition, the NEPA or TEER process will lead to the selection of an alternate. Although a detailed environmental study is needed to fully address the impacts of each option considered in this report, preliminary research was done to provide a basis for future environmental work. Table 12 summarizes the results from the environmental screening. Transportation Planning Report, SR 249/Luyben Hills Road, Kingston Springs, TN

Iable 12: Summary of	Environmenta	l screening ke	sults				
Location	Wetlands	Floodplains	Threatened and Endangered Species	Hazardous Materials	NRHP Historic Resources	Community Resources	Environmental Justice
Interchange	None	None	No federally-listed species; some state-listed species may be present, but unlikely	Petro gas station to the south	None	None	None
Option 1 (Curbed Islands)	None	None	No federally-listed species; some state-listed species may be present, but unlikely	3 gas stations	None	U.S. Post Office	Impacts to the mobile home park should be closely considered in future phases of project development.
Option 2 (Curb & Gutter)	None	None	No federally-listed species; some state-listed species may be present, but unlikely	3 gas stations	None	U.S. Post Office	Impacts to the mobile home park should be closely considered in future phases of project development.
Roundabout	None	anoN	No federally-listed species; some state-listed species may be present, but unlikely	None	None	U.S. Post Office	None

à ٥ . 0 101 . L L Ċ , , Toblo

Appendix A Environmental Screening Maps

Figure A-1. United States Fish & Wildlife Service National Wetlands Inventory Map

Figure A-4. Community Facilities Map

Tennessee Department of Transportation EARLY ENVIRONMENTAL SCREENING PROCESS (EES) PROJECT SCORING

TDGT

	Project Sco	ore Factors	
	Total Impacts Evaluated	Total Impacts to Evaluate	EES Evaluation
Project Impact Areas:	15	15	Complete
Date of Evaluation:	June 17, 2009		
Evaluation done by:	Cana Cilliam		

Date of Evaluation.	Suile 17, 2009
Evaluation done by:	Gena Gilliam
	Transportation Planner 3
County:	Cheatham
Route:	State Route 249
PIN:	112162.00
Termini:	From Interstate 40 to Kingston Springs Road

Impact Ranking of Features Evaluated:	Total by Rank	
Features with No Impact	14	
Cemetery Sites & Cemetery Properties		
National Register Sites		
Bat		
Terrestrial Species		
Aquatic Species		
TDEC Conservation Sites & TDEC Scenic Waterways		
Large Wetland Impacts		
Superfund Sites		
Caves		
Pyritic Rock		
Railroads		
Tennessee Natural Areas Program		
Wildlife Management Areas		
TWRA Lakes & Other Public Lands		

Features with Low Impact	0	
Features with Moderate Impact	0	
Features with Substantial Impact	0	
Community Impacts Present:		

Institutions:

Populations:

EES Project Impact:

Complete

Impacts Evaluated Within 1,000 Ft of Study Area

CEMETERY SITES & CEMETERY PROPERTIES

Impact

Project Impact (Environmental, Time, Cost, Design, and Maintenance)	None - No impact on the project as there are no known cemetery sites within or abutting the project study area or corridor. It is anticipated that a 'normal' effort to complete this environmental review as part of NEPA.
--	---

INSTITUTIONS & SENSITIVE COMMUNITY POPULATIONS

Sensitive Populations Project Impact:

Present

Not Present

Institutions:		
Hospital	Г	~
School	Г	~
Church	Г	~
Public Building	Г	~
Populations:		
No population present	Г	~
65 and older populations	Г	~
Disability populations	Г	
Households without a vehicle	Г	~
Minority populations 24%	Г	<u>ح</u> ا
Linguistically isolated populations	Г	~
Populations below poverty - State average - 13%	Г	~
Populations below poverty - State average - 27%	Г	

BAT

Impact

Project Impact
(Environment, Time,
Cost, Design, and
Maintenance)Image: None - No
within 4 m

RAILROADS

Impact

Project Impact
(Environment, Time,
Cost, Design, and
Maintenance)

✓ None – No project impact is anticipated. There is no occurrence of Indiana or gray bats within 4 miles of the proposed project study area or corridor.

✓ None – No impact on the project is anticipated. There are no railroads located within the project study area or corridor.

Impacts Evaluated Within 2,000 Ft of Study Area

NATIONAL REGISTER SITES

Impact

SUPERFUND SITES

Impact

PYRITIC ROCK

Impact

Project Impact (Environment, Time, Cost, Design, and Maintenance)	None – No project impact is anticipated. Pyritic rock is not known to occur in the study area/corridor or project does not involve excavation. Limestone (symbolized as dark green) and dolomite (symbolized as light green) are present.
--	---

TWRA LAKES & OTHER PUBLIC LANDS

Impact

Project Impact (Environment, Time,

▼ None – No impact on the project is anticipated as there area no parks located within or

Impacts Evaluated Within 4,000 Ft of Study Area

TERRESTRIAL SPECIES

Impact

Pro (En Cos Ma	oject Impact wironment, Time, st, Design, and intenance)	None - No impact to the project is anticipated. There is no known occurrence of a rare, state, or federally-protected terrestrial species within the proposed transportation study area or corridor.
-------------------------	---	--

TDEC CONSERVATION SITES & TDEC SCENIC WATERWAYS

Impact

Project Impact (Environment, Time, Cost, Design, Maintenance)	None – No project impact is expected as there are no scenic waterways or TDEC Conservation Sites within project study area or corridor.
--	--

LARGE WETLAND IMPACTS

Impact

Project Impact (Environment, Time, Cost, Design, Maintenance)	None – No impact on the project is anticipated as there are no wetlands present in the project study area or corridor based on the GIS information reviewed.
--	---

TENNESSEE NATURAL AREAS PROGRAM

Impact

Project Impact (Environment, Time, Cost, Design, and Maintenance)	✓ None – No impact on the project is anticipated as the project study area or corridor does not include a Natural Area.
--	---

WILDLIFE MANAGEMENT AREAS

Impact

Impacts Evaluated Within 10,000 Ft of Study Area

AQUATIC SPECIES

Impact

CAVES

Impact

Project Impact (Environment, Time, Cost, Design, and	None – No project impact is anticipated as there are no caves in the project study area or corridor.
Cost, Design, and Maintenance)	

PIN 112162.00	Study Line ID:	112162
1000 Fast Corridor	Version Date:	May 01, 2009
1,000 1 001 0011100	Created by:	Gilliam

Cemetery Sites & Cemetery Properties

Cemeteries	None were found
Cemetery Property	None were found
Institutions & Sensitive Community Populations	
Institutions	None were found
Populations:	
No population present	None were found
65 & older populations	None were found
Disability populations	None were found
Households without a vehicle	None were found
Minority populuations 24%	None were found
Linguistically isolated populations	None were found
Populations below poverty-State average-13%	None were found
Populations below poverty-State average-27%	None were found
Bat	None were found
Railroads	None were found

None were found	
None were found	

PIN 112162.00	Study Line ID:	112162
4,000 Foot Corridor	Version Date:	May 1, 2009
	Created by:	Gilliam

Terrestrial Species

None were found

TDEC Conservation Sites & TDEC Scenic Waterways	
TDEC Conservation Sites	None were found
TDEC Scenic Waterways	None were found
Large Wetland Impacts	None were found
Tennessee Natural Areas Program	None were found
Wildlife Management Areas	None were found

PIN 112162.00	Study Line ID:	112162
10,000 Foot Corridor	Version Date:	May 01, 2009
	Created by:	Gilliam

Aquatic Species Caves None were found

None were found
Appendix B

Level of Service Analysis and Signal Warrant Analysis

MEMORANDUM

- TO: Tennessee Department of Transportation
- FROM: Gresham, Smith and Partners

DATE: March 31, 2009

SUBJECT: LEVEL OF SERVICE ANALYSIS & TRAFFIC SIGNAL WARRANT ANALYSIS SR 249/LUYBEN HILLS ROAD TRANSPORTATION PLANNING REPORT GS&P Project No. 27001.02

Traffic data for the State Route (SR) 249/Interstate 40 (I-40) interchange was provided by the Tennessee Department of Transportation (TDOT). The Annual Average Daily Traffic (AADT) and the Design Hour Volumes (DHV) for the AM and PM peak hours for the base year of 2010 and the design year of 2030 were provided for each of the major movements within the SR 249/Luyben Hills Road and I-40 interchange area. These traffic volumes are located in Appendix A of this Memorandum. It was determined that the growth rate used by TDOT to project the traffic to the design year was 2.686 percent.

In addition to the traffic obtained from TDOT, Gresham, Smith and Partners contracted Southern Traffic Services to perform a 12-hour turning movement count at each of the intersections at the interchange (SR 249 & I-40 westbound [WB] ramps and SR 249 & I-40 eastbound [EB] ramps). The traffic data was collected on February 4, 2009 and is broken down by numbers of automobiles, trucks and buses and is included in Appendix B. The purpose of collecting 12 hours of traffic data was to have adequate data to perform a signal warrant analysis for each of the ramp intersections. The collected traffic data was projected to the base year of 2014 and the design year of 2034 using the same growth rate that TDOT used (i.e., 2.686 percent) and was used for the capacity analysis of the ramp intersections and SR 249.

SR 249/Luyben Hills Road, a two-lane highway with a two-way left-turn lane, is projected to carry a 2009 AADT of 6,330 (south) to 12,183 (north) vehicles per day, using the TDOT provided traffic data and the growth rate mentioned above, in the vicinity of the I-40/SR 249 Interchange. SR 249/Luyben Hills Road is projected to carry a 2014 AADT of 7,227 (south) to 13,910 (north) vehicles per day and a 2034 AADT of 12,280 (south) to 23,635 (north) vehicles per day in the vicinity of the I-40/SR 249 Interchange.

Level of Service Analysis of SR 249/Luyben Hills Road

A level of service (LOS) analysis for SR 249/Luyben Hills Road was used to gauge the operational performance of the existing roadway. LOS is a qualitative measure that describes traffic conditions related to speed and travel time, freedom to maneuver and traffic interruptions. There are six levels, ranging from "A" to "F" with "F" being the worst. Each level represents a range of operating conditions. Figure 1 illustrates the traffic flow conditions and approximate driver comfort level at each LOS.

The traffic analysis for the segment of SR 249/Luyben Hills Road from the I-40 interchange to the intersection with Kingston Springs Road was performed using the Highway Capacity Software (HCS+) for both the AM and PM Peak Hour conditions for the present year (2009), the base year (2014) and the design year (2034). The traffic collected on February 4, 2009 was used for the analysis and was projected to the base

Figure 1. Definition of Level of Service

year and design year using the TDOT growth rate of 2.686 percent.

The traffic analysis used procedures from the Highway Capacity Manual 2000 (HCM) for evaluation of two-way, two-lane highway segments. The two-way segment methodology estimates measures of traffic operation along a section of highway, based on terrain, number of access points, geometric design and traffic conditions. Terrain is classified as either level or rolling. Traffic data needed to apply the two-way segment methodology include the two-way hourly volume, a peak hour factor, the directional distribution of traffic flow as well as the percentage of trucks and recreational vehicles in the traffic stream. The HCS printouts are included in Appendix C.

Table 1 summarizes the traffic data and peak hour LOS analysis for the Build and No Build Alternatives in the present year (2009), the base year (2014) and the design year (2034)¹.

	Two Way Flow Rate (pc/h)	Level of Service
	2009 (AADT=18,51	13)
AM	1,138	C
РМ	1,203	С
	2014 (AADT=21,13	37)
AM	1,285	D
РМ	1,374	D
	2034 (AADT=35,91	15)
AM	1,977	D
PM	2,045	D

Table 1. Peak Hour LOS Analysis for SR 249/Luyben Hills Road Corridor

Unsignalized Intersection Analysis

In order to determine how the I-40 and SR 249/Luyben Hills Road interchange is functioning in its current configuration, an unsignalized intersection analysis was performed using the HCS+ Software for the AM and PM Peak Hour conditions for the present year (2009), the base year (2014) and the design year (2034). The traffic collected on February 4, 2009 was used for the analysis and was projected to the base year and design year using the TDOT growth rate of 2.686 percent. The HCS printouts are included in Appendix C.

The results of the analysis are presented in terms of LOS and Approach Delay (seconds per vehicle) and are illustrated in Tables 2 and 3.

¹ The project's purpose and need is to address safety issues and roadway deficiencies along SR 249/Luyben Hills Road while improving pedestrian accessibility and safety. Because the project is not intended to address poor vehicle levels of service, the LOS analysis does not include a Build and No Build Scenario. Furthermore, there is no available traffic analysis tool that will analyze the impact of sidewalk and access management improvements on LOS.

Table 2. Traffic and LOS Analysis for I-40 and SR 249/Luyben Hills Road Interchange, Westbound Ramp

SR 249 and the I Westbou	40/SR 249 Interchange nd (WB) Ramp											
Analysis Year	WB Approach LOS											
2009 (Unsignaliz	ed)											
AM B												
PM C												
2014 (Unsignaliz	ed)											
AM	В											
РМ	С											
2034 (Unsignaliz	ed)											
AM	D											
РМ	F											

Table 3. Traffic and LOS Analysis for I-40 and SR 249/Luyben Hills RoadInterchange, Eastbound Ramp

SR 249 and the I 40 Eastbound	/SR 249 Interchange (EB) Ramp*												
Analysis Year	EB Approach LOS												
2009													
AM	F												
PM	С												
2014													
AM F PM C													
PM C													
PM C 2034													
AM	F												
PM	F												
* It should be noted that, based intersection does not meet the however, a signal may be ward judgment due to the amount of eastbound approach.	d on traffic volumes, this MUTCD signal warrant; ranted based on engineering f delay experienced by the												

Traffic Signal Warrant Analysis for the Interchange

The *Manual of Uniform Traffic Control Devices (MUTCD*), 2003 Edition developed eight traffic signal warrants to determine if a traffic signal is justified at a given location. The HCS+ Traffic Signal Warrant module, which is based on the eight traffic signal warrants developed for the *MUTCD*, was used to evaluate the need for a traffic signal at the EB and WB ramps of I-40 and SR 249. The traffic volumes were obtained from 12 hours of turning movement counts that were collected on February 4, 2009. The results of the Signal Warrant Analysis are included in Appendix C.

It should be noted, based on guidance provided in the *MUTCD*, that a Signal Warrant Analysis should be performed within one year of putting the signal into operation. Therefore, it may be necessary to re-perform the traffic signal warrants within the year that the signal(s) will be installed.

I-40 WB Ramps and SR 249/Luyben Hills Road

Based on the collected traffic counts, the intersection of SR 249/Luyben Hills Road and the I-40 WB ramps meets Warrant 2 - Four Hour Vehicular Volume and Warrant 3 - Peak Hour. If four plotted points based on the approach volumes (vehicles per hour) are above the line shown in Figure 4C-2 in the *MUTCD*, then Warrant 2 is met. Based on the traffic collected, five hours met this requirement:

- 7AM to 8AM,
- 2PM to 3PM,
- 3PM to 4PM,
- 4PM to 5PM,
- and 5PM to 6PM.

In order to meet Warrant 3 for peak hour, at least one hour must be above the line on Figure 4C-4 of the *MUTCD*. Based on the collected traffic, three hours met this requirement: 3PM to 4PM, 4PM to 5PM, and 5PM to 6PM. (See Warrant Volume sheets located in Appendix C).

I-40 EB Ramps and SR 249/Luyben Hills Road

Based on the collected traffic counts, the intersection of SR 249/Luyben Hills Road and the I-40 EB ramps does not currently meet any of the eight traffic signal warrants. (See Warrant Volume sheets located in Appendix C). However, based on engineering judgment and the amount of approach delay experienced for the EB approach, a signal may be warranted at this location.

Furthermore, the truck/travel center, located in the southeast quadrant of the interchange, is a major attraction for large volumes of truck traffic. Due to these high volumes of trucks, the operation of the interchange may be negatively impacted if the WB ramps are signalized and the EB ramps are not. If traffic signals are installed at both sets of ramps, they could be coordinated together allowing for all approaches of the interchange to operate efficiently, thereby reducing vehicular delay. During the design phase it is recommended that a detailed operational analysis of the interchange be performed both with a traffic signal located only at the WB ramps and with traffic signals installed at both sets of ramps.

Attachment

Copy File - 27001.02

APPENDIX A

TENNESSEE DEPARTMENT OF TRANSPORTATION PROJECT PLANNING DIVISION

PROJECT	NO.:					ROUTE:	S.R. 249	@ I-40		
COUNTY: PROJECT	PIN NUM	HEATHAM IBER:	240 ANT	D I 40	PAMPS	CITY:	KINGST	TON SPR	INGS	
PROJECT	DESCRIP	110N: <u>5.</u>	C. 249 AN	D 1-40	KAIVIF 5					
DIVISIO	ON REQ	UESTING	:			PAVEMEN	T DESI	GN		
MAINTE PLANNIN PROG D	NANCE NG EVELOP	MENT & A				STRUCTU SURVEY (TRAFFIC	RES & DESIC SIGNAI	GN DESIG	N	H
PUBLIC YEAR PRO	TRANS. DJECT PF	& AERO. ROGRAMME	D FOR CO] DNST	RUCTIO	OTHER _				
PROJECT.	ED LETT	ING DATE: GNMENT	:							_
DICE			DEG				DES ROAD	IGN WAY	DES	SIGN RAGE
BASE Y	VEAD	ADT	DES	IGN 1	VEAD	TRIO RIG	M IK	ADT	DAILY	RIGID
9 510	2010	16,160	1.778	11	2030	70-30	12	18	TLLA	RIGID
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	2010	10,100	1,110	11	2000	10.00	12	10		
	-	H	15 7 2							
									1.11	
REQUEST	ED BY:	NAME	RON B	AKE	2			DAT	TE 9/15/04	5
TTACTO I	20 0 11	DIVISION	PLANN	VING						
		ADDRESS	900 J.K	. POL	K BLDG.		_			

REVIEWED BY:	TONY ARMSTRONG Tony Auntion TRANSPORTATION MANAGER 1 SUITE 1000 JAMES & POLK BUILDING	DATE 12.5.05
APPROVED BY:	(VACANT) TRANSPORTATION MANAGER 2 SUITE 1000, JAMES K. POLK BUILDING	DATE 12.5-05

COMMENTS:

THIS TRAFFIC BASED ON 2005 CYCLE COUNTS, 2-12 HOUR (NOV. 05) TURNING MOVEMENT COUNTS AND GROWTH TRENDS FROM THE ADAM COMPUTER PROGRAM.

DHV'S ARE NOT REQUIRED FOR SIDE ROADS LESS THAN 1000 ADT.

NOTE: FOR BRIDGE REPLACEMENT PROJECTS, ADLs ARE NOT REQUIRED FOR ADTs OF 1000 OR LESS AND PERCENTAGE OF TRUCKS OF 7% OR LESS. SEE ATTACHMENTS FOR TURNING MOVEMENTS AND/OR OTHER DETAILS.

(REV. 12/2/05)

SEARS 12 40 * * ·10 Turner . 00 3+3 .03 POP. 1,928 (EST. 10533 PEGRAM 249 SANS 20 AUCH HC HOW south * 1101 I-403.4 I-40 @ S.R.-249 (KINGSTON SPRINGS RD.) ġ. SOMBOS NOLSONIX 3 CHEATHAM COUNTY 8.5 Ś 455 .05 0978: 12-1-05 S.N * 249/

APPENDIX B

SR 249 @ I-40 EB Ramps Kingston Springs, TN

Southern Traffic Services, Inc. 2911 Westfield Rd. Gulf Breeze, FL 32563 1-800-786-3374

_	T					Grou	ips Print	ed- Auto	omobiles	- Heavy	Trucks	- Buses		-				
			SR : South	249 hound		-	40 EB (Westł	On Ramp Dound	0		SR Northl	249 hound		I	-40 EB (Fasth	Off Ramp)	
	Start Time	Left	Thru	Right	Peds	Left	Thru	Right	Peds	Left	Thru	Right	Peds	Left	Thru	Right	Peds	Int. Total
	06:00	76	15	0	0	0	0	0	0	0	7	29	0	11	0	1	0	139
	06:15	113	9	0	0	0	0	0	0	0	11	30	0	15	0	2	0	180
	06:30	113	9	0	0	0	0	0	0	0	17	51	0	14	0	5	0	209
_	06:45	115	24	0	0	0	0	0	0	0	23	38	0	19	0	17	0	236
	I Otal	417	57	0	0	0	0	0	0	0	58	148	0	59	0	25	0	764
	07:00	114	20	0	0	0	0	0	0	0	34	42	0	12	0	7	0	229
	07:15	149	16	0	0	0	0	0	0	0	/1	40	0	11	1	(0	295
	07.30	104	31	0	0	0	0	0	0		40	34 21	0	10	0	2 3	0	290
-	Total	545	98	0	0	0	0	0	0	0	166	137	0	47	1	22	0	1016
	08·00	75	13	0	0	0	0	0	0	0	14	36	0	22	0	14	0	174
	08:15	78	19	Õ	Ő	Õ	Õ	Õ	Õ	Ō	14	26	Ő	18	Õ	10	Ő	165
	08:30	64	25	0	0	0	0	0	0	0	17	20	0	7	0	8	0	141
_	08:45	55	15	0	0	0	0	0	0	0	12	26	0	11	0	8	0	127
	Total	272	72	0	0	0	0	0	0	0	57	108	0	58	0	40	0	607
	09:00	53	21	0	0	0	0	0	0	0	14	12	0	13	0	6	0	119
	09:15	41	15	0	0	0	0	0	0	0	16	15	0	11	0	5	0	103
	09:30	50	15	0	0	0	0	0	0	0	17	14	0	4	0	4	0	104
-	Total	184	71	0	0	0	0	0	0	0	58	59	0	31	0	20	0	423
	10:00	33	22	0	0	0	0	0	0	0	15	13	0	5	0	3	0	91
	10:15	35	19	0	0	0	0	0	0	0	14	15	0	12	0	5	0	100
	10:30	37	21	0	0	0	0	0	0	0	21	11	0	14	0	6	0	110
_	10:45	34	23	0	0	0	0	0	0	0	16	19	0	4	0	4	0	100
	Total	139	85	0	0	0	0	0	0	0	66	58	0	35	0	18	0	401
	11:00	47	28	0	0	0	0	0	0	0	23	13	0	11	0	1	0	123
	11:15	30	20	0	0	0	0	0	0		19	11	0	1	0	6 7	0	93
	11.30	28	20 30	0	0	0	0	0	0		34 22	10	0	5	0	12	0	120
-	Total	146	101	0	0	0	0	0	0	0	98	50	0	30	0	26	0	451
	12:00	25	23	0	0	0	0	0	0	0	16	16	0	13	0	9	0	102
	12:15	37	31	0	0	0	0	0	0	0	30	11	0	11	0	3	0	123
	12:30	26	24	0	0	0	0	0	0	0	26	13	0	13	0	2	0	104
_	12:45 Total	42	<u> </u>	0	0	0	0	0	0	0	<u>25</u> 97	48	0	12 49	0	<u> </u>	0	<u>131</u> 460
	12.00			0		0	0	0	0			10		10	4			100
	13:00	21	29 10	0	0	0	0	0	0		22	10	0	10	1	3	0	102
	13:30	28	24	0	0	0	0	0	0		21	18	0	17	0	9 5	0	113
	13:45	31	21	Õ	õ	Õ	Õ	Õ	Õ	Ő	12	.0	Ő	6	Õ	5	Ő	84
	Total	119	93	0	0	0	0	0	0	0	76	53	0	44	1	22	0	408
	14:00	32	31	0	0	0	0	0	0	0	20	6	0	6	1	10	0	106
	14:15	29	34	0	0	0	0	0	0	0	26	14	0	15	0	4	0	122
	14:30	30	25	0	0	0	0	0	0	0	27	8	0	6	0	7	0	103
_	14:45	34	47	0	0	0	0	0	0	0	31	13	0	13	0	8	0	146
	Iotal	125	137	0	0	0	0	0	0	0	104	41	0	40	1	29	0	477
	15:00	50	55	0	0	0	0	0	0	0	29	9	0	16	0	5	0	164
	15:15	43	43	0	0	0	0	0	0	0	29	11	0	15	0	3	0	144
	15:30	44	38	0	0	0	0	0	0		39	20	0	15	0	7	0	163
-	10:45 Total	28 165	43	0	0	0	0	0	0		124	57	0	57	0	26	0	608
		100		0		0	0	0	0		127	51		51	0	20	v	
	16:00	26	46	U	0	U	U	0	0		16	8	0	10	0	67	0	111
	10:10	21 42	40 34	0	0	0	0	0	0		∠1 22	10	0	12 10	0	і Л	0	123 121
	16:45	31	43	0	0	0	0	0	0	0	22	10	0	11	0	4 14	0	136
-	Total	126	163	0	Õ	0	0	0	0	0	92	47	Õ	42	0	31	0	501

SR 249 @ I-40 EB Ramps Kingston Springs, TN

Southern Traffic Services, Inc. 2911 Westfield Rd. Gulf Breeze, FL 32563 1-800-786-3374

		50	SR 24	9 und			I-40 E	EB On	Ramp			N	SR 24	9 und			I-40	EB Off	Ramp		
Start		Thr	Dia	Dod	Ann		Thr	Dia	Dod	Ann		Thr	Dia	Dod	Ann		Thr	Dia	Dod	Ann	Int
Time	Left		ht	i eu	Total	Left		ht	i eu	Total	Left		ht	i eu	Total	Left		ht	1 eu	Total	Total
Peak Hour F	From 06	u 3:00 t	0.00.4	5 - Do	ak 1 of	1	u	III	5	TOtal		u	III	5	TULAI		u	III	5	TULAI	TOtal
	10111 00	5.00 0	0 09.4	J-F6		1					1					1					1
Intersecti	06:45																				
on	F 40	~	~	•			•	~	~	•		474		•	000	50		~~	•	00	4050
volume	542	91	0	0	633	0	0	0	0	0	0	174	154	0	328	52	-T	36	0	89	1050
Percent	85.	14.	0.0	0.0		0.0	0.0	0.0	0.0		0.0	53.	47.	0.0		58.	1.1	40.	0.0		
	6	4	0.0	0.0		0.0	0.0	0.0	0.0			0	0	0.0		4		4	0.0		
Volume	542	91	0	0	633	0	0	0	0	0	0	174	154	0	328	52	1	36	0	89	1050
Volume	149	16	0	0	165	0	0	0	0	0	0	71	40	0	111	11	1	7	0	19	295
Peak]										0.890
Factor																					
High Int.	07:30					5:45:	00 AM				07:15	5				06:45	5				
Volume	164	31	0	0	195	0	0	0	0	0	0	71	40	0	111	່ 19	0	17	0	36	,
Peak					0.81										0.73					0.61	
Factor					2										9					8	

Southern Traffic Services, Inc. 2911 Westfield Rd. Gulf Breeze, FL 32563 1-800-786-3374

SR 249 @ I-40 EB Ramps Kingston Springs, TN

			SR 24	9			I-40 I	EB On	Ramp				SR 24	.9			I-40	EB Off	Ramp		
		So	outhbo	und			W	/estbo	und .			N	orthbo	und			E	astbou	und .		
Start	Loft	Thr	Rig	Ped	App.	Loft	Thr	Rig	Ped	App.	Loft	Thr	Rig	Ped	App.	Loft	Thr	Rig	Ped	App.	Int.
Time	Leit	u	ht	s	Total	Leit	u	ht	s	Total	Leit	u	ht	s	Total	Leit	u	ht	s	Total	Total
Peak Hour I	From 1	0:00 t	o 13:4	5 - Pe	ak 1 of	1															
Intersecti	11.30																				
on	11.50					ļ					J					ļ					
Volume	131	107	0	0	238	0	0	0	0	0	0	102	53	0	155	36	0	31	0	67	460
Percent	55.	45.	0.0	0.0		0.0	0.0	0.0	0.0		0.0	65.	34.	0.0		53.	0.0	46.	0.0		
i oroont	0	0	0.0	0.0		0.0	0.0	0.0	0.0		0.0	8	2	0.0		7	0.0	3	0.0		
Volume	131	107	0	0	238	0	0	0	0	0	0	102	53	0	155	36	0	31	0	67	460
Volume	41	23	0	0	64	0	0	0	0	0	0	34	16	0	50	5	0	7	0	12	126
Peak																					0.913
Factor																					
High Int.	12:15	;									11:30)				12:00)				
Volume	37	31	0	0	68	0	0	0	0	0	0	34	16	0	50	13	0	9	0	22	
Peak					0.87										0.77					0.76	
Factor					5										5					1	

Southern Traffic Services, Inc. 2911 Westfield Rd. Gulf Breeze, FL 32563 1-800-786-3374

SR 249 @ I-40 EB Ramps Kingston Springs, TN

			SR 24	9			I-40 I	EB On	Ramp				SR 24	.9			I-40	EB Off	Ramp		
		Sc	outhbo	und			W	estbo	und			N	orthbo	und			E	astbou	und		
Start	Loft	Thr	Rig	Ped	App.	Loft	Thr	Rig	Ped	App.	Loff	Thr	Rig	Ped	App.	l off	Thr	Rig	Ped	App.	Int.
Time	Leit	u	ht	s	Total	Leit	u	hť	s	Total	Leit	u	hť	s	Total	Leit	u	ht	s	Total	Total
Peak Hour I	From 1	4:00 t	o 17:4	5 - Pe	ak 1 of	1						•									
Intersecti	47.00																				
on	17:00																				
Volume	143	233	0	0	376	0	0	0	0	0	0	112	51	0	163	58	3	23	0	84	623
Percent	38. 0	62. 0	0.0	0.0		0.0	0.0	0.0	0.0		0.0	68. 7	31. 3	0.0		69. 0	3.6	27. 4	0.0		
Volume	143	233	0	0	376	0	0	0	0	0	0	112	51	0	163	58	3	23	0	84	623
Volume	36	63	0	0	99	0	0	0	0	0	0	24	16	0	40	21	0	5	0	26	165
Peak											1)					0.944
Factor																					
High Int.	17:00										17:15	5				17:30)				
Volume	36	68	0	0	104	0	0	0	0	0	0	38	12	0	50	21	0	5	0	26	1
Peak		50	•	•	0.90		•	· ·	Ū	•		30		•	0.81		Ũ	•	Ū.	0.80	
Factor					4										5					8	

SR 249 @ I-40 WB Ramps Kingston Springs, TN

Southern Traffic Services, Inc. 2911 Westfield Rd. Gulf Breeze, FL 32563 1-800-786-3374

 File Name
 : 9026-2 SR 249 @ I-40 WB Ramps

 Site Code
 : 90260002

 Start Date
 : 02/03/2009

 Page No
 : 1

_						Group	s Printe	ed- Auto	mobiles	- Heav	y Truck	s - Buse	es					
			SR	249		-4	40 WB (Off Ram	ıp		SR	249		-4	40 WB (On Ram	ıp	
			South	bound			West	ound			North	bound			Eastb	ound		
	Start Time	l eft	Thru	Right	Peds	Left	Thru	Right	Peds	Left	Thru	Right	Peds	Left	Thru	Right	Peds	Int.
	Otart Time	Lon	THE	rugin	1 000	Lon	THE	rugin	1 000	Lon	THE	rugit	1 000	Lon	TING	rtigitt	1 000	Total
	06:00	0	82	9	0	3	0	10	0	4	13	0	0	0	0	0	0	121
	06:15	0	94	8	0	5	0	14	0	4	11	0	0	0	0	0	0	136
	06:30	0	130	14	0	7	0	21	0	3	31	0	0	0	0	0	0	206
	06:45	0	135	9	0	5	0	27	0	8	33	0	0	0	0	0	0	217
	Total	0	441	40	0	20	0	72	0	19	88	0	0	0	0	0	0	680
	07:00	0	117	16	0	6	0	29	0	12	42	0	0	0	0	0	0	222
	07:15	0	158	18	Ō	6	0	31	Ō	16	67	0	0	0	0	0	0	296
	07:30	Ő	182	24	Ő	7	Ő	40	Ő	5	50	Ő	0	0	Ő	Ő	0	308
	07:45	Ő	125	23	Ő	2	Ő	22	Ő	3	27	õ	Ő	Ő	Ő	Ő	Ő	202
-	Total	0	582	81	0	21	0	122	0	36	186	0	0	0	0	0	0	1028
	rotar	0	002	01	0	21	0	122	0	00	100	0	0	0	0	0	0	1020
	08.00	0	103	16	0	7	1	23	0	3	34	0	0	0	0	0	0	187
	00.00	0	06	15	0	6	0	17	0		26	0	0	0	0	0	0	169
	00.13	0	90	15	0	0	0	17	0	0	20	0	0	0	0	0	0	140
	08:30	0	00	10	0	8	0	20	0	4	28	0	0	0	0	0	0	140
_	08:45	0	/8	18	0	14	0	30	0	/	18	0	0	0	0	0	0	165
	Iotai	0	342	64	0	35	1	96	0	22	106	0	0	0	0	0	0	666
		•			•			~~~			~ ~ ~				•	•		400
	09:00	0	56	15	0	11	1	26	0	8	21	0	0	0	0	0	0	138
	09:15	0	54	23	0	7	1	27	0	6	19	0	0	0	0	0	0	137
	09:30	0	54	14	0	9	0	27	0	8	21	0	0	0	0	0	0	133
_	09:45	0	58	21	0	12	0	30	0	5	26	0	0	0	0	0	0	152
	Total	0	222	73	0	39	2	110	0	27	87	0	0	0	0	0	0	560
	10:00	0	48	24	0	6	0	26	0	9	22	0	0	0	0	0	0	135
	10:15	0	36	12	0	11	0	21	0	7	21	0	0	0	0	0	0	108
	10:30	0	43	20	0	5	0	36	0	8	14	0	0	0	0	0	0	126
	10:45	0	36	20	0	9	1	26	0	4	19	0	0	0	0	0	0	115
_	Total	0	163	76	0	31	1	109	0	28	76	0	0	0	0	0	0	484
													-	-				
	11.00	0	46	15	0	9	0	26	0	2	22	0	0	0	0	0	0	120
	11.00	ñ	43	11	Õ	11	Ő	40	Ő	12	27	Õ	Ő	Ő	Ő	Ő	Ő	144
	11:30	ñ	40	13	Ő	10	0	36	ñ	2	16	Ő	ñ	0	0	ő	ñ	135
	11:45	0	30	20	0	13	1	/1	0	7	20	0	0	0	0	0	0	150
-	Total	0	177	68	0	52	1	1/3	0	23	20	0	0	0	0	0	0	540
	TOtal	0	177	00	0	52	1	145	0	25	05	0	0	0	0	0	0	549
	12.00	0	62	11	0	11	0	20	0	Q	28	0	0	0	0	0	0	152
	12.00	0	02	14	0		0	29	0	6	20	0	0	0	0	0	0	147
	12:15	0	45	17	0	9	0	34	0		30	0	0	0	0	0	0	147
	12:30	0	38	19	0	9	0	25	0	5	10	0	0	0	0	0	0	112
_	12:45	0	44	15	0	8	1	37	0	2	18	0	0	0	0	0	0	125
	lotal	0	189	65	0	37	1	125	0	21	98	0	0	0	0	0	0	536
		-	e -		-		-		-	-	~ ~	-	-	-	-	-	-	
	13:00	0	35	12	0	12	0	47	0	6	28	0	0	0	0	0	0	140
	13:15	0	47	24	0	20	0	46	0	10	27	0	0	0	0	0	0	174
	13:30	0	39	22	0	11	0	47	0	8	24	0	0	0	0	0	0	151
_	13:45	0	47	19	0	15	0	42	0	6	28	0	0	0	0	0	0	157
	Total	0	168	77	0	58	0	182	0	30	107	0	0	0	0	0	0	622
	14:00	0	48	20	0	14	2	48	0	2	14	0	0	0	0	0	0	148
	14:15	0	42	28	0	11	0	58	0	9	25	0	0	0	0	0	0	173
	14:30	0	48	27	0	10	1	69	0	3	31	0	0	0	0	0	0	189
	14:45	Ō	64	20	Ő	8	0	72	Ő	10	28	Ő	õ	Ō	Ō	Ō	Ō	202
-	Total	0	202	95	0	43	3	247	0	24	98	0	0	0	0	0	0	712
	10101	Ŭ	_02		5		5		5	^		5	5	5	0	Ű	5	
	15.00	٥	100	24	٥	14	0	71	٥	13	30	٥	Ο	0	0	0	Ο	252
	15.15	ñ	-00. 66	25	0	16	1	63	0	7	32	0	0 0	0	n n	n n	0 0	210
	15.30	ñ	57	27	0	17	0	Q1	0	10	28	0	0 0	0	0	0	0 0	230
	15.00	0	/Q	25	0	23	0	02	0	0	20	0	0	0	0	0	0	200
-	Totol	0	271	111	0	20	1	317	0	20	110	0	0	0	0	0	0	010
	i Uldi	U	<u> </u>	111	U	10	1	317	U	59	110	U	U	0	U	0	0	_ ອາອ

SR 249 @ I-40 WB Ramps Kingston Springs, TN

Southern Traffic Services, Inc. 2911 Westfield Rd. Gulf Breeze, FL 32563 1-800-786-3374

		SR	249		Group	s Printe 10 WB (ed- Auto Off Ram	mobiles 1p	- Heavy	/ Trucks SR	s - Buse 249	es	-4	10 WB (On Ram	ıp	
		South	bound			West	bound			North	bound			Eastb	ound		Int.
Start Time	Left	I hru	Right	Peds	Left	I hru	Right	Peds	Left	I hru	Right	Peds	Left	I hru	Right	Peds	Total
16:00 16:15	0	48 54	40	0	23 31	2	110 112	0	9	39 20	0	0	0	0	0	0	258 265
16:30	0	47	35	0	29	0	121	0	9	35	0	0	0	0	0	0	276
16:45 Total	0	203	132	0	121	2	468	0	28	121	0	0	0	0	0	0	1075
17.00	0	72	33	0	32	٥	143	0	12	40	0	0	0	٥	0	0	332
17:15	0	58	33	0	12	0	120	0	6	36	0	0	0	0	0	0	265
17:30 17:45	0	63 46	33 25	0	44 34	0	153 120	0	9 1	26 18	0	0	0	0	0	0	328 244
Total	0	239	124	0	122	0	536	0	28	120	0	0	0	0	0	0	1169
Grand Total Apprch % Total %	0 0.0 0.0	3199 76.1 35.5	1006 23.9 11.2	0 0.0 0.0	649 20.4 7.2	12 0.4 0.1	2527 79.3 28.1	0 0.0 0.0	325 20.2 3.6	1282 79.8 14.2	0 0.0 0.0	0 0.0 0.0	0 0.0 0.0	0 0.0 0.0	0 0.0 0.0	0 0.0 0.0	9000
		1-40 WB On Ramp Out In Total 144 0 1144 196 0 196					Out 3734 58 17 3809 974 31 1 1006 Right 2/3/20 2/3/20 Autol Heat Buse Left 163 160 2 325	SR 243 In 4126 65 14 4205 3152 34 13 3199 Thru L North 009 6:00:C 009 5:45:C mobiles y Trucks s Thru R 1243 23 16 1282	0 AM 0 AM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	s 00000 s		35 5 171 0 2527 12 649 0 Right Thru Left Peds		$\begin{array}{c c} 0 \\ 0 \\ 0 \\ 0 \\ 211 \\ 21 \\ 21 \\ 21 \\ 21$	0ut In Total		
							163 160 2 325 3629 205 14 3848 Out	1243 23 16 1282 1282 1406 183 16 183 16 183 1607 183 1607 183	Sinc Feb 0 0 0 0 0 38 3 38 3 545: Total Total								

SR 249 @ I-40 WB Ramps Kingston Springs, TN

Southern Traffic Services, Inc. 2911 Westfield Rd. Gulf Breeze, FL 32563 1-800-786-3374

			SR 24	.9			I-40 V	VB Of	f Ram	C			SR 24	9			I-40 V	VB Or	n Ram	р]
		Sc	uthbo	und			W	estbo	und			No	orthbo	und			E	astboi	und		
Start	Loft	Thr	Rig	Ped	App.	Loft	Thr	Rig	Ped	App.	Loft	Thr	Rig	Ped	App.	Loft	Thr	Rig	Ped	App.	Int.
Time	Leit	u	ht	S	Total	Leit	u	ht	s	Total	Leit	u	ht	s	Total	Leit	u	ht	S	Total	Total
Peak Hour F	From 0	6:00 t	o 09:4	5 - Pea	ak 1 of	1															
Intersecti	06.46																				
on	00.40)																			
Volume	0	592	67	0	659	24	0	127	0	151	41	192	0	0	233	0	0	0	0	0	1043
Percent	0.0	89.	10.	0.0		15.	0 0	84.	0.0		17.	82.	0.0	0.0		0.0	0.0	0.0	0.0		
Feiceni	0.0	8	2	0.0		9	0.0	1	0.0		6	4	0.0	0.0		0.0	0.0	0.0	0.0		
Volume	0	592	67	0	659	24	0	127	0	151	41	192	0	0	233	0	0	0	0	0	1043
Volume	0	182	24	0	206	7	0	40	0	47	5	50	0	0	55	0	0	0	0	0	308
Peak]										0.847
Factor																					
High Int.	07:30)				07:30					07:15	5				5:45:	00 AN	1			
Volume	0	182	24	0	206	7	0	40	0	47	16	67	0	0	83						
Peak					0.80					0.80					0.70						
Factor					0					3					2						

Southern Traffic Services, Inc. 2911 Westfield Rd. Gulf Breeze, FL 32563 1-800-786-3374

SR 249 @ I-40 WB Ramps Kingston Springs, TN

		SR 249					I-40 V	VB Of	f Ram	0			SR 24	9		I-40 WB On Ramp					
		Sc	outhbo	und			W	estbo	und		Northbound					Eastbound					
Start	Loft	Thr	Rig	Ped	App.	Loft	Thr	Rig	Ped	App.	Loft	Thr	Rig	Ped	App.	Loft	Thr	Rig	Ped	App.	Int.
Time	Leit	u	ht	S	Total	Leit	u	ht	s	Total	Leit	u	ht	s	Total	Leit	u	ht	S	Total	Total
Peak Hour	From 1	0:00 t	o 13:4	5 - Pe	ak 1 of	1															
Intersecti	13.00																				
on	15.00										ļ					ļ					
Volume	0	168	77	0	245	58	0	182	0	240	30	107	0	0	137	0	0	0	0	0	622
Percent	0.0	68.	31.	0.0		24.	0.0	75.	0.0		21.	78.	0.0	0.0		0.0	0.0	0.0	0.0		
	0.0	6	4	0.0		2	0.0	8	0.0		9	1	0.0	0.0		0.0	0.0	0.0	0.0		
Volume	0	168	77	0	245	58	0	182	0	240	30	107	0	0	137	0	0	0	0	0	622
Volume	0	47	24	0	71	20	0	46	0	66	10	27	0	0	37	0	0	0	0	0	174
Peak																					0.894
Factor																					
High Int.	13:15					13:15	;				13:15	5									
Volume	0	47	24	0	71	20	0	46	0	66	10	27	0	0	37						
Peak					0.86					0.90					0.92						
Factor					3					9					6						

Southern Traffic Services, Inc. 2911 Westfield Rd. Gulf Breeze, FL 32563 1-800-786-3374

Gulf Breeze, FL 1-800-786File Name : 9026-2 SR 249 @ I-40 WB Ramps Site Code : 90260002 Start Date : 02/03/2009 Page No : 5

		SR 249 Southbound				I-40 WB Off Ramp Westbound				SR 249 Northbound					I-40 WB On Ramp Eastbound						
Start	Left	Thr	Rig	Ped	App.	Left	Thr	Rig	Ped	App.	Left	Thr	Rig	Ped	App.	Left	Thr	Rig	Ped	App.	Int.
Peak Hour F	From 1	4:00 t	o 17:4	5 - Pe	ak 1 of	1	u	п	5	Total		u	п	5	Total		u	ш	5	Total	TOLA
Intersecti on	16:45	5																			
Volume	0	247	129	0	376	126	0	541	0	667	29	129	0	0	158	0	0	0	0	0	1201
Percent	0.0	65. 7	34. 3	0.0		18. 9	0.0	81. 1	0.0		18. 4	81. 6	0.0	0.0		0.0	0.0	0.0	0.0		
Volume	0	247	129	0	376	126	0	541	0	667	29	129	0	0	158	0	0	0	0	0	1201
Volume Peak Factor	0	72	33	0	105	32	0	143	0	175	12	40	0	0	52	0	0	0	0	0	332 0.904
High Int.	17:00)				17:30)				17:00)									
Volume Peak Factor	0	72	33	0	105 0.89 5	44	0	153	0	197 0.84 6	12	40	0	0	52 0.76 0	,					1

SR 249 @ I-40 WB Ramps Kingston Springs, TN

APPENDIX C

TWO-WAY TWO-LANE HIGHWAY SEGMENT WORKSHEET										
General Information	Site Information									
Analyst DHS Agency or Company GSP Date Performed 2/13/2009 Analysis Time Period AM Peak	Highway SR 249 From/To I-40 / Kingston Springs Rd Jurisdiction Kingston Springs, TN Analysis Year 2009									
Project Description: SR 249 2009 AM										
Input Data										
Segment length, L ₁ mi	Class I highway Class II highway Terrain Level Rolling Two-way hourly volume 978 veh/h Directional split 70 / 30 Peak-hour factor, PHF 0.88 No-passing zone 0 % Trucks and Buses , P _T 12 % % Recreational vehicles, P _R 0% Access points/ mi 40									
Average Travel Speed										
Grade adjustment factor, f _G (Exhibit 20-7)	1.00									
Passenger-car equivalents for trucks, E _T (Exhibit 20-9)	1.2									
Passenger-car equivalents for RVs, E _R (Exhibit 20-9)	1.0									
Heavy-vehicle adjustment factor, $f_{HV}=1/(1+P_T(E_T-1)+P_R(E_R-1))$	0.977									
Two-way flow rate ¹ , $v_p (pc/h)=V/(PHF * f_G * f_HV)$	1138									
v _p * highest directional split proportion ² (pc/h)	797									
Free-Flow Speed from Field Measurement	Estimated Free-Flow Speed									
Field Measured speed, S _{FM} mi/hObserved volume, V _f veh/hFree-flow speed, FFS FFS=S _{FM} +0.00776(V _f / f _{HV})mi/h	Base free-flow speed, BFFS FM45.0 mi/hAdj. for lane width and shoulder width3, f_{LS} (Exhibit 20-5)0.0 mi/hAdj. for access points, f_A (Exhibit 20-6)10.0 mi/hFree-flow speed, FFS (FSS=BFFS-f_LS-f_A)35.0 mi/h									
Adj. for no-passing zones, f _{np} (<i>mi/h</i>) (Exhibit 20-11)	0.0									
Average travel speed, ATS (<i>mi/h</i>) ATS=FFS-0.00776v _p -f _{np}	26.2									
Percent Time-Spent-Following										
Grade Adjustment factor, f _G (Exhibit 20-8)	1.00									
Passenger-car equivalents for trucks, E _T (Exhibit 20-10)	1.0									
Passenger-car equivalents for RVs, E _R (Exhibit 20-10)	1.0									
Heavy-vehicle adjustment factor, $f_{HV}=1/(1+P_T(E_T-1)+P_R(E_R-1))$	1.000									
Two-way flow rate ¹ , $v_p (pc/h)=V/(PHF * f_G * f_HV)$	1111									
v_p * highest directional split proportion ² (pc/h)	778									
Base percent time-spent-following, BPTSF(%)=100(1-e ^{-0.000879v} p)	62.3									
Adj. for directional distribution and no-passing zone, $\rm f_{d/hp}(\%)(Exh.$ 20-12)	0.0									
Percent time-spent-following, PTSF(%)=BPTSF+f d/np	62.3									
Level of Service and Other Performance Measures										
Level or service, LOS (Exhibit 20-3 for Class I or 20-4 for Class II)	0.36									
Peak 15-min veh-miles of travel VMT (veh- mi)= 0.25L (V/PHF)	83									
Peak-hour vehicle-miles of travel. VMT _{co} (veh- mi)=V*L.	293									
Peak 15-min total travel time, TT_{re} (veh-h)= VMT _{re} /ATS	3.2									
Notes	l									
1. If Vp >= 3,200 pc/h, terminate analysis-the LOS is F. 2. If highest directional solit Vp>= 1,700 pc/h, terminated anlysis-the LOS is F										

General Information Site Information Analysis OHS Aparty Company OHS Apary Company OHS	TWO-WAY TWO-LANE HIGHWAY SEGMENT WORKSHEET										
Analysis DFS Section (Comparing Comparing Comp	General Information	Site Information									
Description Description <thdescription< th=""> <thdescription< th=""></thdescription<></thdescription<>	Analyst DHS Agency or Company GSP Date Performed 2/13/2009 Analysis Time Period PM Peak	Highway SR 249 From/To I-40 / Kingston Springs Rd Jurisdiction Kingston Springs, TN Analysis Year 2009									
Input Date Class II highway Class II highway Imput Date Impu Date Impu Date Impu D	Project Description: SR 249 2009 PM										
$ \begin{array}{c c c c c c c } \hline Class Ihghway & Class & Class Ihghway & Class & Class Ihghway & Class &$	Input Data										
Average Travel Speed 1.00 Grade adjustment factor, t_0 (Exhibit 20-7) 1.00 Passenger-car equivalents for Trucks, E ₁ (Exhibit 20-9) 1.1 Passenger-car equivalents for Trucks, E ₁ (Exhibit 20-9) 1.0 Heavy-whicle adjustment factor, $t_{wy}-1/(1+P_{T}(E_{1}-1)+P_{R}(E_{1}-1))$ 0.988 Two-way flow rate ¹ , v_{0} (pch)-V/ (PHF + $t_{0}^{-1}, t_{wy})$ 1203 v_{μ}^{-1} highest directional split proportion ² (pch) 842 Free-Flow Speed from Field Measurement Estimate Free-Flow Speed Field Measured speed, S _{PL1} mi/n Adj, for raccess points, t_1 (Exhibit 20-5) 0.0 mi/n Adj, for raccess points, t_1 (Exhibit 20-5) 0.0 mi/n Adj, for raccess points, t_1 (Exhibit 20-5) 0.0 mi/n Adj, for raccess points, t_1 (Exhibit 20-5) 0.0 mi/n Adj, for raccess points, t_1 (Exhibit 20-5) 0.0 mi/n Adj, for raccess points, t_1 (Exhibit 20-5) 0.0 mi/n Adj, for raccess points, t_1 (Exhibit 20-5) 0.0 mi/n Adj, for raccess points, t_1 (Exhibit 20-5) 0.0 mi/n Adj, for raccess points, t_2 (Exhibit 20-5) 0.0 mi/n Base preca-care quivalents for Two, t_2 (mi/n)	Shoulder width ft Lane width ft Lane width ft Shoulder width ft Segment length, Lt mi	Class I highway Class II highway Terrain ▲ Level ▲ Rolling Two-way hourly volume 1046 veh/h Directional split 70 / 30 Peak-hour factor, PHF 0.88 No-passing zone 0 % Trucks and Buses , P _T 12% % Recreational vehicles, P _R 0% Access points/ mi 40									
Grade adjustment factor, f ₀ (Exhibit 20-7) 1.00 Passenger-car equivalents for trucks, E _T (Exhibit 20-9) 1.1 Passenger-car equivalents for trucks, E _T (Exhibit 20-9) 1.0 Heavy-vehicle adjustment factor, f _{HV} =1/(1+ P _R (E _T 1)-P _R (E _R T1)) 0.988 Two-way (two rate ¹ , v _p (pch)-V/(PHF '(c_T)+P _R (E _R T1)) 0.988 Two-way (two rate ¹ , v _p (pch)-V/(PHF '(c_T)+P _R (E _R T1)) 0.988 Two-way (two rate ¹ , v _p (pch)-V/(PHF '(c_T)+P _R (E _R T1)) 0.988 Free-Flow Speed from Field Measurement Estimated Free-Flow Speed Free-Flow speed, SP _M mi/h Adj. for non-passing zones, f _W (m/h) (Exhibit 20-11) Base free-flow speed, FFS (FSS-BFFs-I, SF _A) 35.0 m/h Adj. for non-passing zones, f _W (m/h) (Exhibit 20-10) 0.0 Acrage travel speed, AFS (fSS-BFFs-I, SF _A) 35.0 m/h Adj. for non-passing zones, f _W (m/h) (Exhibit 20-10) 1.00 1.0 Passenger-car equivalents for trucks, E _T (Exhibit 20-8) 1.00 Passenger-car equivalents for trucks, E _T (Exhibit 20-10) 1.0 1.0 Passenger-car equivalents for trucks, E _T (Exhibit 20-10) 1.0 Passenger-car equivalents for trucks, E _T (Exhibit 20-10) 1.0 1.0 Passenger-car equivalents for trucks,	Average Travel Speed	I									
Passenger-ar equivalents for trucks, E ₁ (Exhibit 20-9) 1.1 Passenger-ar equivalents for trucks, E ₁ (Exhibit 20-9) 1.0 Heavy-rehide adjustment factor, I ₁₁ /n ⁻¹ (1 + P ₁₁ (E ₁ -1)+P ₁₁ (E ₁ -1)) 0.988 Two way flow rate ¹ , v ₀ (pch)=-V (PH F + I ₀ + I ₁₁ /n) 0.988 Y ₀ 'n ighest directional split proportion ² (pch) 842 Free-Flow Speed from Field Measurement Estimated Free-Flow Speed Field Measured speed, S _{FM} m/h Adj. for lane width and shoulder width ³ , t ₁₅ (Exhibit 20-5) 0.0 m/h Adj. for lane width and shoulder width ³ , t ₁₅ (Exhibit 20-5) 0.0 m/h Adj. for non-passing zones, t _{m0} (m/h) (Exhibit 20-11) 0.0 Average travel speed, FFS (FSS=BFFS-t ₁₅ (a, (L'hibit 20-6)) 1.00 m/h Adj. for non-passing zones, t _{m0} (m/h) (Exhibit 20-10) 1.00 Passenger-car equivalents for trucks, E _T (Exhibit 20-10) 1.00 Passenger-car equivalents for trucks, E _T (Exhibit 20-10) 1.00 Passenger-car equivalents for trucks, E _T (Exhibit 20-10) 1.0 Passenger-car equivalents for trucks, E _T (Exhibit 20-10) 1.0 Passenger-car equivalents for trucks, E _T (Exhibit 20-10) 1.0 Passenger-car equivalents for trucks, E _T	Grade adjustment factor, f _G (Exhibit 20-7)	1.00									
Passenger-car equivalents for RVs, E _R (Exhibit 20-9) 1.0 Heavy-vehicle adjustment factor, I _{hV} =1/(1+ P _T (E _F -1))P _R (E _R -1)) 0.988 Two-way flow rate ¹ , v _p (bch)=V/ (PHF ⁻¹ (g ⁻¹ / _{hV}) 1203 v _p ⁻¹ highest directional split proportion ² (pch) 642 Free-Flow Speed from Field Measurement Estimated Free-Flow Speed Field Measured speed, S _{FM} 45.0 m/h Adj. for lane width and shoulder width ³ , I _{LS} (Exhibit 20-5) 0.0 m/h Adj. for no-passing zones, I _{np} (m/h) (Exhibit 20-11) 0.0 Adj. for access points, I _A (Exhibit 20-5) 0.0 m/h Adj. for no-passing zones, I _{np} (m/h) ATS=FFS-0.00776/V _p (I _{fV}) m/h Free-flow speed, FFS (FSS=BFFS-I _{LS} -I _A) 35.0 m/h Adj. for access points, I _A (Exhibit 20-5) 0.0 m/h Adj. for access points, I _A (Exhibit 20-5) 0.0 m/h Adj. for access points, I _A (Exhibit 20-5) 0.0 m/h Adj. for access points, I _A (Exhibit 20-5) 0.0 m/h Adj. for access points, I _A (Exhibit 20-10) 0.0 Passenger-car equivalents for trucks, E _T (Exhibit 20-10) 1.0 Passenger-car equivalents for RVs, E _R (Exhibit 20-10) 1.0 Reave-vehicle adjustment factor, I _{hV} =1/(1 + P _T (E _T -1))+P _R (E _R -1))	Passenger-car equivalents for trucks, E _T (Exhibit 20-9)	1.1									
Heavy-vehicle adjustment factor, $f_{HV}=1/(1+P_{R}(E_{R}^{-1}))$ 0.988 Two-way flow rate ¹ , v_{ϕ} (pch)=V/ (PHF * $f_{0} * f_{HV})$ 1203 v_{μ}^{-1} highest directional split proportion ² (pch) 842 Free-Flow Speed from Field Measurement Estimated Free-Flow Speed Field Measured speed, S_{FM} min Observed volume, V_{I} wehrh Free-flow speed, FFS FFS= $S_{FM} + 0.00776(V_{I} f_{HV})$ min Adj. for access points, f_{A} (Exhibit 20-5) 0.0 min Adj. for no-passing zones, f_{rip} (m/h) (Exhibit 20-11) 0.0 Average travel speed, AFS (m/h) ATS=FFS-0.00776(v_{f} f_{Ip}) 25.7 Percent Time-Spent-Following	Passenger-car equivalents for RVs, E _R (Exhibit 20-9)	1.0									
Two-way flow rate 1 , v_p (pch)=V/ (PHF * 1 G * 1 H _W)1203 v_p * highest directional split proportion2 (pch)842Free-Flow Speed from Field MeasurementBase free-flow speed, BFFS FMAField Measured speed, SFM45.0 mi/hAdj. for lane width and shoulder width?, 1 Lis (Exhibit 20-5)0.0 mi/hFree-flow speed, FFS FFS FMA45.0 mi/hAdj. for lane width and shoulder width?, 1 Lis (Exhibit 20-5)0.0 mi/hFree-flow speed, FFS FFS FMA35.0 mi/hAdj. for no-passing zones, 1 Lo, (mi/h) (Exhibit 20-11)0.0Average travel speed, ATS (mi/h) ATS=FFS-0.00776v $_p$ fmp25.7Percent Time-Spent-Following1.00Grade Adjustment factor, 1 Lo, (Exhibit 20-8)1.00Passenger-care quivalents for RVs, E_n (Exhibit 20-10)1.0Passenger-care quivalents for RVs, E_n (Exhibit 20-10)1.0Ino-way flow rate ¹ , v_p (bch)=V/ (PHF * 1 Le $^-$ H _P R(En'1))1.000Two-way flow rate ¹ , v_p (bch)=V/ (PHF * 1 Le $^-$ H _P R(En'1))1.000Two-way flow rate ¹ , v_p (bch)=V/ (PHF * 1 Le $^+$ Le $^-$ Le	Heavy-vehicle adjustment factor, $f_{HV}=1/(1+P_T(E_T-1)+P_R(E_R-1))$	0.988									
	Two-way flow rate ¹ , $v_p (pc/h)=V/(PHF * f_G * f_HV)$	1203									
Free-Flow Speed from Field MeasurementEstimated Free-Flow SpeedField Measured speed, S_{FM} mi/hObserved volume, V_1 veh/hAdj. for lane width and shoulder width 3 , I_{LS} (Exhibit 20-5)0.0 mi/hAdj. for no-passing zones, I_{n0} (mi/h) (Exhibit 20-11)0.0Adj. for no-passing zones, I_{n0} (mi/h) (Exhibit 20-11)0.0Average travel speed, ATS (mi/h) ATS=FFS-0.00776v _p . I_{np} 25.7Percent Time-Spent-Following1.00Grade Adjustment factor, I_{q} (Exhibit 20-10)1.0Passenger-car equivalents for trucks, E_T (Exhibit 20-10)1.0Passenger-car equivalents for trucks, E_T (Exhibit 20-10)1.0Heavy-thilde adjustment factor, $I_{q_1} = 1/4$, $P_{q_1} = 1/4$, $P_{q_1} = 1/4$, $P_{q_2} = 1/4$, $P_{q_1} = 1/4$, $P_{q_2} = 1/4$,	v _p * highest directional split proportion ² (pc/h)	842									
$ \begin{array}{c} \mbox{Field Measured speed, ${\sf S}_{\sf FM}$ (wh) $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$$	Free-Flow Speed from Field Measurement	Estimated Free-Flow Speed									
Adj. for no-passing zones, f_{np} (<i>mi/h</i>) (Exhibit 20-11)0.0Average travel speed, ATS (<i>mi/h</i>) ATS=FFS-0.00776v _p f_{np} 25.7 Percent Time-Spent-Following 1.00Grade Adjustment factor, f_{G} (Exhibit 20-8)1.00Passenger-car equivalents for trucks, E_{T} (Exhibit 20-10)1.0Passenger-car equivalents for RVs, E_{R} (Exhibit 20-10)1.0Heavy-vehicle adjustment factor, $f_{HV}=1/(1+P_{T}(E_{T}-1)+P_{R}(E_{R}-1))$ 1.000Two-way flow rate ¹ , v_{p} (pc/h)=V/ (PHF * f_{G} * f_{HV})1189 v_{p}^{-1} highest directional split proportion ² (pc/h)832Base percent time-spent-following, BPTSF(%)=100(1-e^{0.000679v_{p}})64.8Adj. for directional distribution and no-passing zone, f_{dhp} (%)(Exh. 20-12)0.0Percent time-spent-following, PTSF(%)=BPTSF+t dinp64.8Level of service, LOS (Exhibit 20-3 for Class II)CVolume to capacity ratio, $v/c=v_{p}/3.200$ 0.38Peak-hour vehicle-miles of travel, VMT ₆₀ (veh- m)=VT ₁₄ 314Peak 15-min total travel time, TT ₁₅ (veh-h)=VMT ₁₅ /ATS3.5Notes1.101.10It if $V_{P} = 3.200$ pc/h, terminate analysis-the LOS is F.3.5Notes1.101.000It if $V_{P} = -3.200$ pc/h, terminate analysis-the LOS is F.3.5	Field Measured speed, S _{FM} mi/hObserved volume, V _f veh/hFree-flow speed, FFS FFS=S _{FM} +0.00776(V _f / f _{HV})mi/h	Base free-flow speed, BFFS FM45.0 mi/hAdj. for lane width and shoulder width 3, f_{LS} (Exhibit 20-5)0.0 mi/hAdj. for access points, f_A (Exhibit 20-6)10.0 mi/hFree-flow speed, FFS (FSS=BFFS-f_LS-f_A)35.0 mi/h									
Average travel speed, ATS (m/h) ATS=FFS-0.00776v _p -f _{np} 25.7 Percent Time-Spent-Following 1.00 Grade Adjustment factor, f_G (Exhibit 20-8) 1.00 Passenger-car equivalents for trucks, E_T (Exhibit 20-10) 1.0 Passenger-car equivalents for RVs, E_R (Exhibit 20-10) 1.0 Passenger-car equivalents for RVs, E_R (Exhibit 20-10) 1.0 Heavy-vehicle adjustment factor, $f_{HV} = 1/$ ($1 + P_T(E_T^{-1}) + P_R(E_R^{-1})$) 1.000 Two-way flow rate ¹ , v_p (po/h)=V/ (PHF * f_G * f_{HV}) 1189 v_p * highest directional split proportion ² (po/h) 832 Base percent time-spent-following, BPTSF(%)=100(1-e ^{-0.000879v} p) 64.8 Adj. for directional distribution and no-passing zone, $f_{d/hp}$ (%)(Exh. 20-12) 0.0 Percent time-spent-following, PTSF(%)=BPTSF+f_{d/np} 64.8 Level of service, LOS (Exhibit 20-3 for Class I or 20-4 for Class II) C Volume to capacity ratio, $v/c=V_p$ '3,200 0.38 Peak 15-min veh-miles of travel, VMT ₁₅ (veh-m)= 0.25L ₁ (V/PHF) 89 Peak 15-min total travel time, TT ₁₅ (veh-m)= VMT ₁₅ /ATS 3.5 Notes 3.5 1. If Vp >= 3.200 pc/h, terminate analysis-the LOS is F. 3.5	Adj. for no-passing zones, f _{np} (<i>mi/h</i>) (Exhibit 20-11)	0.0									
Percent Time-Spent-Following Grade Adjustment factor, f_{G} (Exhibit 20-8) Passenger-car equivalents for trucks, E_{T} (Exhibit 20-10) Passenger-car equivalents for RVs, E_{R} (Exhibit 20-10) Heavy-vehicle adjustment factor, f_{HV} =1/ (1+ $P_{T}(E_{T}-1)+P_{R}(E_{R}-1)$) 1.00 Two-way flow rate ¹ , v_{p} (pc/h)=V/ (PHF * $f_{G} * f_{HV}$) Two-way flow rate ¹ , v_{p} (pc/h)=V/ (PHF * $f_{G} * f_{HV}$) 1189 v_{p} * highest directional split proportion ² (pc/h) Base percent time-spent-following, BPTSF(%)=100(1-e ^{-0.000879v} _P) 64.8 Adj. for directional distribution and no-passing zone, $f_{d/hp}$ (%)(Exh. 20-12) 0.0 Percent time-spent-following, PTSF(%)=BPTSF+f dinp Level of service and Other Performance Measures Level of service, LOS (Exhibit 20-3 for Class 1 or 20-4 for Class II) Volume to capacity ratio, v/c=V_p/3,200 Peak 15-min veh-miles of travel, VMT ₁₅ (veh-m)=0.25L ₁ (V/PHF) 89 Peak-hour vehicle-miles of travel, VMT ₁₆ (veh-m)=V*L ₁ 91 1. If Vp >= 3,200 pc/h, terminate analysis-the LOS is F. 1. If Vp >= 3,200 pc/h, terminate analysis-the LOS is F.	Average travel speed, ATS (<i>mi/h</i>) ATS=FFS-0.00776v _p -f _{np}	25.7									
Grade Adjustment factor, f_G (Exhibit 20-8) 1.00 Passenger-car equivalents for trucks, E_T (Exhibit 20-10) 1.0 Passenger-car equivalents for RVs, E_R (Exhibit 20-10) 1.0 Heavy-vehicle adjustment factor, $f_{HV}=1/(1+P_T(E_T-1)+P_R(E_R-1))$ 1.000 Two-way flow rate ¹ , v_p (pc/h)=V/ (PHF * f_G * f_{HV}) 1189 v_p * highest directional split proportion ² (pc/h) 832 Base percent time-spent-following, BPTSF(%)=100(1-e^{-0.000879v_p}) 64.8 Adj. for directional distribution and no-passing zone, f_{dhp} (%)(Exh. 20-12) 0.0 Percent time-spent-following, PTSF(%)=BPTSF+f_{dimp} 64.8 Level of Service, LOS (Exhibit 20-3 for Class I or 20-4 for Class II) C Volume to capacity ratio, v/c=V_p' 3,200 0.38 Peak 15-min total travel, VMT ₁₅ (weh- m)= 0.25L ₁ (V/PHF) 89 Peak-hour vehicle-miles of travel, VMT ₆₀ (weh- m)=V ⁺ L ₁ 314 Peak 15-min total travel time, TT ₁₅ (weh-h)= VMT ₁₅ /ATS 3.5 Notes 3.5	Percent Time-Spent-Following										
Passenger-car equivalents for trucks, E_T (Exhibit 20-10) 1.0 Passenger-car equivalents for RVs, E_R (Exhibit 20-10) 1.0 Heavy-vehicle adjustment factor, $f_{HV}=1/(1+P_T(E_T-1)+P_R(E_R-1))$ 1.000 Two-way flow rate ¹ , v_p (pc/h)=V/ (PHF * $f_G * f_{HV})$ 1189 v_p^- highest directional split proportion ² (pc/h) 832 Base percent time-spent-following, BPTSF(%)=100(1-e ^{-0.000679v} p) 64.8 Adj. for directional distribution and no-passing zone, $f_{d/hp}$ (%)(Exh. 20-12) 0.0 Percent time-spent-following, PTSF(%)=BPTSF+f_{d/np} 64.8 Level of Service and Other Performance Measures 0.0 Level of service, LOS (Exhibit 20-3 for Class I or 20-4 for Class II) C Volume to capacity ratio, v/c=V _p / 3,200 0.38 Peak-hour vehicle-miles of travel, VMT ₁₅ (veh- m)= 0.25L ₁ (V/PHF) 89 Peak-hour vehicle-miles of travel, VMT ₆₀ (veh- m)=V+L ₁ 314 Peak 15-min total travel time, TT ₁₅ (veh-h)= VMT ₁₅ /ATS 3.5 Notes 3.20	Grade Adjustment factor, f _G (Exhibit 20-8)	1.00									
Passenger-car equivalents for RVs, E _R (Exhibit 20-10) 1.0 Heavy-vehicle adjustment factor, f _{HV} =1/ (1+ P _T (E _T -1)+P _R (E _R -1)) 1.000 Two-way flow rate ¹ , v _p (pc/h)=V/ (PHF * f _G * f _{HV}) 1189 v _p * highest directional split proportion ² (pc/h) 832 Base percent time-spent-following, BPTSF(%)=100(1-e ^{-0.000879v} p) 64.8 Adj. for directional distribution and no-passing zone, f _{d/hp} (%)(Exh. 20-12) 0.0 Percent time-spent-following, PTSF(%)=BPTSF+f _{d/np} 64.8 Level of Service and Other Performance Measures 64.8 Level of Service, LOS (Exhibit 20-3 for Class I or 20-4 for Class II) C Volume to capacity ratio, v/c=V _p / 3,200 0.38 Peak-hour vehicle-miles of travel, VMT ₁₅ (veh- m)= 0.25L ₁ (V/PHF) 89 Peak 15-min total travel time, TT ₁₅ (veh-h)=VMT ₁₅ /ATS 3.5 Notes 3.14	Passenger-car equivalents for trucks, E _T (Exhibit 20-10)	1.0									
Heavy-vehicle adjustment factor, $f_{HV}=1/(1+P_T(E_T-1)+P_R(E_R-1))$ 1.000Two-way flow rate ¹ , v_p (pc/h)=V/ (PHF * $f_G * f_{HV})$ 1189 v_p * highest directional split proportion ² (pc/h)832Base percent time-spent-following, BPTSF(%)=100(1-e^{-0.000878v_p})64.8Adj. for directional distribution and no-passing zone, $f_{d/hp}$ (%)(Exh. 20-12)0.0Percent time-spent-following, PTSF(%)=BPTSF+f_drnp64.8Level of Service and Other Performance Measures64.8Level of Service, LOS (Exhibit 20-3 for Class I or 20-4 for Class II)CVolume to capacity ratio, $v/c=V_p/3,200$ 0.38Peak 15-min veh-miles of travel, VMT 15 (veh- m)= 0.25L_1(V/PHF)89Peak 15-min total travel time, TT ₁₅ (veh-h)=VMT ₁₅ /ATS3.5Notes3.141. If Vp >= 3,200 po/h, terminate analysis-the LOS is F.3.5	Passenger-car equivalents for RVs, E _R (Exhibit 20-10)	1.0									
Two-way flow rate1, vp (pc/h)=V/ (PHF * fG * fHV)1189 v_p * highest directional split proportion2 (pc/h)832Base percent time-spent-following, BPTSF(%)=100(1-e ^{-0.000879v} p)64.8Adj. for directional distribution and no-passing zone, f_d/hp(%)(Exh. 20-12)0.0Percent time-spent-following, PTSF(%)=BPTSF+f_d/np64.8Level of Service and Other Performance Measures64.8Level of Service, LOS (Exhibit 20-3 for Class I or 20-4 for Class II)CVolume to capacity ratio, v/c=Vp/ 3,2000.38Peak 15-min veh-miles of travel, VMT 15 (veh-m)= 0.25L1(V/PHF)89Peak 15-min total travel time, TT 15 (veh-m)=V*L1314Peak 15-min total travel time, TT 15 (veh-h)= VMT 15 K.3.5Notes1. If Vp >= 3,200 pc/h, terminate analysis-the LOS is F.	Heavy-vehicle adjustment factor, $f_{HV}=1/(1 + P_T(E_T-1)+P_R(E_R-1))$	1.000									
v_p * highest directional split proportion² (pc/h)832Base percent time-spent-following, BPTSF(%)=100(1-e ^{-0.000879v} p)64.8Adj. for directional distribution and no-passing zone, $f_{d/p}(%)$ (Exh. 20-12)0.0Percent time-spent-following, PTSF(%)=BPTSF+f_d/np64.8Level of Service and Other Performance Measures64.8Level of Service, LOS (Exhibit 20-3 for Class I or 20-4 for Class II)CVolume to capacity ratio, $v/c=V_p/3,200$ 0.38Peak 15-min veh-miles of travel, VMT ₁₅ (veh- m)= 0.25Lt(V/PHF)89Peak-hour vehicle-miles of travel, VMT ₆₀ (veh- m)=V*Lt314Peak 15-min total travel time, TT ₁₅ (veh-h)= VMT ₁₆ /ATS3.5Notes1. If Vp >= 3,200 pc/h, terminate analysis-the LOS is F.0.11 time to capacity ratio with Vp = 1000 fr.5.100 for Class I or 200 for Class I o	Two-way flow rate ¹ , $v_p (pc/h)=V/(PHF * f_G * f_HV)$	1189									
Base percent time-spent-following, BPTSF(%)=100(1-e ^{-0.000879v} p)64.8Adj. for directional distribution and no-passing zone, $f_{d/hp}$ (%)(Exh. 20-12)0.0Percent time-spent-following, PTSF(%)=BPTSF+f_{d/np}64.8Level of Service and Other Performance Measures64.8Level of Service, LOS (Exhibit 20-3 for Class I or 20-4 for Class II)CVolume to capacity ratio, $v/c=V_p$ /3,2000.38Peak 15-min veh-miles of travel, VMT ₁₅ (veh- mi)= 0.25Lt(V/PHF)89Peak-hour vehicle-miles of travel, VMT ₆₀ (veh- mi)=V*Lt314Peak 15-min total travel time, TT ₁₅ (veh-h)= VMT ₁₅ /ATS3.5Notes1. If Vp >= 3,200 pc/h, terminate analysis-the LOS is F.0.00.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	v_p * highest directional split proportion ² (pc/h)	832									
Adj. for directional distribution and no-passing zone, $f_{d/hp}(%)(Exh. 20-12)$ 0.0 Percent time-spent-following, PTSF(%)=BPTSF+f_{d/np} 64.8 Level of Service and Other Performance Measures 64.8 Level of service, LOS (Exhibit 20-3 for Class I or 20-4 for Class II) C Volume to capacity ratio, v/c=V _p / 3,200 0.38 Peak 15-min veh-miles of travel, VMT ₁₅ (veh- m)= 0.25L ₁ (V/PHF) 89 Peak-hour vehicle-miles of travel, VMT ₆₀ (veh- m)=V*L ₁ 314 Peak 15-min total travel time, TT ₁₅ (veh-h)= VMT ₁₅ /ATS 3.5 Notes 3.5	Base percent time-spent-following, BPTSF(%)=100(1-e ^{-0.000879v} p)	64.8									
Percent time-spent-following, PTSF(%)=BPTSF+f _{d/np} 64.8 Level of Service and Other Performance Measures C Level of service, LOS (Exhibit 20-3 for Class I or 20-4 for Class II) C Volume to capacity ratio, v/c=V _p / 3,200 0.38 Peak 15-min veh-miles of travel, VMT ₁₅ (veh- m)= 0.25L _t (V/PHF) 89 Peak-hour vehicle-miles of travel, VMT ₆₀ (veh- m)=V*L _t 314 Peak 15-min total travel time, TT ₁₅ (veh-h)= VMT ₁₅ /ATS 3.5 Notes 1. If Vp >= 3,200 pc/h, terminate analysis-the LOS is F.	Adj. for directional distribution and no-passing zone, $f_{d/hp}(\%)(Exh.\ 20\text{-}12)$	0.0									
Level of Service and Other Performance Measures Level of service, LOS (Exhibit 20-3 for Class I or 20-4 for Class II) C Volume to capacity ratio, $v/c=V_p/3,200$ 0.38 Peak 15-min veh-miles of travel, VMT ₁₅ (veh- mi)= 0.25L _t (V/PHF) 89 Peak-hour vehicle-miles of travel, VMT ₆₀ (veh- mi)=V*L _t 314 Peak 15-min total travel time, TT ₁₅ (veh-h)= VMT ₁₅ /ATS 3.5 Notes 1. If Vp >= 3,200 pc/h, terminate analysis-the LOS is F.	Percent time-spent-following, PTSF(%)=BPTSF+f d/np	64.8									
Level of service, LOS (Exhibit 20-3 for Class 1 or 20-4 for Class II) C Volume to capacity ratio, $v/c=V_p/3,200$ 0.38 Peak 15-min veh-miles of travel, VMT ₁₅ (veh- mi)= 0.25L _t (V/PHF) 89 Peak-hour vehicle-miles of travel, VMT ₆₀ (veh- mi)=V*L _t 314 Peak 15-min total travel time, TT ₁₅ (veh-h)= VMT ₁₅ /ATS 3.5 Notes 1. If Vp >= 3,200 pc/h, terminate analysis-the LOS is F. 9. If bit bit bit bit bit bit is to 100 up 5	Level of Service and Other Performance Measures										
Peak 15-min veh-miles of travel, VMT ₁₅ (veh- mi)= 0.25L _t (V/PHF) 89 Peak hour vehicle-miles of travel, VMT ₆₀ (veh- mi)=V*L _t 314 Peak 15-min total travel time, TT ₁₅ (veh-h)= VMT ₁₅ /ATS 3.5 Notes 1. If Vp >= 3,200 pc/h, terminate analysis-the LOS is F.	Level or service, LOS (Exhibit 20-3 for Class I or 20-4 for Class II)	0.38									
Peak-hour vehicle-miles of travel, VMT ₆₀ (veh- mi)=V*L _t 314 Peak 15-min total travel time, TT ₁₅ (veh-h)= VMT ₁₅ /ATS 3.5 Notes 1. If Vp >= 3,200 pc/h, terminate analysis-the LOS is F. 0. If bit performed pairs to the travel time of the top is formed pairs to the top	Peak 15-min veh-miles of travel VMT (veh- mi)= 0.25L (V/PHF)	89									
Peak 15-min total travel time, TT_{15} (veh-h)= VMT ₁₅ /ATS 3.5 Notes 1. If Vp >= 3,200 pc/h, terminate analysis-the LOS is F. 9. If bit beta travel total t	Peak-hour vehicle-miles of travel. VMT _{po} (veh- mi)=V*L.	314									
Notes 1. If $V_P >= 3,200 \text{ pc/h}$, terminate analysis-the LOS is F. 2. K bit obtained to be a statistical contrained to	Peak 15-min total travel time. TT _c (veh-h)= VMT _c /ATS	3.5									
1. If Vp >= 3,200 pc/h, terminate analysis-the LOS is F.	Notes										
	1. If $Vp >= 3,200 \text{ pc/h}$, terminate analysis-the LOS is F.										

General Information Site Information Analysis OFS Approxy Company OFS OFS OFS Approxy Company SP 249 Information Applet Tore Territorial Markabies Time First of A MP and APP and MP and Applet Determined Class I Information Input Determined Standale width II Input Determined Standale width III Input Determined Standale width IIII Input Determined Standale width IIII Input Determined Standale width IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	TWO-WAY TWO-LANE HIGHWAY SEGMENT WORKSHEET										
Analyst Approver Comparing Approver Derived Market Strame PeriodDFS Backbook Market Strame Period Market Strame Period 	General Information	Site Information									
$ \begin{array}{c} \label{eq:products} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	Analyst DHS Agency or Company GSP Date Performed 2/13/2009 Analysis MA Book	Highway SR 249 From/To I-40 / Kingston Springs Rd Jurisdiction Kingston Springs, TN Applying Year 2014									
Imput Data Class I highway Class I highway Class I highway Rolling Imput Data Impu Data	Project Description: SR 249 2014 AM	Analysis rear 2014									
$ \begin{array}{ c c c c } \hline \begin{tabular}{l c c } \hline \begin{tabular}{l c c c c } \hline \begin{tabular}{l c c c c c } \hline \begin{tabular}{l c c c c c c c c c c c c c c c c c c c$	Input Data										
Average Travel Speed 1.00 Grade adjustment factor, f ₁₀ (Exhibit 20-7) 1.00 Passenger-care equivalents for RVs, E ₁₁ (Exhibit 20-9) 1.1 Passenger-care equivalents for RVs, E ₁₁ (Exhibit 20-9) 1.0 Heavy-vehicle adjustment factor, f ₁₁₀ -11 (+ P ₁₁ (E ₁ -1)+P _R (E ₁₁ +1) 0.988 Two-way flow rate ¹ , v ₀ (pch) = V/ (PHF + f ₀ * f ₁₁₀) 1285 V ₂ * highest directional split proportion ² (pch) 900 Free-Flow Speed from Field Measurement Extinated Free-Flow Speed Field Measured speed, S _{FM} <i>Mi</i> h Adj, for raccess points, f ₁ (Exhibit 20-5) 0.0 mi/h Adj, for raccess points, f ₁ (Exhibit 20-5) 0.0 mi/h Free-flow speed, FFS FFS=S _{SM} +0.00776(V/ f _{1V1}) mi/h Adj, for raccess points, f ₁ (Exhibit 20-5) 0.0 mi/h Adj, for raccess points, f ₁ (Exhibit 20-5) 0.0 mi/h Adj, for raccess points, f ₁ (Exhibit 20-5) 0.0 mi/h Adj, for raccess points, f ₁₀ (Exhibit 20-5) 0.0 mi/h Adj, for raccess points, f ₁₀ (Exhibit 20-5) 0.0 mi/h Adj, for raccess points, f ₁₀ (Exhibit 20-5) 0.0 mi/h Adj, for racceses points, f ₁₀ (Exhibit 20-5) 0.0 mi/h	Shoulder width It Lane width It Lane width It Shoulder width It Segment length, Lt mi	Class I highway Class II highway Terrain Level Rolling Two-way hourly volume 1117 veh/h Directional split 70 / 30 Peak-hour factor, PHF 0.88 No-passing zone 0 % Trucks and Buses , P _T 12 % % Recreational vehicles, P _R 0% Access points/ mi 40									
Grade adjustment factor, f ₀ (Exhibit 20-7) 1.00 Passenger-car equivalents for trucks, E _T (Exhibit 20-9) 1.1 Passenger-car equivalents for trucks, E _T (Exhibit 20-9) 1.0 Heavy-vehicle adjustment factor, f _{turv} =1/ (1+ P _T (E _T)+P _D (E _R -1)) 0.988 Two-way flow rate ¹ , v _p (pch)-V/ (PHF + f ₀ + f _{turv}) 1285 v _p , 'highest directional split proportion ² (pch) 900 Free-Flow Speed from Field Measurement Estimated Free-Flow Speed Field Measured speed, S _{PM} mi/h Adj. for lane width and shoulder width ³ , f _{LS} (Exhibit 20-5) 0.0 mi/h Adj. for non-passing zones, f _{tur} (mi/n) (Exhibit 20-11) 0.0 Advarage travel speed, AFS (mi/h) (Exhibit 20-10) 0.0 Passenger-car equivalents for trucks, E _T (Exhibit 20-8) 1.00 Passenger-car equivalents for trucks, E _T (Exhibit 20-10) 1.0 Passenger-car equivalents for trucks, E _T (Exhibit 20-10) 1.0 Passenger-car equivalents for trucks, E _T (Exhibit 20-10) 1.0 Passenger-car equivalents for trucks, E _T (Exhibit 20-10) 1.0 Passenger-car equivalents for trucks, E _T (Exhibit 20-10) 1.0 Passenger-car equivalents for trucks, E _T (Exhibit 20-10) 1.0 <td>Average Travel Speed</td> <td></td>	Average Travel Speed										
Passenger-ar equivalents for trucks, E ₁ (Exhibit 20-9) 1.1 Passenger-ar equivalents for trucks, E ₁ (Exhibit 20-9) 1.0 Heavy-vehicle adjustment factor, f ₁₁ /v ⁻¹ /(1+ P ₁₁ C ₁ -1)+P ₁₁ (E ₁ -1)) 0.988 Two way flow rate ¹ , v ₁ (pch)=V/(PHF + f ₀ - f ₁₁ /w) 1285 y ₁ 'n ighest directional split proportion ² (pch) 900 Free-Flow Speed from Field Measurement Estimated Free-Flow Speed Field Measured speed, S _{FM} mi/n Adj. for nan-passing zones, f ₁₀₀ (mi/n) (Exhibit 20-11) 0.0 Adj. for nan-passing zones, f ₁₀₀ (mi/n) (Exhibit 20-10) 0.0 Average travel speed, FFS (FSS=SFM+0.00776(V/ f _{11V}) mi/n Passenger-car equivalents for trucks, E ₁ (Exhibit 20-8) 1.00 Adj. for nan-passing zones, f ₁₀₀ (mi/n) (Exhibit 20-10) 0.0 Average travel speed, AFS (FSS-SFM+Call 20-8) 1.00 Passenger-car equivalents for trucks, E ₁ (Exhibit 20-10) 1.0 Passenger-car equivalents for trucks, E ₁ (Exhibit 20-10) 1.0 Passenger-car equivalents for trucks, E ₁ (Exhibit 20-10) 1.0 Passenger-car equivalents for trucks, E ₁ (Exhibit 20-10) 1.0 Passenger-car equivalentor f _{11/1} /1+ P ₁₂ (E ₁₁ /1) 1.000 <td>Grade adjustment factor, f_G (Exhibit 20-7)</td> <td>1.00</td>	Grade adjustment factor, f _G (Exhibit 20-7)	1.00									
Passenger-car equivalents for RVs. E_{R} (Exhibit 20-9) 1.0 Heavy-vehicle adjustment factor, f_{HV} -1(1+ $P_{T}(E_{T}-1)+P_{R}(E_{R}-1)$) 0.988 Two-way flow rate ¹ , v_{D} (bch)=V/ (PHF * $f_{0}^{-+} f_{WV})$ 1285 v_{D}^{-+} highest directional split proportion ² (pch) 900 Free-Flow Speed from Field Measurement Estimated Free-Flow Speed Field Masured speed, SFM 0.0 Observed volume, V_{1} wh?h Adj. for lane width and shoulder width ³ , I_{LS} (Exhibit 20-5) 0.0 Adj. for access points, f_{A} (Exhibit 20-5) 0.0 Adj. for access points, f_{A} (Exhibit 20-6) 10.0 Adj. for access points, f_{A} (Exhibit 20-11) 0.0 Average travel speed, ATS (mith) ATS=FFS-0.00776/ $v_{D}^{-1}f_{PD}$ 25.0 Percent Time-Spent-Following 1.00 Grade Adjustment factor, $I_{AV}=T(1+P, R(E_{T}-1)+P, R(E_{T}-1))$ 1.00 Navey whick adjustment factor, $I_{AV}=T(1+P, R(E_{T}-1)+P, R(E_{T}-1))$ 1.00 Passenger-car equivalents for RVs, E_{R} (Exhibit 20-10) 1.0 Passenger-car equivalents for RVs, E_{R} (Exhibit 20-10) 1.00 We way flow rate ¹ , v_{D} (0/P)=V (PHF * $f_{0} * f_{HV})$ 1.000 wavay tiltow rate ¹ , v_{D} (Dio)=V (Dio)=V </td <td>Passenger-car equivalents for trucks, E_T (Exhibit 20-9)</td> <td>1.1</td>	Passenger-car equivalents for trucks, E _T (Exhibit 20-9)	1.1									
Heavy-vehicle adjustment factor, $f_{HV}=1/(1+P_{T}(E_{T}-1)+P_{T}(E_{T}-1))$ 0.988 Two-way flow rate ¹ , v_{0} (pch)=V/ (PHF * $f_{0} * f_{HV})$ 1285 v_{p} 'highest directional split proportion ² (pch) 900 Free-Flow Speed from Field Measurement Estimated Free-Flow Speed Field Measured speed, S_{FM} 45.0 mi/h Observed volume, V_{1} wh/h Free-flow speed, FFS FFS-S _{FM} +0.00776(V/ f_{HV}) mi/h Adj. for no-passing zones, f_{np} (m/h) (Exhibit 20-11) 0.0 Adj. for no-passing zones, f_{np} (m/h) (Takhbit 20-10) 0.0 Average travel speed, SFS (mSh) = 0.00776(V ₂ f_{hD} 25.0 Percent Time-Spent-Following	Passenger-car equivalents for RVs, E _R (Exhibit 20-9)	1.0									
Two-way flow rate 1 , v_p (pch)=V/ (PHF * 1 $^1_{G^+}$ $^1_{HV}$)1285 v_p * highest directional split proportion2 (pch)900Free-Flow Speed from Field MeasurementBase free-flow speed, BFS $_{FM}$ Field Measured speed, SFMm/nAdj. for lane width and shoulder widh3, $^1_{LS}$ (Exhibit 20-5)0.0 m/nAdj. for non-passing zones, I_{np} (m/n) (Exhibit 20-11)0.0Adj. for non-passing zones, I_{np} (m/n) (Exhibit 20-11)0.0Adj. for non-passing zones, I_{np} (m/n) (Exhibit 20-11)0.0Average travel speed, AFS (S (mi/n)) ATS=FFS-0.00776v $_{P}I_{np}$ 25.0Percent Time-Spent-Following1.00Grade Adjustment factor, I_{q0} (Exhibit 20-10)1.0Passenger-car equivalents for trucks, E_T (Exhibit 20-10)1.0Passenger-car equivalents for trucks, E_T (Exhibit 20-10)1.0Ino way flow rate 1 , v_p (pch)=V/ (PHF * $I_0^{-1} + I_{PR}(E_T^{-1})$)1.000Two-way flow rate 1 , v_p (pch)=V/ (PHF * $I_0^{-1} + I_{PR}(E_T^{-1})$)1.000Two-way flow rate 1 , v_p (pch)=V/ (PHF * $I_0^{-1} + I_{PR}(E_T^{-1})$)0.0Passenger-car equivalents for trucks, E_T (Exhibit 20-10)67.2Adj. for directional split proportion2 (pch)0.0Procent time-spent-following, DTSF(%)=DD(1 e -0.000879v_p)67.2Adj. for directional split proportion2 (pch)0.0Percent time-spent-following, DTSF(%)=200 C+ for Class II)CVolume to capacity ratio, vice V_f 3.2000.40Peak 15-min total travel, WMT $_{15}$ (who - m) = 0.25L_V(PHF)95Peak-hour vehidle-	Heavy-vehicle adjustment factor, $f_{HV}=1/(1+P_T(E_T-1)+P_R(E_R-1))$	0.988									
	Two-way flow rate ¹ , $v_p (pc/h)=V/(PHF * f_G * f_HV)$	1285									
Free-Flow Speed from Field MeasurementEstimated Free-Flow SpeedField Measured speed, SFMmi/hObserved volume, V1veh/hFree-flow speed, FFS FFS=SFN+0.00776(V/ f1V)mi/hAdj. for lane width and shoulder width3, f1_G (Exhibit 20-5)0.0 mi/hAdj. for no-passing zones, inp (mi/h) (Exhibit 20-11)0.0Adj. for no-passing zones, inp (mi/h) (Exhibit 20-11)0.0Average travel speed, ATS (mi/h) ATS=FFS-0.00776vp_rinp25.0Percent Time-Spent-Following1.00Grade Adjustment factor, f1G (Exhibit 20-10)1.0Passenger-car equivalents for trucks, E1G (Exhibit 20-10)1.0Passenger-car equivalents for KVs, E1G (Exhibit 20-10)1.0Heavy-vehicle adjustment factor, f1V, e1G (Exhibit 20-10)1.0Passenger-car equivalents for KVs, E1G (Exhibit 20-10)1.0Heavy-vehicle adjustment factor, f1V, e1G (E1	v _p * highest directional split proportion ² (pc/h)	900									
$ \begin{array}{c} \mbox{Field Measured speed, F_{FM} (b) (b) (b) (b) (b) (b) (b) (b) (b) (b)$	Free-Flow Speed from Field Measurement	Estimated Free-Flow Speed									
Adj. for no-passing zones, f_{np} (<i>mi/h</i>) (Exhibit 20-11)0.0Average travel speed, ATS (<i>mi/h</i>) ATS=FFS-0.00776v _p f _{np} 25.0 <i>Percent Time-Spent-Following</i> 1.00Grade Adjustment factor, f _q (Exhibit 20-8)1.00Passenger-car equivalents for trucks, E_{T} (Exhibit 20-10)1.0Passenger-car equivalents for RVS, E_{R} (Exhibit 20-10)1.0Heavy-vehicle adjustment factor, $f_{HV}=1/(1+P_{T}(E_{T}-1)+P_{R}(E_{R}-1))$ 1.000Two-way flow rate ¹ , v _p (pc/h)=V/ (PHF * f _G * f _{HV})1269 v_{p}^{-1} highest directional split proportion ² (pc/h)888Base percent time-spent-following, BPTSF(%)=100(1-e ^{-0.000679v} p)67.2Adj. for directional distribution and no-passing zone, $f_{dhp}(%)$ (Exh. 20-12)0.0Percent time-spent-following, PTSF(%)=BPTSF+f_{dinp}67.2Level of Service and Other Performance Measures67.2Level of Service, LOS (Exhibit 20-3 for Class I or 20-4 for Class II)CVolume to capacity ratio, v/c=V _p /3.2000.40Peak-hour vehicle-miles of travel, VMT ₆₀ (veh· m)=0.25L ₁ (V/PHF)95Peak-hour vehicle-miles of travel, VMT ₆₀ (veh· m)=V-L ₁ 335Peak 15-min total travel time, TT ₁₅ (veh· h)=VMT ₁₅ /ATS3.8Notes1.11 Vp >= 3.200 pc/h, terminate analysis-the LOS is F.	Field Measured speed, S_{FM} mi/hObserved volume, V_f veh/hFree-flow speed, FFS FFS=S_{FM}+0.00776(V_f / f_{HV})mi/h	Base free-flow speed, BFFS FM45.0 mi/hAdj. for lane width and shoulder width3, f_{LS} (Exhibit 20-5)0.0 mi/hAdj. for access points, f_A (Exhibit 20-6)10.0 mi/hFree-flow speed, FFS (FSS=BFFS-f_LS-f_A)35.0 mi/h									
Average travel speed, ATS (mi/h) ATS=FFS-0.00776vp-fnp25.0Percent Time-Spent-Following1.00Grade Adjustment factor, f_G (Exhibit 20-8)1.00Passenger-car equivalents for trucks, E_T (Exhibit 20-10)1.0Passenger-car equivalents for trucks, E_T (Exhibit 20-10)1.0Passenger-car equivalents for RVs, E_R (Exhibit 20-10)1.0Heavy-vehicle adjustment factor, $f_{HV} = 1/ (1 + P_T(E_T-1) + P_R(E_R-1))$ 1.000Two-way flow rate ¹ , v_p (pc/h)=V/ (PHF * f_G * f_{HV})1269 v_p * highest directional split proportion ² (pc/h)888Base percent time-spent-following, BPTSF(%)=100(1-e ^{-0.000879v} p)67.2Adj. for directional distribution and no-passing zone, f_{drip} (%)(Exh. 20-12)0.0Percent time-spent-following, PTSF(%)=BPTSF+f_drip67.2Level of service, LOS (Exhibit 20-3 for Class I or 20-4 for Class II)CVolume to capacity ratio, $v(c=V_p)^2$, 32000.40Peak hour vehicle-miles of travel, VMT ₁₅ (veh- m)= 0.25L_{1}(V/PHF)95Peak-hour vehicle-miles of travel, VMT ₁₅ (ATS3.8Notes1.11 Yp >= 3.200 pc/h, terminate analysis-the LOS is F.1.11 Yp >= 3.200 pc/h, terminate analysis-the LOS is F.3.00 pc/h, terminate analysis-the LOS is F.	Adj. for no-passing zones, f _{np} (<i>mi/h</i>) (Exhibit 20-11)	0.0									
Percent Time-Spent-Following Grade Adjustment factor, f_G (Exhibit 20-8) 1.00 Passenger-car equivalents for trucks, E_T (Exhibit 20-10) 1.0 Passenger-car equivalents for RVs, E_R (Exhibit 20-10) 1.0 Passenger-car equivalents for RVs, E_R (Exhibit 20-10) 1.0 Heavy-vehicle adjustment factor, $f_{HV}=1/(1+P_T(E_T-1)+P_R(E_R^{-1}))$ 1.000 Two-way flow rate ¹ , v_p (pc/h)=V/(PHF * $f_G * f_{HV})$ 1269 v_p^{+} highest directional split proportion ² (pc/h) 888 Base percent time-spent-following, BPTSF(%)=100(1-e^{-0.000879v}p) 67.2 Adj. for directional distribution and no-passing zone, $f_{drhp}(%)$ (Exh. 20-12) 0.0 Percent time-spent-following, PTSF(%)=BPTSF+f dinp 67.2 Level of service, LOS (Exhibit 20-3 for Class 1 or 20-4 for Class II) C Volume to capacity ratio, $v/c=V_p/3.200$ 0.40 Peak 15-min veh-miles of travel, VMT ₁₆ (veh- m)=V^*L_1 335 Peak-hour vehicle-miles of travel, VMT ₁₆ (veh- m)=V^*L_1 335 Peak 15-min total travel time, TT ₁₅ (veh-h)= VMT ₁₅ /ATS 3.8 Notes 1. If $V_P >= 3.200$ pc/h, terminate analysis-the LOS is F. 1. If $V_P >= 3.200$ pc/h, terminate analysis-the LOS is F.	Average travel speed, ATS (<i>mi/h</i>) ATS=FFS-0.00776v _n -f _{nn}	25.0									
Grade Adjustment factor, f_G (Exhibit 20-8) 1.00 Passenger-car equivalents for trucks, E_T (Exhibit 20-10) 1.0 Passenger-car equivalents for RVs, E_R (Exhibit 20-10) 1.0 Heavy-vehicle adjustment factor, $f_{HV}=1/(1+P_T(E_T-1)+P_R(E_R-1))$ 1.000 Two-way flow rate ¹ , v_p (pc/h)=V/ (PHF * f_G * f_{HV}) 1269 v_p * highest directional split proportion ² (pc/h) 888 Base percent time-spent-following, BPTSF(%)=100(1-e ^{-0.000879v} p) 67.2 Adj. for directional distribution and no-passing zone, f_{dhp} (%)(Exh. 20-12) 0.0 Percent time-spent-following, PTSF(%)=BPTSF+f_{d/np} 67.2 Level of Service and Other Performance Measures 1 Level of Service, LOS (Exhibit 20-3 for Class 1 or 20-4 for Class II) C Volume to capacity ratio, v/c=V _p / 3.200 0.40 Peak hour vehicle-miles of travel, VMT ₁₅ (veh- m)= 0.25L ₁ (V/PHF) 95 Peak-hour vehicle-miles of travel, VMT ₆₀ (veh- m)=V ⁺ L ₁ 335 Peak 15-min total travel time, TT ₁₅ (veh-h)= VMT ₁₅ /ATS 3.8 Notes 1. If Vp >= 3.200 pc/h, terminate analysis-the LOS is F.	Percent Time-Spent-Following										
Passenger-car equivalents for trucks, E_T (Exhibit 20-10) 1.0 Passenger-car equivalents for RVs, E_R (Exhibit 20-10) 1.0 Heavy-vehicle adjustment factor, $f_{HV}=1/(1+P_T(E_T-1)+P_R(E_R-1))$ 1.000 Two-way flow rate ¹ , v_p (pc/h)=V/ (PHF * $f_G * f_{HV})$ 1269 v_p^- highest directional split proportion ² (pc/h) 888 Base percent time-spent-following, BPTSF(%)=100(1-e^{-0.000879v}p) 67.2 Adj. for directional distribution and no-passing zone, $f_{d/hp}(%)$ (Exh. 20-12) 0.0 Percent time-spent-following, PTSF(%)=BPTSF+f_{d/np} 67.2 Level of Service, LOS (Exhibit 20-3 for Class I or 20-4 for Class II) C Volume to capacity ratio, v/c=V_p' 3,200 0.40 Peak-hour vehicle-miles of travel, VMT ₁₅ (veh- m)= 0.25L ₁ (V/PHF) 95 Peak-hour vehicle-miles of travel, VMT ₆₀ (veh- m)=V*L ₁ 335 Peak 15-min total travel time, TT ₁₅ (veh-h)= VMT ₁₅ /ATS 3.8 Notes 1.1 M Vp >= 3,200 pc/h, terminate analysis-the LOS is F.	Grade Adjustment factor, f _G (Exhibit 20-8)	1.00									
Passenger-car equivalents for RVs, E _R (Exhibit 20-10) 1.0 Heavy-vehicle adjustment factor, $f_{HV}=1/(1+P_T(E_T-1)+P_R(E_R-1))$ 1.000 Two-way flow rate ¹ , v_p (pc/h)=V/ (PHF * $f_G * f_{HV})$ 1269 v_p^- highest directional split proportion ² (pc/h) 888 Base percent time-spent-following, BPTSF(%)=100(1-e ^{-0.000879v} p) 67.2 Adj. for directional distribution and no-passing zone, $f_{d/hp}$ (%)(Exh. 20-12) 0.0 Percent time-spent-following, PTSF(%)=BPTSF+f_{d/np} 67.2 Level of Service and Other Performance Measures 0.0 Level of service, LOS (Exhibit 20-3 for Class I or 20-4 for Class II) C Volume to capacity ratio, v/c=V _p /3,200 0.40 Peak-hour vehicle-miles of travel, VMT ₁₅ (veh- m)= 0.25L ₁ (V/PHF) 95 Peak-hour vehicle-miles of travel, VMT ₆₀ (veh- m)=V ⁺ L ₁ 335 Peak 15-min total travel time, TT ₁₅ (veh-h)= VMT ₁₅ /ATS 3.8 Notes 1. If Vp >= 3,200 pc/h, terminate analysis-the LOS is F.	Passenger-car equivalents for trucks, E _T (Exhibit 20-10)	1.0									
Heavy-vehicle adjustment factor, $f_{HV}=1/(1+P_T(E_T-1)+P_R(E_R-1))$ 1.000Two-way flow rate ¹ , v_p (pc/h)=V/ (PHF * $f_G * f_{HV})$ 1269 v_p * highest directional split proportion ² (pc/h)888Base percent time-spent-following, BPTSF(%)=100(1-e^{-0.000879v}p)67.2Adj. for directional distribution and no-passing zone, $f_{d/hp}$ (%)(Exh. 20-12)0.0Percent time-spent-following, PTSF(%)=BPTSF+f_{d/np}67.2Level of Service and Other Performance Measures67.2Level of Service, LOS (Exhibit 20-3 for Class I or 20-4 for Class II)CVolume to capacity ratio, $v/c=V_p/3,200$ 0.40Peak 15-min veh-miles of travel, VMT ₁₅ (veh- mi)= 0.25L_1(V/PHF)95Peak 15-min total travel time, TT ₁₅ (veh-h)=VMT ₁₅ /ATS3.8Notes3.801. If Vp >= 3,200 pc/h, terminate analysis-the LOS is F.	Passenger-car equivalents for RVs, E _R (Exhibit 20-10)	1.0									
Two-way flow rate1, vp (pc/h)=V/ (PHF * $f_G * f_{HV}$)1269vp * highest directional split proportion2 (pc/h)888Base percent time-spent-following, BPTSF(%)=100(1-e ^{-0.000879v} p)67.2Adj. for directional distribution and no-passing zone, $f_{d/hp}$ (%)(Exh. 20-12)0.0Percent time-spent-following, PTSF(%)=BPTSF+f d/np67.2Level of Service and Other Performance Measures67.2Level of Service, LOS (Exhibit 20-3 for Class I or 20-4 for Class II)CVolume to capacity ratio, v/c=Vp/ 3,2000.40Peak 15-min veh-miles of travel, VMT 15 (veh-m)= 0.25L1(V/PHF)95Peak 15-min total travel time, TT 15(veh-m)=V*L1335Peak 15-min total travel time, TT 15(veh-h)= VMT 15/ATS3.8Notes1. If Vp >= 3,200 pc/h, terminate analysis-the LOS is F.	Heavy-vehicle adjustment factor, f _{HV} =1/ (1+ P _T (E _T -1)+P _R (E _R -1))	1.000									
v_p * highest directional split proportion² (pc/h)888Base percent time-spent-following, BPTSF(%)=100(1-e ^{-0.000879v} p)67.2Adj. for directional distribution and no-passing zone, $f_{d/hp}(%)(Exh. 20-12)$ 0.0Percent time-spent-following, PTSF(%)=BPTSF+f_d/np67.2Level of Service and Other Performance Measures67.2Level of Service, LOS (Exhibit 20-3 for Class I or 20-4 for Class II)CVolume to capacity ratio, $v/c=V_p/3,200$ 0.40Peak 15-min veh-miles of travel, VMT ₁₅ (veh- m)= 0.25Lt(V/PHF)95Peak-hour vehicle-miles of travel, VMT ₁₆ (veh- m)=V*Lt335Peak 15-min total travel time, TT ₁₅ (veh-h)= VMT ₁₆ /ATS3.8Notes1. If Vp >= 3,200 pc/h, terminate analysis-the LOS is F.	Two-way flow rate ¹ , v_p (pc/h)=V/ (PHF * $f_G * f_{HV}$)	1269									
Base percent time-spent-following, BPTSF(%)=100(1-e ^{-0.000879v} p) 67.2 Adj. for directional distribution and no-passing zone, $f_{d/hp}(%)(Exh. 20-12)$ 0.0 Percent time-spent-following, PTSF(%)=BPTSF+f_{d/np} 67.2 Level of Service and Other Performance Measures 67.2 Level of Service, LOS (Exhibit 20-3 for Class I or 20-4 for Class II) C Volume to capacity ratio, $v/c=V_p/3,200$ 0.40 Peak 15-min veh-miles of travel, VMT ₁₅ (veh- mi)= $0.25L_t(V/PHF)$ 95 Peak-hour vehicle-miles of travel, VMT ₆₀ (veh- mi)=V*L _t 335 Peak 15-min total travel time, TT ₁₅ (veh-h)= VMT ₁₅ /ATS 3.8 Notes $1.$ If Vp >= $3,200 \text{ pc/h}$, terminate analysis-the LOS is F.	v _p * highest directional split proportion ² (pc/h)	888									
Adj. for directional distribution and no-passing zone, $f_{d/hp}(%)(Exh. 20-12)$ 0.0Percent time-spent-following, PTSF(%)=BPTSF+f_{d/np}67.2Level of Service and Other Performance MeasuresCLevel of service, LOS (Exhibit 20-3 for Class I or 20-4 for Class II)CVolume to capacity ratio, $v/c=V_p/3,200$ 0.40Peak 15-min veh-miles of travel, VMT ₁₅ (veh- m)= 0.25L _t (V/PHF)95Peak-hour vehicle-miles of travel, VMT ₆₀ (veh- m)=V*L _t 335Peak 15-min total travel time, TT ₁₅ (veh-h)= VMT ₁₅ /ATS3.8NotesI. If Vp >= 3,200 pc/h, terminate analysis-the LOS is F.	Base percent time-spent-following, BPTSF(%)=100(1-e ^{-0.000879v} p)	67.2									
Percent time-spent-following, PTSF(%)=BPTSF+f _{d/np} 67.2 Level of Service and Other Performance Measures Level of service, LOS (Exhibit 20-3 for Class I or 20-4 for Class II) C Volume to capacity ratio, v/c=V _p / 3,200 0.40 Peak 15-min veh-miles of travel, VMT ₁₅ (veh- m)= $0.25L_t$ (V/PHF) 95 Peak 15-min total travel time, TT ₁₅ (veh-h)= VMT ₁₅ /ATS 3.8 Notes 1. If Vp >= 3,200 pc/h, terminate analysis-the LOS is F.	Adj. for directional distribution and no-passing zone, $\rm f_{d/hp}(\%)(Exh.$ 20-12)	0.0									
Level of Service and Other Performance Measures Level of service, LOS (Exhibit 20-3 for Class I or 20-4 for Class II) C Volume to capacity ratio, $v/c=V_p/3,200$ 0.40 Peak 15-min veh-miles of travel, VMT ₁₅ (veh- mi)= 0.25Lt(V/PHF) 95 Peak-hour vehicle-miles of travel, VMT ₆₀ (veh- mi)=V*Lt 335 Peak 15-min total travel time, TT_{15} (veh-h)= VMT_{15}/ATS 3.8 Notes 1. If Vp >= 3,200 pc/h, terminate analysis-the LOS is F.	Percent time-spent-following, PTSF(%)=BPTSF+f d/np	67.2									
Level of service, LOS (Exhibit 20-3 for Class 1 or 20-4 for Class II) C Volume to capacity ratio, $v/c=V_p/3,200$ 0.40 Peak 15-min veh-miles of travel, VMT ₁₅ (veh- mi)= $0.25L_t(V/PHF)$ 95 Peak-hour vehicle-miles of travel, VMT ₆₀ (veh- mi)=V*L _t 335 Peak 15-min total travel time, TT ₁₅ (veh-h)= VMT ₁₅ /ATS 3.8 Notes 1. If Vp >= 3,200 pc/h, terminate analysis-the LOS is F.	Level of Service and Other Performance Measures										
Peak 15-min veh-miles of travel, VMT ₁₅ (veh- m)= 0.25L _t (V/PHF) 95 Peak 15-min total travel time, TT ₁₅ (veh- m)=V*L _t 335 Peak 15-min total travel time, TT ₁₅ (veh- m)= VMT ₁₅ /ATS 3.8 Notes 1. If Vp >= 3,200 pc/h, terminate analysis-the LOS is F.	Level of service, LOS (Exhibit 20-3 for Class I or 20-4 for Class II)	C 0 40									
Peak-hour vehicle-miles of travel, VMT ₆₀ (veh- m)=V*L _t 335 Peak 15-min total travel time, TT ₁₅ (veh-h)= VMT ₁₅ /ATS 3.8 Notes 1. If Vp >= 3,200 pc/h, terminate analysis-the LOS is F.	Peak 15-min veh-miles of travel VMT = (veh- mh = 0.251 (V/PHE)	95									
Peak 15-min total travel time, TT_{15} (veh-h)= VMT ₁₅ /ATS 3.8 Notes 1. If Vp >= 3,200 pc/h, terminate analysis-the LOS is F.	Peak-hour vehicle-miles of travel VMT ₋₁ (veh $-m$)=V*I	335									
Notes 1. If Vp >= 3,200 pc/h, terminate analysis-the LOS is F.	Peak 15-min total travel time $TT_{-}(veh-h) = VMT_{-}/\Delta TS$	3.8									
1. If $V_P >= 3,200 \text{ pc/h}$, terminate analysis-the LOS is F.											
	1. If Vp >= 3,200 pc/h, terminate analysis-the LOS is F.										

General Information Site Information Araiyat DFS Agency of Corpusity SF 249 (40) / Kinets Single Fill Agency of Corpusity SF 249 (40) / Kinets Single Fill Agency of Corpusity SF 249 (40) / Kinets Single Fill Mayets The Markation Mayets The Markation Mayets Single Fill Mayets Single Fill Markation The Markation Markatin The Markation <t< th=""><th colspan="11">TWO-WAY TWO-LANE HIGHWAY SEGMENT WORKSHEET</th></t<>	TWO-WAY TWO-LANE HIGHWAY SEGMENT WORKSHEET										
AnalysisDHS Approved Comparing PAP DeepSP 240 PAP DeepSP 240 PAP DeepAnalysisThere Ferrid PAP DeepPAP DeepAnalysisSP 240 PAP DeepPAP DeepPapel Description Papel Description Segment length, L Segment length, L Segment length, L Segment length, L Segment length, L 	General Information	Site Information									
Project Description: SR 249 – 2014 FM frour Data input Data inp	Analyst DHS Agency or Company GSP Date Performed 2/13/2009 Analysis Time Period PM Peak	Highway SR 249 From/To I-40 / Kingston Springs Rd Jurisdiction Kingston Springs, TN Analysis Year 2014									
Imput Date Class It highway	Project Description: SR 249 2014 PM										
$ \begin{array}{c c c c c c c } \hline \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Input Data										
Average Travel Speed 1.00 Grade adjustment factor, f_{42} (Exhibit 20-9) 1.1 Passenger.car equivalents for Trucks, E_{7} (Exhibit 20-9) 1.0 Heavy-wehicle adjustment factor, f_{4V} =1/(1+ $P_{7}(E_{7}^{-1})_{F_{10}(V)}$ 0.9886 Two way flow rate ¹ , v_{p} (pc/h)=V/ (PHF ' f_{0}^{-1}, f_{4V}) 1.374 v_{p}^{-1} highest directional sell proportion ² (pc/h) 962 Free-Flow Speed from Field Measurement Estimated Free-Flow Speed Field Measured speed, S_{FM} 45.0 mi/h Adj, for racesse points, f_{15} (Exhibit 20-5) 0.0 mi/h Free-flow speed, FFS = SS=S_{FM} = 0.00776 (V_f^{-1} y_V) mi/h Adj, for racesse points, f_{16} (Exhibit 20-5) 0.0 mi/h Adj, for no-passing zones, f_{160} (mi/h) (Exhibit 20-11) 0.0 Average travel speed, ATS (mi/h) ATS=FFS-0.00776 (V_f^{-1} y_V) mi/h Precent Time-Spent-Following 1.00 Passenger-car equivalents for Trucks, Eq. (Exhibit 20-10) 1.0	Segment length, L ₁ mi	Class I highway Class II highway Terrain ▲ Level ▲ Rolling Two-way hourly volume 1195 veh/h Directional split 70 / 30 Peak-hour factor, PHF 0.88 No-passing zone 0 % Trucks and Buses , P _T 12 % % Recreational vehicles, P _R 0% Access points/ mi 40									
Grade adjustment factor, f.g. (Exhibit 20-7) 1.00 Passenger-car equivalents for trucks, E.g. (Exhibit 20-9) 1.1 Passenger-car equivalents for trucks, E.g. (Exhibit 20-9) 1.0 Heavy-vehicle adjustment factor, f. _{My} =1/ (1+ P. _T (E,r1)+P. _R (E,r1)) 0.988 Two-way flow rate ¹ , v. _p (pch)-U/ (PHF *f. ₀ * f. _{MV}) 1374 Y _n * highest directional split proportion ⁶ (pch) 962 Free-Flow Speed from Field Measurement Estimated Free-Flow Speed Field Measured speed, S _{PM} mi/h Adj. for no-passing zones, f. _{MP} (m/h) (Exhibit 20-11) 0.0 Adj. for no-passing zones, f. _{MP} (m/h) (Exhibit 20-10) 0.0 Arcade Adjustment factor, f. _{MV} (Exhibit 20-9) 1.00 Passenger-car equivalents for trucks, E. _T (Exhibit 20-10) 0.0 Average travel speed, AFS (FSS-BFFS-L _{LS} / A) 35.0 mi/h Adj. for no-passing zones, f. _{LR} (Exhibit 20-9) 1.00 Passenger-car equivalents for trucks, E. _T (Exhibit 20-10) 1.0 Passenger-car equivalents for trucks, E. _T (Exhibit 20-10) 1.0 Passenger-car equivalents for trucks, E. _T (Exhibit 20-10) 1.0 Passenger-car equivalents for trucks, E. _T (Exhibit 20-10) 1.0	Average Travel Speed	I									
Passenger-car equivalents for trucks, E ₁ (Exhibit 20-9) 1.1 Passenger-car equivalents for trucks, E ₁ (Exhibit 20-9) 1.0 Heavy-vehicle adjustment factor, f ₁₀ ×1 (1+ P ₁₁ (E ₁ -1)+P ₁₁ (E ₁ -1)) 0.988 Two way flow rate ¹ , v ₀ (och)=V/(PHF * f ₀ * f ₁₀ /N) 1374 v ₀ 'n lighest directional split proportion ² (och) 962 Free-Flow Speed from Field Measurement Estimated Free-Flow Speed Field Measured speed, S _{FM} m/h Adj. for lane width and shoulder width ³ , f ₁₅ (Exhibit 20-5) 0.0 m/h Adj. for non-passing zones, f ₁₀₀ (m/h) (Exhibit 20-11) 0.0 Average travel speed, FFS (FSS=S _{FM} +0.00776(V/ f _{1VV}) m/h Adj. for non-passing zones, f ₁₀₀ (m/h) (Exhibit 20-11) 0.0 Average travel speed, AFS (m/h) ATS=FFS-0.00776v _p -f ₁₀₀ 24.3 Percent Time-Spent Following 1.00 Grade Adjustment factor, f ₁ (Exhibit 20-10) 1.0 Passenger-car equivalents for trucks, E ₁ (Exhibit 20-10) 1.0 Passenger-car equivalents for trucks, E ₁ (Exhibit 20-10) 1.0 Passenger-car equivalents for trucks, E ₁ (Exhibit 20-10) 1.0 Passenger-car equivalents for trucks, E ₁ (Exhibit 20-6) 651	Grade adjustment factor, f _G (Exhibit 20-7)	1.00									
Passenger-car equivalents for FVs. E _R (Exhibit 20-9) 1.0 Heavy-vehicle adjustment factor, f _{th} v ⁻¹ (1 + $P_{T}(E_{T}-1)+P_{R}(E_{R}-1)$) 0.988 Two-way flow rate ¹ , v _p (pch)=V/ (PHF * f ₀ * f _{th} v) 1374 v_{p}^{-1} highest directional split proportion ² (pch) 962 Free-Flow Speed from Field Measurement Estimated Free-Flow Speed Field Measured speed, S _{FM} 45.0 m/h Adj. for lane width and shoulder width ³ , f _{LS} (Exhibit 20-5) 0.0 m/h Adj. for access points, f _A (Exhibit 20-5) 0.0 m/h Adj. for access points, f _A (Exhibit 20-5) 0.0 m/h Adj. for access points, f _A (Exhibit 20-5) 0.0 m/h Adj. for access points, f _A (Exhibit 20-5) 0.0 m/h Adj. for access points, f _A (Exhibit 20-5) 0.0 m/h Adj. for access points, f _A (Exhibit 20-5) 0.0 m/h Percent Time-Spent-Following 0.0 Grade Adjustment factor, f _A (Exhibit 20-10) 1.0 Passenger-car equivalents for RVs, E _R (Exhibit 20-10) 1.0 Reav-whicle adjustment factor, f _{AV} =1/(1+ P _T (E _T -1)+P _R (E _R -1)) 1.000 Warve which adjustment factor, f _{AV} (1/P _T (F _T +1)+P _R (E _R -1)) 1.00 Rease percent time-spent-following. 951	Passenger-car equivalents for trucks, E _T (Exhibit 20-9)	1.1									
Heavy-vehicle adjustment factor, f_{HV} =1/ (1+ $P_{T}(E_{T}^{-1})+P_{R}(E_{R}^{-1}))$ 0.988 Two-way flow rate ¹ , v_{p} (pch)=V/ (PHF * $f_{0}^{-1}f_{HV})$ 1374 v_{p}^{-1} highest directional split proportion ² (pch) 962 Free-Flow Speed from Field Measurement Estimated Free-Flow Speed Field Measured speed, S_{FM} mith Observed volume, V_{1} with Free-flow speed, FFS FFS=S_FM+0.00776(V/ f _{HV}) mith Adj. for no-passing zones, f_{rp} (m/h) (Exhibit 20-11) 0.0 Adj. for no-passing zones, f_{rp} (m/h) (Exhibit 20-10) 0.0 Arerage travel speed, ST (m/h) ATS=FFS=0.00776(v _p f _{rp}) 24.3 Percent Time-Spent-Following 1.00 Passenger-car equivalents for RVs, E_{T} (Exhibit 20-10) 1.0 Passenger-car equivalents for RVs, E_{T} (Exhibit 20-10) 1.0 Two-way flow rate ¹ , v_{p} (pch)=V/ (PHF * f_{0}^{-1} (μ_{V}) 1358 v_{p}^{-1} highest directional split proportion ² (pch) 9.7 Adj. for directional split proportion ² (pch) 9.69.7 Adj. for directional split proportion ² (pch) 9.69.7 Adj. for directional split proportion ² (pch) 9.7 Adj. for dinectional distribution and no passing zone, f_{abp} (%)(Exh. 20	Passenger-car equivalents for RVs, E _R (Exhibit 20-9)	1.0									
Two-way flow rate 1 , v_p (pch)=V (PHF 1 ($_3^ ^1$ ($_{W}$))1374 v_p * highest directional split proportion2 (pch)962Free-Flow Speed from Field MeasurementBase free-flow speed, BFS $_{FM}$ Field Measured speed, S_{FM} mi/hObserved volume, V_1 weh/hFree-flow speed, FFS FSS $_{FM}$ +0.00776(V_1^+ ($_{WV}$)mi/hAdj. for lane width and shoulder width?, I_{LS} (Exhibit 20-5)Adj. for no-passing zones, I_{np} (mi/h) (Exhibit 20-11)Adj. for no-passing zones, I_{np} (mi/h) (Exhibit 20-11)Adj. for no-passing zones, I_{np} (mi/h) (Exhibit 20-11)Average travel speed, AFS (S (mi/h)) ATS=FFS-0.00776v_p I_{np} Percent Time-Spent-FollowingGrade Adjustment factor, $I_{np} = 1/(1 + P_n(E_n^-1) + P_n(E_n^-1))$ Passenger-care equivalents for trucks, E_T (Exhibit 20-10)Passenger-care equivalents for trucks, E_T (Exhibit 20-10)Passenger-care equivalents for trucks, E_T (Exhibit 20-10)Recent Time-Spent-FollowingTwo-way flow rate 1, v_p (pc/h)=V/ (PHF $^+I_G^- ^+I_W)$ No-way flow rate 1, v_p (pc/h)=V/ (PHF $^+I_G^- ^+I_W)$ No-way flow rate 1, v_p (pc/h)=V/ (PHF $^+I_G^- ^+I_W)$ No-way flow rate 1, v_p (pc/h)=V/ (PHF $^+I_G^- ^+I_W)$ Adj. for directional split proportion2 (pc/h)Base part-following, PTSF(%)=100(1 e -0.000879v_p)Adj. for directional split proportion2 (pc/h)Percent Time-spent-following, PTSF(%)=200 (F = 0.00879v_p)Base part-following, PTSF(%)=200 (F = 0.00879v_p)Adj. for directional distribution and no passing zone, $I_{abp}(%)(Exh. 20-12)$ Adj. for	Heavy-vehicle adjustment factor, $f_{HV}=1/(1+P_T(E_T-1)+P_R(E_R-1))$	0.988									
	Two-way flow rate ¹ , $v_p (pc/h)=V/(PHF * f_G * f_HV)$	1374									
Free-Flow Speed from Field MeasurementEstimated Free-Flow SpeedField Measured speed, SFMmi/hObserved volume, V_1 weh/hAdj. for lane width and shoulder width ³ , I_{15} (Exhibit 20-5)0.0 mi/hAdj. for no-passing zones, I_{np} (m/h) (Exhibit 20-11)ni/hAdj. for no-passing zones, I_{np} (m/h) (Exhibit 20-11)0.0Average travel speed, ATS (m/h) ATS=FFS-0.00776 v_p - I_{np} 24.3Percent Time-Spent-Following1.00Grade Adjustment factor, I_G (Exhibit 20-8)1.00Passenger-car equivalents for trucks, E_T (Exhibit 20-10)1.0Heavy-vehicle adjustment factor, $I_{ty}(=r/1) + P_T(E_T^{-1}) + P_T(E_T^{-1}) + P_T(E_T^{-1})$ 1.000Two-way flow rate ¹ , v_p (pch)=V (PHF + $I_G^{-1} + H_V)$ 1358 v_g^{-1} highest directional split proportion ² (pch)951Base percent time-spent-following. PTSF(%)=100(1-e^{-0.00879v}p)69.7Adj. for directional distribution and no-passing zone, $I_{adp}(w)(Exh. 20-12)$ 0.0Percent Time-spent-following. PTSF(%)=100(1-e^{-0.00879v}p)69.7Adj. for directional distribution and no-passing zone, $I_{adp}(w)(Exh. 20-12)$ 0.0Percent time-spent-following. PTSF(%)=100(1-e^{-0.00879v}p)69.7Adj. for directional distribution and no-passing zone, $I_{adp}(w)(Exh. 20-12)$ 0.0Percent time-spent-following. PTSF(%)=DTSF following. PTSF(%)=DTSF	v _p * highest directional split proportion ² (pc/h)	962									
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Free-Flow Speed from Field Measurement	Estimated Free-Flow Speed									
Adj. for no-passing zones, f_{np} (<i>m/h</i>) (Exhibit 20-11)0.0Average travel speed, ATS (<i>m/h</i>) ATS=FFS-0.00776v _p , f_{np} 24.3Percent Time-Spent-Following1.00Grade Adjustment factor, f_{q} (Exhibit 20-8)1.00Passenger-car equivalents for trucks, E_{T} (Exhibit 20-10)1.0Passenger-car equivalents for RVS, E_{R} (Exhibit 20-10)1.0Heavy-vehicle adjustment factor, $I_{HV}=1/(1+P_{T}(E_{T}-1)+P_{R}(E_{R}-1))$ 1.000Two-way flow rate ¹ , v_{p} (pc/h)=W/ (PHF * f_{G} * f_{HV})1358 v_{p}^{-1} highest directional split proportion ² (pc/h)951Base percent time-spent-following, BPTSF(%)=100(1-e ^{-0.000879v} p)69.7Adj. for directional distribution and no-passing zone, $f_{dhp}(%)$ (Exh. 20-12)0.0Percent time-spent-following, PTSF(%)=BPTSF+f_{dimp}69.7Level of Service and Other Performance MeasuresEvel of Service and Other Performance MeasuresLevel of Service, LOS (Exhibit 20-3 for Class II)0.43Peak 15-min veh-miles of travel, VMT ₆₀ (veh- m)=V-L ₁ (ATS359Peak 5-min total travel, VMT ₆₀ (veh- m)=VT ₁₄ (ATS4.2Notes1.10I Mores4.2Notes1.10I Mores4.2	Field Measured speed, S _{FM} mi/hObserved volume, V _f veh/hFree-flow speed, FFS FFS=S _{FM} +0.00776(V _f / f _{HV})mi/h	Base free-flow speed, BFFS FM45.0 mi/hAdj. for lane width and shoulder width3, f_{LS} (Exhibit 20-5)0.0 mi/hAdj. for access points, f_A (Exhibit 20-6)10.0 mi/hFree-flow speed, FFS (FSS=BFFS-f_LS-f_A)35.0 mi/h									
Average travel speed, ATS (mi/h) ATS=FFS-0.00776v _p -f _{np} 24.3 Percent Time-Spent-Following 1.00 Grade Adjustment factor, f _G (Exhibit 20-8) 1.00 Passenger-car equivalents for trucks, E_T (Exhibit 20-10) 1.0 Passenger-car equivalents for trucks, E_T (Exhibit 20-10) 1.0 Passenger-car equivalents for RVs, E_R (Exhibit 20-10) 1.0 Heavy-vehicle adjustment factor, $f_{HV}=1/(1+P_T(E_T-1)+P_R(E_R-1))$ 1.000 Two-way flow rate ¹ , v_p (pc/h)=V/ (PHF * f _G * f _{HV}) 1358 v_p^- highest directional split proportion ² (pc/h) 951 Base percent time-spent-following, BPTSF(%)=100(1-e ^{-0.000879v} p) 69.7 Adj. for directional distribution and no-passing zone, f _{d/hp} (%)(Exh. 20-12) 0.0 Percent time-spent-following, PTSF(%)=BPTSF+f_d/np 69.7 Level of service, LOS (Exhibit 20-3 for Class I or 20-4 for Class II) C Volume to capacity ratio, v/c=V_p' 3,200 0.43 Peak 15-min veh-miles of travel, VMT ₁₅ (veh-m)=0.25L(V/PHF) 102 Peak-hour vehicle-miles of travel, VMT ₁₆ /ATS 4.2 Notes 1.1 [V p ₂ = 3,200 pc/h, terminate analysis-the LOS is F. 1. If Vp ₂ = 3,200 pc/h, terminate analysis-the LOS is F. 4.2	Adj. for no-passing zones, f _{np} (<i>mi/h</i>) (Exhibit 20-11)	0.0									
Percent Time-Spent-Following Grade Adjustment factor, f_{G} (Exhibit 20-8) Passenger-car equivalents for trucks, E_{T} (Exhibit 20-10) Passenger-car equivalents for RVs, E_{R} (Exhibit 20-10) Passenger-car equivalents for RVs, E_{R} (Exhibit 20-10) Heavy-vehicle adjustment factor, f_{HV} =1/ (1+ $P_{T}(E_{T}-1)+P_{R}(E_{R}-1)$) Two-way flow rate ¹ , v_{p} (pc/h)=V/ (PHF * $f_{G} * f_{HV}$) Two-way flow rate ¹ , v_{p} (pc/h)=V/ (PHF * $f_{G} * f_{HV}$) v_{p}^{-} highest directional split proportion ² (pc/h) Base percent time-spent-following, BPTSF(%)=100(1-e ^{-0.000879v} _p) Adj. for directional distribution and no-passing zone, $f_{d/p}$ (%)(Exh. 20-12) Percent time-spent-following, PTSF(%)=BPTSF+f_{dinp} Level of Service and Other Performance Measures Level of service, LOS (Exhibit 20-3 for Class 1 or 20-4 for Class II) Volume to capacity ratio, $v/c=V_p/3,200$ Peak 15-min veh-miles of travel, VMT ₁₅ (veh-m)=0.25L ₁ (V/PHF) 102 Peak-hour vehicle-miles of travel, VMT ₁₆ (veh-m)=V ⁺ L ₁ 359 Peak 15-min total travel time, TT ₁₅ (veh-h)= VMT ₁₅ /ATS Notes 1. If Vp >= 3,200 pc/h, terminate analysis-the LOS is F.	Average travel speed, ATS (<i>mi/h</i>) ATS=FFS-0.00776v _p -f _{np}	24.3									
Grade Adjustment factor, f_G (Exhibit 20-8) 1.00 Passenger-car equivalents for trucks, E_T (Exhibit 20-10) 1.0 Passenger-car equivalents for RVs, E_R (Exhibit 20-10) 1.0 Heavy-vehicle adjustment factor, $f_{HV}=1/(1+P_T(E_T-1)+P_R(E_R-1))$ 1.000 Two-way flow rate ¹ , v_p (pc/h)=V/ (PHF * f_G * f_{HV}) 1358 v_p * highest directional split proportion ² (pc/h) 951 Base percent time-spent-following, BPTSF(%)=100(1-e ^{-0.000879v} p) 69.7 Adj. for directional distribution and no-passing zone, f_{dhp} (%)(Exh. 20-12) 0.0 Percent time-spent-following, PTSF(%)=BPTSF+f_{d/np} 69.7 Level of Service, LOS (Exhibit 20-3 for Class I or 20-4 for Class II) C Volume to capacity ratio, v/c=V_p' 3,200 0.43 Peak 15-min tell travel, VMT ₁₅ (veh- m)= 0.25L ₁ (V/PHF) 102 Peak-hour vehicle-miles of travel, VMT ₆₀ (veh- m)=V ¹ L ₁ 359 Peak 15-min total travel time, TT ₁₅ (veh-h)= VMT ₁₅ /ATS 4.2 Notes 1.1 1. If $Vp >= 3.200$ pc/h, terminate analysis-the LOS is F. 1.000	Percent Time-Spent-Following										
Passenger-car equivalents for trucks, E_T (Exhibit 20-10) 1.0 Passenger-car equivalents for RVs, E_R (Exhibit 20-10) 1.0 Heavy-vehicle adjustment factor, $f_{HV}=1/(1+P_T(E_T-1)+P_R(E_R-1))$ 1.000 Two-way flow rate ¹ , v_p (pc/h)=V/ (PHF * $f_G * f_{HV})$ 1358 v_p^- highest directional split proportion ² (pc/h) 951 Base percent time-spent-following, BPTSF(%)=100(1-e ^{-0.000879v} p) 69.7 Adj. for directional distribution and no-passing zone, $f_{d/hp}$ (%)(Exh. 20-12) 0.0 Percent time-spent-following, PTSF(%)=BPTSF+f_dinp 69.7 Level of Service and Other Performance Measures 0.0 Level of service, LOS (Exhibit 20-3 for Class I or 20-4 for Class II) C Volume to capacity ratio, v/c=V_p' 3,200 0.43 Peak-hour vehicle-miles of travel, VMT ₁₅ (veh- m)= 0.25L ₁ (V/PHF) 102 Peak-hour vehicle-miles of travel, VMT ₆₀ (veh- m)=V+L ₁ 359 Peak 15-min total travel time, TT ₁₅ (veh-h)= VMT ₁₅ /ATS 4.2 Notes 1.1 1. If Vp >= 3,200 pc/h, terminate analysis-the LOS is F. 4.2	Grade Adjustment factor, f _G (Exhibit 20-8)	1.00									
Passenger-car equivalents for RVs, E _R (Exhibit 20-10) 1.0 Heavy-vehicle adjustment factor, $f_{HV}=1/(1+P_T(E_T-1)+P_R(E_R-1))$ 1.000 Two-way flow rate ¹ , v _p (pc/h)=V/ (PHF * f _G * f _{HV}) 1358 v _p * highest directional split proportion ² (pc/h) 951 Base percent time-spent-following, BPTSF(%)=100(1-e ^{-0.000879v} p) 69.7 Adj. for directional distribution and no-passing zone, f _{d/hp} (%)(Exh. 20-12) 0.0 Percent time-spent-following, PTSF(%)=BPTSF+f_d/np 69.7 Level of Service and Other Performance Measures 69.7 Level of Service, LOS (Exhibit 20-3 for Class I or 20-4 for Class II) C Volume to capacity ratio, v/c=V _p /3,200 0.43 Peak 15-min veh-miles of travel, VMT ₁₅ (veh- m)= 0.25L ₁ (V/PHF) 102 Peak 15-min total travel time, TT ₁₅ (veh-h)=VMT ₁₅ /ATS 4.2 Notes 4.2	Passenger-car equivalents for trucks, E _T (Exhibit 20-10)	1.0									
Heavy-vehicle adjustment factor, $f_{HV}=1/(1+P_T(E_T-1)+P_R(E_R-1))$ 1.000Two-way flow rate ¹ , v_p (pc/h)=V/ (PHF * $f_G * f_{HV})$ 1358 $v_p *$ highest directional split proportion ² (pc/h)951Base percent time-spent-following, BPTSF(%)=100(1-e ^{-0.000879v} p)69.7Adj. for directional distribution and no-passing zone, $f_{d/hp}$ (%)(Exh. 20-12)0.0Percent time-spent-following, PTSF(%)=BPTSF+f_d/np69.7Level of Service and Other Performance Measures69.7Level of Service, LOS (Exhibit 20-3 for Class I or 20-4 for Class II)CVolume to capacity ratio, $v/c=V_p/3,200$ 0.43Peak 15-min veh-miles of travel, VMT 15 (veh- m)= 0.25Lt(V/PHF)102Peak 15-min total travel time, TT ₁₅ (veh-h)=VMT ₁₅ /ATS4.2Notes1. If Vp >= 3,200 pc/h, terminate analysis-the LOS is F.I. If Vp >= 3,200 pc/h, terminate analysis-the LOS is F.4.2	Passenger-car equivalents for RVs, E _R (Exhibit 20-10)	1.0									
Two-way flow rate1, vp (pc/h)=V/ (PHF * fG * fHV)1358 v_p * highest directional split proportion2 (pc/h)951Base percent time-spent-following, BPTSF(%)=100(1-e ^{-0.000879v} p)69.7Adj. for directional distribution and no-passing zone, fd/hp(%)(Exh. 20-12)0.0Percent time-spent-following, PTSF(%)=BPTSF+f d/mp69.7Level of Service and Other Performance Measures69.7Level of Service, LOS (Exhibit 20-3 for Class I or 20-4 for Class II)CVolume to capacity ratio, v/c=Vp/ 3,2000.43Peak 15-min veh-miles of travel, VMT 15 (veh- m)= 0.25L1(V/PHF)102Peak 15-min total travel time, TT 15 (veh-h)= VMT 15 (ATS4.2Notes1. If Vp >= 3,200 pc/h, terminate analysis-the LOS is F.I. If Vp >= 3,200 pc/h, terminate analysis-the LOS is F.4.2	Heavy-vehicle adjustment factor, $f_{HV}=1/(1 + P_T(E_T-1)+P_R(E_R-1))$	1.000									
v_p * highest directional split proportion2 (pc/h)951Base percent time-spent-following, BPTSF(%)=100(1-e ^{-0.000879v} p)69.7Adj. for directional distribution and no-passing zone, $f_{d/hp}$ (%)(Exh. 20-12)0.0Percent time-spent-following, PTSF(%)=BPTSF+f_{d/np}69.7Level of Service and Other Performance Measures69.7Level of Service, LOS (Exhibit 20-3 for Class I or 20-4 for Class II)CVolume to capacity ratio, v/c=V_p/ 3,2000.43Peak 15-min veh-miles of travel, VMT ₁₅ (veh- m)= 0.25Lt(V/PHF)102Peak 15-min total travel time, TT ₁₅ (veh-h)= VMT ₁₆ /ATS4.2Notes1. If Vp >= 3,200 pc/h, terminate analysis-the LOS is F.0.0520.0530.0540.0540.0550.0540.0550.0540.0550.0540.0560.0540.0560.0540.0560.05550.0570.05550.0560.05550.0560.05550.0560.05550.0570.05550.0570.05550.0570.05550.0570.05550.0570.05550.0570.05550.0570.05550.0570.05550.0570.055550.0570.055550.05750.055550.05750.055550.05750.0555550.05750.0555550.057550.055555550.0575550.0555555550.05755555550.0555555555555555555555555555	Two-way flow rate ¹ , $v_p (pc/h)=V/(PHF * f_G * f_HV)$	1358									
Base percent time-spent-following, BPTSF(%)=100(1-e ^{-0.000879v} p)69.7Adj. for directional distribution and no-passing zone, $f_{d/hp}(%)(Exh. 20-12)$ 0.0Percent time-spent-following, PTSF(%)=BPTSF+f_{d/np}69.7Level of Service and Other Performance Measures69.7Level of Service, LOS (Exhibit 20-3 for Class I or 20-4 for Class II)CVolume to capacity ratio, $v/c=V_p/3,200$ 0.43Peak 15-min veh-miles of travel, VMT ₁₅ (veh- mi)= $0.25L_t(V/PHF)$ 102Peak-hour vehicle-miles of travel, VMT ₆₀ (veh- mi)=V*L _t 359Peak 15-min total travel time, TT ₁₅ (veh-h)= VMT ₁₅ /ATS4.2Notes1. If Vp >= 3,200 pc/h, terminate analysis-the LOS is F.1. If Vp >= 3,200 pc/h, terminate analysis-the LOS is F.102	v_p * highest directional split proportion ² (pc/h)	951									
Adj. for directional distribution and no-passing zone, $f_{d/hp}(%)(Exh. 20-12)$ 0.0 Percent time-spent-following, PTSF(%)=BPTSF+f_{d/np} 69.7 Level of Service and Other Performance Measures 69.7 Level of service, LOS (Exhibit 20-3 for Class I or 20-4 for Class II) C Volume to capacity ratio, v/c=V _p / 3,200 0.43 Peak 15-min veh-miles of travel, VMT ₁₅ (veh- m)= 0.25L ₁ (V/PHF) 102 Peak-hour vehicle-miles of travel, VMT ₆₀ (veh- m)=V*L ₁ 359 Peak 15-min total travel time, TT ₁₅ (veh-h)= VMT ₁₅ /ATS 4.2 Notes 1. If Vp >= 3,200 pc/h, terminate analysis-the LOS is F.	Base percent time-spent-following, BPTSF(%)=100(1-e ^{-0.000879v} p)	69.7									
Percent time-spent-following, PTSF(%)=BPTSF+f _{d/np} 69.7 Level of Service and Other Performance Measures C Level of service, LOS (Exhibit 20-3 for Class I or 20-4 for Class II) C Volume to capacity ratio, v/c=V _p / 3,200 0.43 Peak 15-min veh-miles of travel, VMT ₁₅ (veh- mi)= 0.25L _t (V/PHF) 102 Peak-hour vehicle-miles of travel, VMT ₆₀ (veh- mi)=V*L _t 359 Peak 15-min total travel time, TT ₁₅ (veh-h)= VMT ₁₅ /ATS 4.2 Notes 1.1 f Vp >= 3,200 pc/h, terminate analysis-the LOS is F. 0.4 bit	Adj. for directional distribution and no-passing zone, $\rm f_{d/hp}(\%)(Exh.$ 20-12)	0.0									
Level of Service and Other Performance Measures Level of service, LOS (Exhibit 20-3 for Class I or 20-4 for Class II) C Volume to capacity ratio, $v/c=V_p/3,200$ 0.43 Peak 15-min veh-miles of travel, VMT ₁₅ (veh- mi)= 0.25L _t (V/PHF) 102 Peak-hour vehicle-miles of travel, VMT ₆₀ (veh- mi)=V*L _t 359 Peak 15-min total travel time, TT ₁₅ (veh-h)= VMT ₁₅ /ATS 4.2 Notes 1. If Vp >= 3,200 pc/h, terminate analysis-the LOS is F.	Percent time-spent-following, PTSF(%)=BPTSF+f d/np	69.7									
Level of service, LOS (Exhibit 20-3 for Class 1 or 20-4 for Class II) C Volume to capacity ratio, $v/c=V_p/3,200$ 0.43 Peak 15-min veh-miles of travel, VMT ₁₅ (veh- mi)= $0.25L_t(V/PHF)$ 102 Peak-hour vehicle-miles of travel, VMT ₆₀ (veh- mi)=V*L _t 359 Peak 15-min total travel time, TT ₁₅ (veh-h)= VMT ₁₅ /ATS 4.2 Notes 1. If Vp >= 3,200 pc/h, terminate analysis-the LOS is F. 0.4 bit bit bit bit bit bit bit 1000 v.5	Level of Service and Other Performance Measures										
Peak 15-min veh-miles of travel, VMT ₁₅ (veh- mi)= 0.25L _t (V/PHF) 102 Peak 15-min total travel, VMT ₆₀ (veh- mi)=V*L _t 359 Peak 15-min total travel time, TT ₁₅ (veh-h)= VMT ₁₅ /ATS 4.2 Notes 1. If Vp >= 3,200 pc/h, terminate analysis-the LOS is F. 0. If Vip set disorder is the total travel time, TC ₁₀ and the total travel time, TC ₁₅ and the travel time, TC ₁₅ and the travel time, TC ₁₅ and the total travel time, TC ₁₅ and the travel time travel time, TC ₁₅ and the travel time tra	Level or service, LOS (Exhibit 20-3 for Class I or 20-4 for Class II)	0.43									
Peak-hour vehicle-miles of travel, VMT ₆₀ (veh- mi)=V*L _t 359 Peak 15-min total travel time, TT ₁₅ (veh-h)= VMT ₁₅ /ATS 4.2 Notes 1. If Vp >= 3,200 pc/h, terminate analysis-the LOS is F. 9. If bit	Peak 15-min veh-miles of travel VMT (veh- $mh = 0.25L(V/PHF)$	102									
Peak 15-min total travel time, TT_{15} (veh-h)= VMT ₁₅ /ATS 4.2 Notes 1. If Vp >= 3,200 pc/h, terminate analysis-the LOS is F. 0. If bit both time total travel total to	Peak-hour vehicle-miles of travel. VMT _{po} (veh- m)=V*L.	359									
Notes 1. If $V_{P} >= 3,200 \text{ pc/h}$, terminate analysis-the LOS is F. 2. K bis to the transformation of 200 mc/h. LOS is F.	Peak 15-min total travel time. TT _r (veh-h)= VMT _r /ATS	4.2									
1. If Vp >= 3,200 pc/h, terminate analysis-the LOS is F.	Notes	L									
	1. If $Vp >= 3,200 \text{ pc/h}$, terminate analysis-the LOS is F.										

TWO-WAY TWO-LANE HIGHWAY SEGMENT WORKSHEET										
General Information	Site Information									
Analyst DHS Agency or Company GSP Date Performed 2/13/2009 Analysis Time Period AM Peak	Highway SR 249 From/To I-40 / Kingston Springs Rd Jurisdiction Kingston Springs, TN Analysis Year 2034									
Project Description: SR 249 2034 AM										
Input Data										
Shoulder width It Lane width It Lane width It Shoulder width It Segment length, Lt mi	Class I highway Class II highway Terrain Level Rolling Two-way hourly volume 1719 veh/h Directional split 70 / 30 Peak-hour factor, PHF 0.88 No-passing zone 0 % Trucks and Buses , P _T 12 % % Recreational vehicles, P _R 0% Access points/ mi 40									
Average Travel Speed										
Grade adjustment factor, f _G (Exhibit 20-7)	1.00									
Passenger-car equivalents for trucks, E _T (Exhibit 20-9)	1.1									
Passenger-car equivalents for RVs, E _R (Exhibit 20-9)	1.0									
Heavy-vehicle adjustment factor, $f_{HV}=1/(1+P_T(E_T-1)+P_R(E_R-1))$	0.988									
Two-way flow rate ¹ , $v_p (pc/h)=V/(PHF * f_G * f_HV)$	1977									
v_p * highest directional split proportion ² (pc/h)	1384									
Free-Flow Speed from Field Measurement	Estimated Free-Flow Speed									
Field Measured speed, S_{FM} mi/hObserved volume, V_f veh/hFree-flow speed, FFS FFS=S_{FM}+0.00776(V_{f} / f_{HV})mi/h	Base free-flow speed, BFFS FM45.0 mi/hAdj. for lane width and shoulder width3, f_{LS} (Exhibit 20-5)0.0 mi/hAdj. for access points, f_A (Exhibit 20-6)10.0 mi/hFree-flow speed, FFS (FSS=BFFS-f_{LS}-f_A)35.0 mi/h									
Adj. for no-passing zones, f _{np} (<i>mi/h</i>) (Exhibit 20-11)	0.0									
Average travel speed, ATS (<i>mi/h</i>) ATS=FFS-0.00776v _p -f _{np}	19.7									
Percent Time-Spent-Following										
Grade Adjustment factor, f _G (Exhibit 20-8)	1.00									
Passenger-car equivalents for trucks, E _T (Exhibit 20-10)	1.0									
Passenger-car equivalents for RVs, E _R (Exhibit 20-10)	1.0									
Heavy-vehicle adjustment factor, f _{HV} =1/ (1+ P _T (E _T -1)+P _R (E _R -1))	1.000									
Two-way flow rate ¹ , v_p (pc/h)=V/ (PHF * $f_G * f_{HV}$)	1953									
v_p * highest directional split proportion ² (pc/h)	1367									
Base percent time-spent-following, BPTSF(%)=100(1-e ^{-0.000879v} p)	82.0									
Adj. for directional distribution and no-passing zone, $\rm f_{d/hp}(\%)(Exh.$ 20-12)	0.0									
Percent time-spent-following, PTSF(%)=BPTSF+f d/np	82.0									
Level of Service and Other Performance Measures										
Volume to capacity ratio, v/c=V / 3 200	0.62									
Peak 15-min veh-miles of travel, VMT ₄ (veh- mh = 0.25L.(V/PHF)	147									
Peak-hour vehicle-miles of travel. VMT _{co} (veh- m)=V*L.	516									
Peak 15-min total travel time. TT_{+r} (veh-h)= VMT _{+r} /ATS	7.5									
Notes										
 If Vp >= 3,200 pc/h, terminate analysis-the LOS is F. If highest directional split Vp>= 1,700 pc/h, terminated anlysis-the LOS is F. 										

General Information Site Information Analysis OFIS Highway SF 249 Aparty Company Decision SF 249 SF 249 Aparty Company Decision SF 249 SF 249 Aparty Company Decision Decision SF 249 Aparty Company Decision Decision Decision Aparty Company Decision Decision Decisi	TWO-WAY TWO-LANE HIGHWAY SEGMENT WORKSHEET										
Analysis and the set of the set	General Information	Site Information									
Project Description: Stratute within Image: Class I Informacy Class I Informacy Image: Class I Information of the strate within Image: Class I Informacy Class I Informacy Three within the class informacy Image: Class I Informacy Image: Class I Informacy Class I Informacy Class I Informacy Image: Class I Informacy Image: Class I Informacy Three with online 1779 which Image: Class I Informacy Image: Class I Informacy Three with online 1779 which Image: Class I Informacy Image: Class I Informacy Three with online 1779 which Image: Class I Informacy Image: Class I Informacy 1779 which 200 Image: Class I Informacy Image: Class I Informacy 1779 which 200 Image: Class I Informacy Image: Class I Informacy 1779 which 200 Image: Class I Informacy Image: Class I Informacy Image: Class I Informacy 200 Image: Class I Informacy Image: Class I Informacy Image: Class I Informacy 200 Image: Class I Informacy Image: Class I Informacy Image: Class I Informacy 200 Image: Class I Infor	AnalystDHSAgency or CompanyGSPDate Performed2/13/2009Analysis Time PeriodPM Peak	HighwaySR 249From/ToI-40 / Kingston Springs RdJurisdictionKingston Springs, TNAnalysis Year2034									
Imput Data Class Highway Class Highway Class Highway Class Highway Class Highway Rolling Imput Data Impu Data Impu Data Impu D	Project Description: SR 249 2034 PM										
Class HighwayClass HighwayImage: the second	Input Data										
Average Travel Speed 1.00 Grade adjustment factor, f_{45} (Exhibit 20-9) 1.00 Passenger-care equivalents for Trucks, E_{7} (Exhibit 20-9) 1.0 Passenger-care equivalents for Trucks, E_{7} (Exhibit 20-9) 1.0 Heavy-whicle adjustment factor, f_{40} -11 (H $P_{71}(E_{7}^{-1})_{R1}(E_{7}^{-1}))$ 0.988 Two-way flow rate ¹ , v_{ϕ} (pch)-U/ (PHF ' $f_{0}^{-1}, f_{40})$ 2045 V _p ' highest directional split proportion ² (pch) 1432 Free-Flow Speed from Field Measurement Estimated Free-Flow Speed Faid Massured speed, S _{FM} 45.0 mi/h Adj, for no-passing zones, f_{100} (m/h) (Exhibit 20-11) Base free-flow speed, FFS FFS_4_{10} 3.8.0 mi/h Adj, for no-passing zones, f_{100} (m/h) (Exhibit 20-11) 0.0 Average travel speed, ATS (m/h) ATS=FFS 0.00776v _p -f ₁₀₀ 10.0 Passenger-care equivalents for trucks, E_{6} (Exhibit 20-10) 1.00 Passenger-care equivalents for trucks, E_{6} (Exhibit 20-10) 1.00 Passenger-care equivalents for trucks, E_{6} (Exhibit 20-10) 1.00 Passenger-care equivalents for trucks, E_{6} (Exhibit 20-10) 1.0 Passenger-care equivalents for trucks, E_{6} (Exhibit 20-10) 1.0 Passenger-care equivale	Shoulder width ft Lane width ft Lane width ft Shoulder width ft Segment length, Lt mi	Class I highway Class II highway Terrain Class I highway Terrain Class II highway Terrain Cl									
Grade adjustment factor, f.g. (Exhibit 20-7) 1.00 Passenger-car equivalents for trucks, E.g. (Exhibit 20-9) 1.1 Passenger-car equivalents for trucks, E.g. (Exhibit 20-9) 1.0 Heavy-vehicle adjustment factor, f.t.y=11 (1+ P.(E_T)-P.g.(E,r.1)) 0.988 Two-way flow rate ¹ , v.g. (pch)-V/ (PHF * f.g. * f.w) 2045 v.g. * highest directional split proportion ⁶ (pch) 1432 Free-Flow Speed from Field Measurement Estimated Free-Flow Speed Field Measured speed, S.p.M. mi/h Adj. for inco-passing zones, f.g. (mi/n) (Exhibit 20-11) Base free-flow speed, FFS (FSS-BFL+0.00776V/ f.t.y) Adj. for no-passing zones, f.g. (mi/n) (Exhibit 20-11) 0.0 Average travel speed, AFS (mi/h) (Exhibit 20-10) 1.0 Passenger-car equivalents for trucks, E.g. (Exhibit 20-10) 1.00 Passenger-car equivalents for trucks, E.g. (Exhibit 20-10) 1.0 Heavy-wehicle adjustment factor, f.g. (pch)-V.V (PHF * f.g	Average Travel Speed	I									
Passenger-ar equivalents for trucks, E ₁ (Exhibit 20-9) 1.1 Passenger-ar equivalents for trucks, E ₁ (Exhibit 20-9) 1.0 Heavy-rehide adjustment factor, I ₁₁ / ₁₁ (1 + P ₁₁ E ₁ -1)+P ₁₁ (E ₁ -1)) 0.988 Two way flow rate ¹ , v ₀ (pch)=-V/ (PH F * I ₀ * I ₁₁) 0.988 Two way flow rate ¹ , v ₀ (pch)=-V/ (PH F * I ₀ * I ₁₁) 1.432 Free-Flow Speed from Field Measurement Estimated Free-Flow Speed Field Measured speed, S _{FM} m/h Adj. for lane width and shoulder width ³ , t ₁₅ (Exhibit 20-5) 0.0 m/h Adj. for lane width and shoulder width ³ , t ₁₅ (Exhibit 20-5) 0.0 m/h Adj. for non-passing zones, t _{m0} m/h Adj. for non-passing zones, t _{m0} m/h Percent Time-Spent-Following 19.1 Oracease points, (Exhibit 20-8) 1.00 Passenger-car equivalents for trucks, E ₁ (Exhibit 20-10) 1.0 Passenger-car equivalents for trucks, E ₁ (Exhibit 20-10) 1.0 Passenger-car equivalents for trucks, E ₁ (Exhibit 20-10) 1.0 Passenger-car equivalents for trucks, E ₁ (Exhibit 20-10) 1.0 Passenger-car equivalents for trucks, E ₁ (Exhibit 20-10) 1.0 Passenger-car equivalents for tr	Grade adjustment factor, f _G (Exhibit 20-7)	1.00									
Passenger-car equivalents for RVs, E _R (Exhibit 20-9) 1.0 Heavy-vehicle adjustment factor, I _{hV} =1/(1+ P _T (E _r -1)+P _R (E _R -1)) 0.988 Two-way flow rate ¹ , v _p (bch)=V/ (PHF ⁻¹ (g ⁻¹ / _{hV}) 2045 v _p ⁻¹ highest directional split proportion ² (bch) 1432 Free-Flow Speed from Field Measurement Estimated Free-Flow Speed Field Measured speed, S _{FM} 45.0 m/h Adj. for lane width and shoulder width ³ , I _{LS} (Exhibit 20-5) 0.0 m/h Adj. for no-passing zones, I _{Ap} 45.0 m/h Adj. for no-passing zones, I _{Ap} 0.0 Adj. for no-passing zones, I _{Ap} 0.0 Adj. for access points, I _A (Exhibit 20-5) 0.0 m/h Passenger-car equivalents for trucks, E _F (Exhibit 20-11) 0.0 Adj. for access points, I _A (Exhibit 20-6) 10.0 m/h Free-flow speed, ATS (m/h) ATS=FFS-0.00776/v _p -I _{Ap} 19.1 Percent Time-Spent-Following 1.00 Grade Adjustment factor, I _{AV} =1/(1+ P _T (E _T -1)+P _R (E _R -1)) 1.00 Passenger-car equivalents for trucks, E _T (Exhibit 20-10) 1.0 Heavy-wehicle adjustment factor, I _{AV} =1/(1+ P _T (E _T -1)+P _R (E _R -1)) 1.00 Passenger-car equivalents for Porty, E _R (Exhibit 20-10) 1.0 W	Passenger-car equivalents for trucks, E _T (Exhibit 20-9)	1.1									
Heavy-vehicle adjustment factor, $f_{HV}=1/(1+P_{R}(E_{R}^{-1}))$ 0.988 Two-way flow rate ¹ , v_{ϕ} (pch)=V/ (PHF * $f_{0} * f_{HV})$ 2045 v_{μ} 'highest directional split proportion ² (pch) 14.32 Free-Flow Speed from Field Measurement Estimated Free-Flow Speed Field Measured speed, S_{FM} min Observed volume, V_{I} vehn Free-flow speed, FFS FFS= S_{FM} +0.00776(V_{i} (f_{HV}) min Adj. for access points, f_{A} (Exhibit 20-5) 0.0 min Adj. for no-passing zones, f_{rip} (m/h) (Exhibit 20-11) 0.0 Average travel speed, AFS (m/h) ATS=FFS-0.00776(V_{i} f $_{fip}$) 19.1 Percent Time-Spent-Following 19.0 Grade Adjustment factor, f_{ij} (Exhibit 20-10) 1.0 Passenger-car equivalents for RVs, E_{R} (Exhibit 20-10) 1.0 Passenger-car equivalents for RVs, E_{R} (Exhibit 20-10) 1.0 Weavy-vehicle adjustment factor, $f_{HV}=1/(1+P_{R}(E_{R}^{-1})) + P_{R}(E_{R}^{-1}))$ 1.000 Two-way flow rate ¹ , v_{ij} (pch)=V/ (PHF * $f_{G}^{-1}f_{RV})$ 2020 v_{j}^{-1} highest directional split proportion ² (pch) 14144 Bass percent time-spent-following, BTSF(v_{j})=DTSF(v_{j} =10(1+ $v^{-0000779}v_{P})$ 83.1 Adj. for	Passenger-car equivalents for RVs, E _R (Exhibit 20-9)	1.0									
Two-way flow rate 1 , v_p (pch)=V/ (PHF * 1 G * 1 H _W)2045 v_p * highest directional split proportion2 (pch)1432Free-Flow Speed from Field MeasurementBase free-flow speed, BFFS FMAField Measured speed, SFM45.0 mi/hAdj. for lane width and shoulder width?, 1 LS (Exhibit 20-5)0.0 mi/hFree-flow speed, FFS FFS FMA45.0 mi/hAdj. for lane width and shoulder width?, 1 LS (Exhibit 20-5)0.0 mi/hFree-flow speed, FFS FFS FMA35.0 mi/hAdj. for no-passing zones, 1 Lo, (mi/h) (Exhibit 20-11)0.0Average travel speed, ATS (mi/h) ATS=FFS-0.00776v_p.fr.p19.1Percent Time-Spent-Following1.00Passenger-care quivalents for RVs, E., (Exhibit 20-10)1.0Passenger-care quivalents for RVs, E., (Exhibit 20-10)1.0Passenger-care quivalents for RVs, E., (Exhibit 20-10)1.00Two-way flow rate ¹ , v_p (bch)=V/ (PHF * 1 G * 1 HV)2020Vp * highest directional split proportion2 (bch)1414Base parcent time-spent-following, BTSF(%)=100(1+e^-0.00879v_p)83.1Adj. for directional split proportion2 (bch)0.0Vev of Service, LOS (Exhibit 20-3 to Class II)0Volume to capacity ratio, vice V/g 3.2000.64Peak-hour vehicle-miles of travel, VMT $_{16}$ (Arth Teg. Arth Teg	Heavy-vehicle adjustment factor, $f_{HV}=1/(1+P_T(E_T-1)+P_R(E_R-1))$	0.988									
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Two-way flow rate ¹ , $v_p (pc/h)=V/ (PHF * f_G * f_HV)$	2045									
Free-Flow Speed from Field MeasurementEstimated Free-Flow SpeedField Measured speed, S_{FM} mi/hObserved volume, V_1 veh/hAdj. for lane width and shoulder width 3_1 (s. (Exhibit 20-5)0.0 mi/hAdj. for no-passing zones, I_{n0} (mi/h) (Exhibit 20-11)Adj. for access points, I_A (Exhibit 20-5)0.0 mi/hAdj. for no-passing zones, I_{n0} (mi/h) (Exhibit 20-11)0.00.0Average travel speed, ATS (mi/h) ATS=FFS-0.00776vp.d _{n0} 19.1Percent Time-Spent-Following1.00Grade Adjustment factor, I_{i0} (Exhibit 20-10)1.0Passenger-car equivalents for trucks, E_T (Exhibit 20-10)1.0Passenger-car equivalents for Kys, E_R (Exhibit 20-10)1.00Heavy-while adjustment factor, $I_{i1}v=1/(1+P_T(E_T^{-1})+P_R(E_R^{-1}))$ 1.000Two-way flow rate ¹ , v_p (poh)=V (/PHF * $I_{a}^{-1} H_{HV})$ 2020 v_p^{-1} highest directional split proportion ² (poh)14114Base percent time-spent-following. BTSF(%)=100(1-e^{0.000379v}p)83.1Adj. for directional split proportion ² (poh)0.0Percent Time-spent-following. PTSF(%)=100(1-e^{0.000379v}p)83.1Adj. for directional distribution and no-passing zone, $I_{ahp}(%)(Exh. 20-12)$ 0.0Percent time-spent-following. PTSF(%)=100(1-e^{0.000379v}p)83.1Adj. for directional adjustment main an no-passing zone, $I_{ahp}(%)(Exh. 20-12)$ 0.0Percent time-spent-following. PTSF(%)=DTSF(1 dnp152Percent time-spent-following. PTSF(%)=DTSF(1 dnp152Peak-four vehicle-miles of travel, VMT ₁₅ (veh- m)= 0.25L_V/P	v _p * highest directional split proportion ² (pc/h)	1432									
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Free-Flow Speed from Field Measurement	Estimated Free-Flow Speed									
Adj. for no-passing zones, f_{np} (<i>mi/h</i>) (Exhibit 20-11)0.0Average travel speed, ATS (<i>mi/h</i>) ATS=FFS-0.00776v _p f _{np} 19.1 <i>Percent Time-Spent-Following</i> 19.1Grade Adjustment factor, f _q (Exhibit 20-8)1.00Passenger-car equivalents for trucks, E_T (Exhibit 20-10)1.0Passenger-car equivalents for RVS, E_R (Exhibit 20-10)1.0Heavy-vehicle adjustment factor, $I_{HV}=1/(1+P_T(E_T-1)+P_R(E_R-1))$ 1.000Two-way flow rate ¹ , v _p (pc/h)=V/ (PHF * f _G * f_{HV})2020 v_p^- highest directional split proportion ² (pc/h)1414Base percent time-spent-following, BPTSF(%)=100(1-e ^{-0.000879v} p)83.1Adj. for directional distribution and no-passing zone, $f_{dript}(%)$ (Exh. 20-12)0.0Percent time-spent-following, PTSF(%)=BPTSF+f_dimp83.1Level of Service and Other Performance Measures2020Level of Service, LOS (Exhibit 20-3 for Class I or 20-4 for Class II)DVolume to capacity ratio, v/c=V _p /3.2000.64Peak-hour vehicle-miles of travel, VMT _{g0} (veh- m)=V-1 _{t1} 533Peak-hour vehicle-miles of travel, VMT _{g0} (veh- m)=V-1 _{t1} 533Peak 15-min total travel time, TT ₁₅ (veh-h) = VMT ₁₅ /ATS7.9Notes1.101.0I I Vp s= 3.200 pc/h, terminate analysis-the LOS is F.100.5I I Vp s= 3.200 pc/h, terminate analysis-the LOS is F.100.5	Field Measured speed, S _{FM} mi/hObserved volume, V _f veh/hFree-flow speed, FFS FFS=S _{FM} +0.00776(V _f / f _{HV})mi/h	Base free-flow speed, BFFS FM45.0 mi/hAdj. for lane width and shoulder width3, f_{LS} (Exhibit 20-5)0.0 mi/hAdj. for access points, f_A (Exhibit 20-6)10.0 mi/hFree-flow speed, FFS (FSS=BFFS-f_LS-f_A)35.0 mi/h									
Average travel speed, ATS (mih) ATS=FFS-0.00776 $v_p^{-1}n_p$ 19.1 Percent Time-Spent-Following 1.00 Grade Adjustment factor, f_G (Exhibit 20-8) 1.00 Passenger-car equivalents for trucks, E_T (Exhibit 20-10) 1.0 Passenger-car equivalents for RVs, E_R (Exhibit 20-10) 1.0 Passenger-car equivalents for RVs, E_R (Exhibit 20-10) 1.0 Heavy-vehicle adjustment factor, $f_{HV} = 1/$ ($1 + P_T(E_T^{-1}) + P_R(E_R^{-1})$) 1.000 Two-way flow rate ¹ , v_p (pc/h)=V/ (PHF * f_G * f_{HV}) 2020 v_p^{-h} highest directional split proportion ² (pc/h) 1414 Base percent time-spent-following, BPTSF(%)=100(1-e ^{-0.000879v} p) 83.1 Adj. for directional distribution and no-passing zone, f_{dhp} (%)(Exh. 20-12) 0.0 Percent time-spent-following, PTSF(%)=BPTSF+f_d/np 83.1 Level of service, LOS (Exhibit 20-3 for Class I or 20-4 for Class II) D Volume to capacity ratio, $v/c=V_p$ '3,200 0.64 Peak 15-min veh-miles of travel, VMT ₁₅ (veh-m)= 0.25L(V/PHF) 152 Peak-hour vehicle-miles of travel, VMT ₁₆ ATS 7.9 Notes 1. If $V_P > = 3.200$ pc/h, terminate analysis-the LOS is F. 1. If $V_P > = 3.200$ pc/h, terminate analysis-the LOS is F. 7.9	Adj. for no-passing zones, f _{np} (<i>mi/h</i>) (Exhibit 20-11)	0.0									
Percent Time-Spent-Following Grade Adjustment factor, f_{G} (Exhibit 20-8) Passenger-car equivalents for trucks, E_{T} (Exhibit 20-10) Passenger-car equivalents for RVs, E_{R} (Exhibit 20-10) Heavy-vehicle adjustment factor, f_{HV} =1/ (1+ $P_{T}(E_{T}-1)+P_{R}(E_{R}-1)$) Two-way flow rate ¹ , v_{p} (pc/h)=V/ (PHF * $f_{G} * f_{HV}$) Wp * highest directional split proportion ² (pc/h) Main Adj. for directional distribution and no-passing zone, $f_{d/hp}(%)$ (Exh. 20-12) Percent time-spent-following, BPTSF(%)=BPTSF+f_{inp} Level of Service and Other Performance Measures Level of service, LOS (Exhibit 20-3 for Class 1 or 20-4 for Class II) Volume to capacity ratio, $v/c=V_p/3,200$ Peak hour vehicle-miles of travel, VMT ₁₅ (veh- m)=V*L ₁ Peak hour vehicle-miles of travel, VMT ₁₆ (veh- m)=V*L ₁ Peak hour vehicle-miles of travel, VMT ₁₅ (veh- m)=V*L ₁ Peak 15-min total travel time, TT ₁₅ (veh-h)= VMT ₁₅ /ATS Notes 1. If Vp >= 3,200 pc/h, terminate analysis-the LOS is F.	Average travel speed, ATS (<i>mi/h</i>) ATS=FFS-0.00776v _p -f _{np}	19.1									
Grade Adjustment factor, f_G (Exhibit 20-8) 1.00 Passenger-car equivalents for trucks, E_T (Exhibit 20-10) 1.0 Passenger-car equivalents for RVs, E_R (Exhibit 20-10) 1.0 Heavy-vehicle adjustment factor, $f_{HV}=1/(1+P_T(E_T-1)+P_R(E_R-1))$ 1.000 Two-way flow rate ¹ , v_p (pc/h)=V/ (PHF * f_G * f_{HV}) 2020 v_p * highest directional split proportion ² (pc/h) 1414 Base percent time-spent-following, BPTSF(%)=100(1-e^{-0.000879v_p}) 83.1 Adj. for directional distribution and no-passing zone, $f_{dhp}(%)$ (Exh. 20-12) 0.0 Percent time-spent-following, PTSF(%)=BPTSF+f_{dimp} 83.1 Level of Service, LOS (Exhibit 20-3 for Class I or 20-4 for Class II) D Volume to capacity ratio, v/c=V_p' 3,200 0.64 Peak hour vehicle-miles of travel, VMT ₁₅ (veh- m)= 0.25L ₁ (V/PHF) 152 Peak-hour vehicle-miles of travel, VMT ₆₀ (veh- m)=V ⁺ L ₁ 533 Peak 15-min total travel time, TT ₁₅ (veh-h)= VMT ₁₅ /ATS 7.9 Notes 1.1 (VP >= 3.200 pc/h, terminate analysis-the LOON is F.	Percent Time-Spent-Following										
Passenger-car equivalents for trucks, E_T (Exhibit 20-10) 1.0 Passenger-car equivalents for RVs, E_R (Exhibit 20-10) 1.0 Heavy-vehicle adjustment factor, $f_{HV}=1/(1+P_T(E_T-1)+P_R(E_R-1))$ 1.000 Two-way flow rate ¹ , v_p (pc/h)=V/ (PHF * $f_G * f_{HV})$ 2020 v_p^- highest directional split proportion ² (pc/h) 1414 Base percent time-spent-following, BPTSF(%)=100(1-e ^{-0.000679v} p) 83.1 Adj. for directional distribution and no-passing zone, $f_{d/hp}$ (%)(Exh. 20-12) 0.0 Percent time-spent-following, PTSF(%)=BPTSF+f_d/np 83.1 Level of Service and Other Performance Measures 0.0 Level of service, LOS (Exhibit 20-3 for Class I or 20-4 for Class II) D Volume to capacity ratio, v/c=V _p / 3,200 0.64 Peak-hour vehicle-miles of travel, VMT ₁₅ (veh- m)= 0.25L ₁ (V/PHF) 152 Peak-hour vehicle-miles of travel, VMT ₆₀ (veh- m)=V+L ₁ 533 Peak 15-min total travel time, TT ₁₅ (veh-h)= VMT ₁₅ /ATS 7.9 Notes 1.1 (MP >= 3,200 pc/h, terminate analysis-the LOS is F.	Grade Adjustment factor, f _G (Exhibit 20-8)	1.00									
Passenger-car equivalents for RVs, E _R (Exhibit 20-10) 1.0 Heavy-vehicle adjustment factor, f _{HV} =1/ (1+ P _T (E _T -1)+P _R (E _R -1)) 1.000 Two-way flow rate ¹ , v _p (pc/h)=V/ (PHF * f _G * f _{HV}) 2020 v _p * highest directional split proportion ² (pc/h) 1414 Base percent time-spent-following, BPTSF(%)=100(1-e ^{-0.000879v} p) 83.1 Adj. for directional distribution and no-passing zone, f _{d/hp} (%)(Exh. 20-12) 0.0 Percent time-spent-following, PTSF(%)=BPTSF+f _{d/np} 83.1 Level of Service and Other Performance Measures 0 Level of service, LOS (Exhibit 20-3 for Class I or 20-4 for Class II) D Volume to capacity ratio, v/c=V _p / 3,200 0.64 Peak 15-min veh-miles of travel, VMT ₁₅ (veh- m)= 0.25L ₁ (V/PHF) 152 Peak 15-min total travel time, TT ₁₅ (veh-h)=VMT ₁₅ /ATS 7.9 Notes 7.9	Passenger-car equivalents for trucks, E _T (Exhibit 20-10)	1.0									
Heavy-vehicle adjustment factor, $f_{HV}=1/(1+P_T(E_T-1)+P_R(E_R-1))$ 1.000Two-way flow rate ¹ , v_p (pc/h)=V/ (PHF * $f_G * f_{HV})$ 2020 v_p * highest directional split proportion ² (pc/h)1414Base percent time-spent-following, BPTSF(%)=100(1-e^{-0.000878v_p})83.1Adj. for directional distribution and no-passing zone, $f_{d/hp}$ (%)(Exh. 20-12)0.0Percent time-spent-following, PTSF(%)=BPTSF+f_drnp83.1Level of Service and Other Performance Measures0.0Level of Service, LOS (Exhibit 20-3 for Class I or 20-4 for Class II)DVolume to capacity ratio, $v/c=V_p/3,200$ 0.64Peak 15-min veh-miles of travel, VMT 15 (veh- m)= 0.25L_1(V/PHF)152Peak 15-min total travel time, TT ₁₅ (veh-h)=VMT ₁₅ /ATS7.9Notes1. If Vp >= 3,200 po/h, terminate analysis-the LOS is F.1. If Vp >= 3,200 po/h, terminate analysis-the LOS is F.1.000	Passenger-car equivalents for RVs, E _R (Exhibit 20-10)	1.0									
Two-way flow rate1, vp (pc/h)=V/ (PHF * fG * fHV)2020 v_p * highest directional split proportion2 (pc/h)1414Base percent time-spent-following, BPTSF(%)=100(1-e ^{-0.000879v} p)83.1Adj. for directional distribution and no-passing zone, f_d/hp (%)(Exh. 20-12)0.0Percent time-spent-following, PTSF(%)=BPTSF+f_d/np83.1Level of Service and Other Performance Measures83.1Level of Service, LOS (Exhibit 20-3 for Class I or 20-4 for Class II)DVolume to capacity ratio, v/c=Vp/ 3,2000.64Peak 15-min veh-miles of travel, VMT 15 (veh-m)= 0.25L1(V/PHF)152Peak 15-min total travel time, TT 15 (veh-m)=V*L1533Peak 15-min total travel time, TT 15 (veh-h)= VMT 15 K.7.9Notes1. If Vp >= 3,200 pc/h, terminate analysis-the LOS is F.	Heavy-vehicle adjustment factor, $f_{HV}=1/(1 + P_T(E_T-1)+P_R(E_R-1))$	1.000									
v_p * highest directional split proportion² (pc/h)1414Base percent time-spent-following, BPTSF(%)=100(1-e ^{-0.000879v} p)83.1Adj. for directional distribution and no-passing zone, $f_{d/p}(%)$ (Exh. 20-12)0.0Percent time-spent-following, PTSF(%)=BPTSF+f_d/np83.1Level of Service and Other Performance Measures83.1Level of Service, LOS (Exhibit 20-3 for Class I or 20-4 for Class II)DVolume to capacity ratio, v/c=V_p/3,2000.64Peak 15-min veh-miles of travel, VMT ₁₅ (veh- m)= 0.25Lt(V/PHF)152Peak 15-min total travel time, TT ₁₅ (veh-h)= VMT ₁₆ /ATS7.9Notes1. If Vp >= 3,200 pc/h, terminate analysis-the LOS is F.0.01. If Vp >= 3,200 pc/h, terminate analysis-the LOS is F.0.01. If Vp >= 3,200 pc/h, terminate analysis-the LOS is F.0.11. If Vp >= 3,200 pc/h, terminate analysis-the LOS is F.0.11. If Vp >= 3,200 pc/h, terminate analysis-the LOS is F.0.11. If Vp >= 3,200 pc/h, terminate analysis-the LOS is F.0.11. If Vp >= 3,200 pc/h, terminate analysis-the LOS is F.0.11.10.11.10.21.10.21.10.31.10.41.10.51.10.51.10.51.10.51.10.51.10.51.10.51.10.51.10.51.10.51.10.51.10.51.10.51.1 <td< td=""><td>Two-way flow rate¹, v_p (pc/h)=V/ (PHF * $f_G * f_{HV}$)</td><td>2020</td></td<>	Two-way flow rate ¹ , v_p (pc/h)=V/ (PHF * $f_G * f_{HV}$)	2020									
Base percent time-spent-following, BPTSF(%)=100(1-e ^{-0.000879v} p)83.1Adj. for directional distribution and no-passing zone, $f_{d/hp}$ (%)(Exh. 20-12)0.0Percent time-spent-following, PTSF(%)=BPTSF+f_{d/np}83.1Level of Service and Other Performance Measures83.1Level of Service, LOS (Exhibit 20-3 for Class I or 20-4 for Class II)DVolume to capacity ratio, $v/c=V_p$ /3,2000.64Peak 15-min veh-miles of travel, VMT ₁₅ (veh- mi)= 0.25Lt(V/PHF)152Peak-hour vehicle-miles of travel, VMT ₆₀ (veh- mi)=V*Lt533Peak 15-min total travel time, TT ₁₅ (veh-h)= VMT ₁₅ /ATS7.9Notes1. If Vp >= 3,200 pc/h, terminate analysis-the LOS is F.It by by endinger for the province declaring the LOON F.	v_p * highest directional split proportion ² (pc/h)	1414									
Adj. for directional distribution and no-passing zone, $f_{d/hp}(%)(Exh. 20-12)$ 0.0 Percent time-spent-following, PTSF(%)=BPTSF+f_{d/np} 83.1 Level of Service and Other Performance Measures 0 Level of service, LOS (Exhibit 20-3 for Class I or 20-4 for Class II) D Volume to capacity ratio, v/c=V _p / 3,200 0.64 Peak 15-min veh-miles of travel, VMT ₁₅ (veh- m)= 0.25L ₁ (V/PHF) 152 Peak-hour vehicle-miles of travel, VMT ₆₀ (veh- m)=V*L ₁ 533 Peak 15-min total travel time, TT ₁₅ (veh-h)= VMT ₁₅ /ATS 7.9 Notes 7.9	Base percent time-spent-following, BPTSF(%)=100(1-e ^{-0.000879v} p)	83.1									
Percent time-spent-following, PTSF(%)=BPTSF+f _{d/np} 83.1 Level of Service and Other Performance Measures D Level of service, LOS (Exhibit 20-3 for Class I or 20-4 for Class II) D Volume to capacity ratio, v/c=V _p / 3,200 0.64 Peak 15-min veh-miles of travel, VMT ₁₅ (veh- m)= $0.25L_t$ (V/PHF) 152 Peak-hour vehicle-miles of travel, VMT ₆₀ (veh- m)=V*L _t 533 Peak 15-min total travel time, TT ₁₅ (veh-h)= VMT ₁₅ /ATS 7.9 Notes $1.1 \text{ Vp} >= 3.200 pc/h, terminate analysis-the LOS is F. $	Adj. for directional distribution and no-passing zone, $f_{d/hp}(\%)(Exh.\ 20\text{-}12)$	0.0									
Level of Service and Other Performance Measures Level of service, LOS (Exhibit 20-3 for Class I or 20-4 for Class II) D Volume to capacity ratio, $v/c=V_p/3,200$ 0.64 Peak 15-min veh-miles of travel, VMT ₁₅ (veh- mi)= 0.25L _t (V/PHF) 152 Peak-hour vehicle-miles of travel, VMT ₆₀ (veh- mi)=V*L _t 533 Peak 15-min total travel time, TT ₁₅ (veh-h)= VMT ₁₅ /ATS 7.9 Notes 1. If Vp >= 3,200 pc/h, terminate analysis-the LOS is F.	Percent time-spent-following, PTSF(%)=BPTSF+f d/np	83.1									
Level of service, LOS (Exhibit 20-3 for Class 1 or 20-4 for Class II) D Volume to capacity ratio, $v/c=V_p/3,200$ 0.64 Peak 15-min veh-miles of travel, VMT ₁₅ (veh- mi)= 0.25L _t (V/PHF) 152 Peak-hour vehicle-miles of travel, VMT ₆₀ (veh- mi)=V*L _t 533 Peak 15-min total travel time, TT ₁₅ (veh-h)= VMT ₁₅ /ATS 7.9 Notes 1. If Vp >= 3,200 pc/h, terminate analysis-the LOS is F. 9. If bit bit bit bit bit bit is to 100 m.5	Level of Service and Other Performance Measures										
Peak 15-min veh-miles of travel, VMT ₁₅ (veh- mi)= 0.25L _t (V/PHF) 152 Peak hour vehicle-miles of travel, VMT ₆₀ (veh- mi)=V*L _t 533 Peak 15-min total travel time, TT ₁₅ (veh-h)= VMT ₁₅ /ATS 7.9 Notes 1. If Vp >= 3,200 pc/h, terminate analysis-the LOS is F.	Level or service, LOS (Exhibit 20-3 for Class I or 20-4 for Class II)	0.64									
Peak-hour vehicle-miles of travel, VMT ₆₀ (veh- mi)=V*L _t 533 Peak 15-min total travel time, TT ₁₅ (veh-h)= VMT ₁₅ /ATS 7.9 Notes 1. If Vp >= 3,200 pc/h, terminate analysis-the LOS is F. 0. If bit performed pathods and pathods in the LOS is F.	Peak 15-min veh-miles of travel VMT (veh- mi)= 0.25L (V/PHF)	152									
Peak 15-min total travel time, TT_{15} (veh-h)= VMT ₁₅ /ATS 7.9 Notes 1. If Vp >= 3,200 pc/h, terminate analysis-the LOS is F. 9. If bit beta travel total travel and ys is the LOS is F.	Peak-hour vehicle-miles of travel. VMT _{po} (veh- mi)=V*L.	533									
Notes 1. If $V_P >= 3,200 \text{ pc/h}$, terminate analysis-the LOS is F. 2. K bit obtained to be a state of 200 sc/h.	Peak 15-min total travel time. TT _x (veh-h)= VMT _x /ATS	7.9									
1. If Vp >= 3,200 pc/h, terminate analysis-the LOS is F.	Notes										
	1. If $Vp >= 3,200 \text{ pc/h}$, terminate analysis-the LOS is F.										

	TW	O-WAY STOP	CONTR	OL S	UMI	MARY				
General Informatio	n		Site I	nforn	natio	on				
Analyst	DHS		Interse	ection			SR 249 8	a I-40	EB R	amps
Agency/Co.	GSP		Jurisd	iction			Kingston	Sprin	ngs, Tl	V
Date Performed	2/17/2009	9	Analys	sis Yea	ır		2009			
Analysis Time Period	2009 AM	Peak								
Project Description Si	R 249 & I-40 EE	8 Ramps 2009 A	AM Peak							
East/West Street: 1-40	Ramps		North/S	South S	Stree	t: SR 249				
Intersection Orientation:	North-South		Study	Period	(nrs)	: 0.25				
Vehicle Volumes a	nd Adjustme	ents					0			
Major Street		Northbound				4		Ind		6
wovernent		2 	3 			4				D D
Volume (veh/h)	L	174	154			542	91			n
Peak-Hour Factor, PHF	0.88	0.88	0.88	}		0.88	0.88		(0.88
Hourly Flow Rate, HFR	50		40			0	0.000			0
(veh/h)	59	0	40			0	0			0
Percent Heavy Vehicles	0					12				
Median Type				Undi	videc	1				
RT Channelized			0				ļ			0
Lanes	0	1	0			1	1			0
Configuration			TR	TR		L	<u> </u>			
Upstream Signal		0					0			
Minor Street		Eastbound					Westbound			
Movement	7	8	9			10	11			12
	L	T	R			L	T			R
Volume (veh/h)	52		36							
Peak-Hour Factor, PHF	0.88	0.88	0.88	;		0.88	0.88		().88
(veh/h)	615	103	0			0	197			175
Percent Heavy Vehicles	12	0	12			0	0			0
Percent Grade (%)		0					0			
Flared Approach		N					N			
Storage		0					0			
RT Channelized			0							0
Lanes	1	0	1			0	0			0
Configuration	L		R							
Delay, Queue Length, a	and Level of Se	ervice								
Approach	Northbound	Southbound	,	Westb	ound		E	Eastb	ound	
Movement	1	4	7	8		9	10	1	1	12
Lane Configuration		L					L			R
v (veh/h)		615					59			40
C (m) (veh/h)		1134		1			49	1		925
v/c		0.54					1.20			0.04
95% aueue lenath		3.38					5.37	1		0.14
Control Delay (s/veh) 11.9		11.9					329.1			9.1
LOS		B					F	 F		A
Approach Delay (s/veh)						1	199.8			
Approach LOS								.00	-	
							Г Г			

Generated: 3/3/2009 12:49 PM

	TW	O-WAY STOP	CONTR	OL SI	UMI	MARY				
General Informatio	n		Site I	nform	natio	on				
Analyst	DHS		Interse	ection			SR 249 8	a I-40	EB R	amps
Agency/Co.	GSP		Jurisd	iction			Kingston	Sprin	gs, Tl	V
Date Performed	2/17/2009	9	Analys	sis Yea	ır		2009			
Analysis Time Period	2009 PM	Peak								
Project Description S	R 249 & I-40 EB	8 Ramps 2009 F	PM Peak							
East/West Street: 1-40	Ramps		North/S	South S	Stree	et: SR 249				
Intersection Orientation:	North-South		Study	Period	(nrs)): 0.25				
Vehicle Volumes a	nd Adjustme									
Major Street	1	Northbound				4		ind		6
wovernent		2	<u>3</u>			4	<u>р</u>			
Volume (veh/h)		112	51			143	233			n
Peak-Hour Factor, PHF	0.88	0.88	0.88	2		0.88	0.88		0).88
Hourly Flow Rate, HFR	0.00		000			0	0.000			0
(veh/h)	65	0	26		0		0			0
Percent Heavy Vehicles	0					12				
Median Type			1 -	Undiv	videc					
RT Channelized			0				ļ			0
Lanes	0	1	0			1	1			0
Configuration			TR			L	1			
Upstream Signal		0					0			
Minor Street		Eastbound					Westbound			
Movement	7	8	9			10	11			12
	L	T	R			L	T			R
Volume (veh/h)	58	0.00	23			0.00	0.00			0.00
Peak-Hour Factor, PHF	0.88	0.88	0.88	; 		0.88	0.88		l	1.88
(veh/h)	162	264	0			0	127			57
Percent Heavy Vehicles	12	0	12			0	0			0
Percent Grade (%)		0					0			
Flared Approach		N					N			
Storage		0					0			
RT Channelized			0							0
Lanes	1	0	1			0	0			0
Configuration	L		R							
Delay, Queue Length,	and Level of Se	ervice								
Approach	Northbound	Southbound	,	Westbo	ound		E	Eastbo	ound	
Movement	1	4	7	8		9	10	1	1	12
Lane Configuration		L					L			R
v (veh/h)		162					65			26
C (m) (veh/h)		1333		ĺ			323			751
v/c		0.12		1			0.20			0.03
95% queue length		0.41					0.74			0.11
Control Delay (s/veh) 8.1		8.1				i	18.9	i		10.0
LOS		A					C			A
Approach Delay (s/veh)			I			1	16.4			
Approach LOS								 C		
							I	0		

Generated: 3/3/2009 12:50 PM

	TW	O-WAY STOP	CONTR	OL S	UMI	MARY					
General Informatio	n		Site I	nform	natio	on					
Analyst	DHS		Interse	ection			SR 249 8	a I-40	EB R	amps	
Agency/Co.	GSP		Jurisdi	iction			Kingston	Sprin	igs, Tl	V	
Date Performed	2/17/2009	9	Analys	sis Yea	r		2014				
Analysis Time Period	2014 AM	Peak									
Project Description Si	R 249 & I-40 EB	8 Ramps 2014 A	AM Peak								
East/West Street: 1-40	Ramps		North/S	South S	Stree	et: SR 249					
Intersection Orientation:	North-South		Study	Period	(nrs)): 0.25					
Vehicle Volumes a	nd Adjustme	ents					0	1			
Major Street	1	Northbound	2			1		ina		6	
Movement		2	3 8			4	<u>5</u> Т			B	
Volume (veh/h)		199	176			619	104			11	
Peak-Hour Factor. PHF	0.88	0.88	0.88	}		0.88	0.88		().88	
Hourly Flow Rate, HFR	69	0	47			0	0			0	
(veh/h)	00	0	47			0	0			0	
Percent Heavy Vehicles	0			<u></u>		12					
Median Type		-1		Undi	video						
RT Channelized			0							0	
Lanes	0	1	0			1	1			0	
Configuration	_		TR	IR		L	<u> </u>				
Upstream Signal		0					0				
Minor Street		Eastbound				10	Westbou	nd		10	
Movement	/	8	9			10	11 T			12	
	L		<u> </u>			L				R	
Volume (ven/n)	60	0.00	42	,		0.00	0.00			00	
Hourly Flow Bate HER	0.00	0.88	0.00	,		0.00	0.00		L	1.00	
(veh/h)	703	118	0			0	226		2	200	
Percent Heavy Vehicles	12	0	12			0	0	ĺ		0	
Percent Grade (%)		0					0				
Flared Approach		N					N				
Storage		0					0				
RT Channelized			0							0	
Lanes	1	0	1			0	0			0	
Configuration	L		R								
Delay, Queue Length,	and Level of Se	ervice									
Approach	Northbound	Southbound		Westbo	ound		E	Eastb	ound		
Movement	1	4	7	8		9	10	1	1	12	
Lane Configuration		L					L			R	
v (veh/h)		703					68			47	
C (m) (veh/h)		1082		ĺ		í	27	1		908	
v/c		0.65					2.52			0.05	
95% queue length		5.03					8.23			0.16	
Control Delay (s/veh)		14.3					997.5			9.2	
LOS		B					F			A	
Approach Delay (s/veh)				I		1	593.6		3.6	6	
Approach LOS			1				F				
							Г				

	TW	O-WAY STOP	CONTR	OL SI	JMN	MARY				
General Informatio	n		Site I	nform	atio	on				
Analyst	DHS		Interse	ection			SR 249 8	a I-40	EB Ra	amps
Agency/Co.	GSP		Jurisdi	iction			Kingston	Spring	gs, Tl	V
Date Performed	2/17/2009	9	Analys	sis Yea	r		2014			
Analysis Time Period	2014 PM	Peak								
Project Description SI	<u>R 249 & I-40 EB</u>	Ramps 2014 F	PM Peak				-			
East/West Street: 1-40	Ramps		North/S	South S	Stree	t: SR 249)			
Intersection Orientation:	North-South	<u> </u>	Study							
Vehicle Volumes a	nd Adjustme	ents					0	1		
Major Street	1	Northbound	2			1		ina I		6
Movement		<u></u> т	B B			4				B
Volume (veh/h)		128	59			164	266			11
Peak-Hour Factor, PHF	0.88	0.88	0.88	?		0.88	0.88		C).88
Hourly Flow Rate, HFR	76	0	30			0	0	i		0
(veh/h)						10				•
Percent Heavy Vehicles	0			12						
Median Type		1		Unaiv	/laec	1	1			0
RT Channelized			0			4				0
Lanes	0	1				1				0
Conliguration		0				L				
Minor Street	7					10		na		10
Movement	7	<u>о</u> Т	9 D			10				D
Volumo (voh/h)	L		27			L				n
Peak-Hour Factor PHF	0,88	0.88	0.88	2		0.88	0.88		0	1.88
Hourly Flow Rate, HFR	0.00	0.00	0.00			0.00	0.00			
(veh/h)	186	302	0			0	145			67
Percent Heavy Vehicles	12	0	12		0		0			0
Percent Grade (%)	_	0	-				0			
Flared Approach		N					N			
Storage		0					0			
RT Channelized			0							0
Lanes	1	0	1			0	0			0
Configuration	L		R							
Delay, Queue Length, a	and Level of Se	ervice								
Approach	Northbound	Southbound		Westbo	ound		E	Eastbo	bund	
Movement	1	4	7	8		9	10	1	1	12
Lane Configuration		L					L			R
v (veh/h)		186					76			30
C (m) (veh/h)		1301					272			715
v/c		0.14					0.28			0.04
95% queue length		0.50					1.11			0.13
Control Delav (s/veh)		8.2		i			23.3	1		10.3
LOS		A		 			C	1		B
Approach Delay (s/veh)				I <u></u>		1		19	6	
Approach LOS							<u> </u>	<u></u>	-	
			l				J	0		
	TW	O-WAY STOP	CONTR	OL SI	JMI	MARY				
-------------------------------	-----------------	--------------	---------	-----------------	-------	------------	----------	--------	--------	---
General Informatio	n		Site I	nform	atio	on				
Analyst	DHS		Interse	ection			SR 249 8	a I-40	EB R	amps
Agency/Co.	GSP		Jurisd	iction			Kingston	Sprin	gs, Tl	V
Date Performed	2/17/2009	9	Analys	sis Yea	r		2034			
Analysis Time Period	2034 AM	Peak								
Project Description SI	R 249 & I-40 EB	Ramps 2034 A	AM Peak							
East/West Street: I-40	Ramps		North/S	South S	Stree	et: SR 249)			
Intersection Orientation:	North-South		Study	Period	(hrs)	: 0.25				
Vehicle Volumes a	nd Adjustme	ents								
Major Street		Northbound	-				Southbou	ind		
Movement	1	2	3			4	5			6
		T	R				T			R
Volume (veh/h)	0.00	296	262	$ \rightarrow $		921	155			0.00
Peak-Hour Factor, PHF	0.88	0.88	0.88	; 		0.88	0.88		ι	1.88
(veh/h)	101	0	70			0	0			0
Percent Heavy Vehicles	0					12				
Median Type				Undiv	videc	1				
RT Channelized			0							0
Lanes	0	1	0			1	1			0
Configuration			TR			L	Т	ĺ		
Upstream Signal		0					0			
Minor Street		Eastbound					Westbou	nd		
Movement	7	8	9			10	11	11		12
	L	Т	R			L	Т			R
Volume (veh/h)	89		62							
Peak-Hour Factor, PHF	0.88	0.88	0.88	;		0.88	0.88).88	
Hourly Flow Rate, HFR (veh/h)	1046	176	0			0	336		2	297
Percent Heavy Vehicles	12	0	12			0	0			0
Percent Grade (%)		0		- Î			0			
Flared Approach		N					N			
Storage		0					0			
RT Channelized			0							0
Lanes	1	0	1			0	0			0
Configuration	L		R							
Delay, Queue Length, a	and Level of Se	ervice								
Approach	Northbound	Southbound		Westbo	ound		E	Eastb	ound	
Movement	1	4	7	8		9	10	1	1	12
Lane Configuration		L					L			R
v (veh/h)		1046					101			70
C (m) (veh/h)		904		1			0			842
v/c		1.16								0.08
95% queue length		30.58		¦			<u> </u>			0.27
Control Delay (s/yeh)		102.00		<u> </u>			<u> </u>			9.7
		F								<u>, , , , , , , , , , , , , , , , , , , </u>
LUU Approach Deley (start)		<u>г</u>		I						А
Approach Delay (s/ven)							 			
Approach LOS										

	TW	O-WAY STOP	CONTR	OL S	UMI	MARY				
General Informatio	n		Site I	nform	natio	on				
Analyst	DHS		Interse	ection			SR 249 8	a I-40	EB R	amps
Agency/Co.	GSP		Jurisd	iction			Kingston	Sprin	gs, Tl	V
Date Performed	2/17/2009	9	Analys	sis Yea	r		2034			
Analysis Time Period	2034 PM	Peak								
Project Description SI	R 249 & I-40 EB	3 Ramps 2034 F	PM Peak							
East/West Street: 1-40	Ramps		North/S	South S	Stree	t: SR 249				
Intersection Orientation:	North-South	<u> </u>	Study	Period	(nrs)	: 0.25				
Vehicle Volumes a	nd Adjustme	ents					0	1		
Major Street	1 1	Northbound	2			Λ		ina I		6
Movement		2	3 			4				0 R
Volume (veh/h)		191	87			243	396			11
Peak-Hour Factor. PHF	0.88	0.88	0.88	2		0.88	0.88		0).88
Hourly Flow Rate, HFR	110	0	11			0	0		-	0
(veh/h)	112	0	44			0	0			0
Percent Heavy Vehicles	0					12				
Median Type			1	Undi	videc	1				
RT Channelized			0				ļ			0
Lanes	0	1	0			1	1			0
Configuration			TR			L	T			
Upstream Signal		0					0			
Minor Street		Eastbound					Westbou	nd		
Movement	7	8	9			10	11	11 T		12
	L	T	R			L	I			R
Volume (veh/h)	99	0.00	39	<u> </u>		0.00	0.00			0.00
Peak-Hour Factor, PHF	0.88	0.88	0.88	; 		0.88	0.88		l	1.88
(veh/h)	276	450	0			0	217	217		98
Percent Heavy Vehicles	12	0	12			0	0			0
Percent Grade (%)		0					0			
Flared Approach		N					N			
Storage		0	1				0	Ì		
RT Channelized			0				ĺ			0
Lanes	1	0	1			0	0			0
Configuration	L		R							
Delay, Queue Length, a	and Level of Se	ervice								
Approach	Northbound	Southbound	,	Westbo	ound		E	Eastb	ound	
Movement	1	4	7	8		9	10	1	1	12
Lane Configuration		L					L			R
v (veh/h)		276					112			44
C (m) (veh/h)		1191					136			589
v/c		0.23					0.82			0.07
95% queue length		0.20					5.15			0.24
Control Delay (e/veh)		2.00 2.0					985	├		116
		0.0 A					50.5 E			P 11.0
					B					
Approach Delay (s/ven)							ļ	/4.		
Approach LOS F										

	TW	O-WAY STOP	CONTR	OL SI	JMI	MARY				
General Informatio	n		Site I	nform	atio	on				
Analyst	DHS		Interse	ection			SR 249 8	a I-40	WB F	lamps
Agency/Co.	GSP		Jurisd	iction			Kingston	Sprin	igs, Tl	V
Date Performed	2/17/2009	9	Analys	sis Year	r		2009			
Analysis Time Period	2009 AM	Peak								
Project Description Si	R 249 & I-40 WI	B Ramps 2009	AM Peak							
East/West Street: 1-40	Ramps		North/S	South S	stree	t: SR 249)			
Intersection Orientation:	North-South		Study	Period ((hrs)	: 0.25				
Vehicle Volumes a	nd Adjustme	ents								
Major Street		Northbound	- î				Southbou	ind		
Movement	1	2	3			4	5			6
		100				L				<u>R</u>
Volume (ven/n) Roak Hour Easter, PHE	41	192	0.00	,		0.00	592			67 1 00
Hourly Flow Rate HFR	0.00	0.00	0.00	<u> </u>		0.00	0.00		ι	
(veh/h)	0	0	0			27	0			144
Percent Heavy Vehicles	12					12				
Median Type				Undiv	ridec	1				
RT Channelized			0							0
Lanes	1	1	0			0	1			0
Configuration	L	Т								TR
Upstream Signal		0					0			
Minor Street		Eastbound					Westbou	nd		
Movement	7	8	9			10	11			12
	L	Т	R			L	Т	Т		R
Volume (veh/h)						24				127
Peak-Hour Factor, PHF	0.88	0.88	0.88	;		0.88	0.88		0).88
Hourly Flow Rate, HFR (veh/h)	0	672	76			46	218			0
Percent Heavy Vehicles	12	0	12			12	0			12
Percent Grade (%)		0					0			
Flared Approach		N					N			
Storage		0					0			
RT Channelized			0							0
Lanes	0	0	0			1	0			1
Configuration						L				R
Delay, Queue Length, a	and Level of Se	ervice								
Approach	Northbound	Southbound		Westbo	ound		E	Eastb	ound	
Movement	1	4	7	8		9	10	1	1	12
Lane Configuration	L		L			R				
v (veh/h)	46		27			144				
C (m) (veh/h)	817		237			797				
v/c	0.06		0.11			0.18				
95% queue length	0.18		0.38			0.66				
Control Delay (s/veh)	9.7		22.1	i		10.5		i		
LOS	A		С	i		В				
Approach Delay (s/veh) 12.3										
Approach LOS				B			1			
Approach LOS B										

	TW	O-WAY STOP	CONTR		IMARY				
General Informatio	n		Site I	nformat	tion				
Analyst	DHS		Interse	ection		SR 249 8	R 1-40	WB R	amps
Agency/Co.	GSP		Jurisdi	iction		Kingston	Spring	gs, TN	V
Date Performed	2/17/2009	9	Analys	sis Year		2009			
Analysis Time Period	2009 PM	Peak							
Project Description Si	R 249 & I-40 WI	B Ramps 2009	PM Peak						
East/West Street: 1-40	Ramps		North/S	South Stre	eet: SR 24	9			
Intersection Orientation:	North-South		Study I	Period (hr	rs): 0.25				
Vehicle Volumes a	nd Adjustme	ents							
Major Street		Northbound				Southbou	und		
Movement	1	2	3		4	5			6
	L		<u> </u>				\rightarrow		R
Volume (veh/h)	29	129	0.00		0.00	247		1	29
Peak-Hour Factor, PHF	0.88	0.88	0.88		0.88	0.88		0	.88
(veh/h)	0	0	0		143	0		E	614
Percent Heavy Vehicles	12				12				
Median Type				Undivid	ed				
RT Channelized			0						0
Lanes	1	1	0		0	1			0
Configuration	L	Т					ſ		TR
Upstream Signal		0				0	0		
Minor Street		Eastbound				Westbou	nd		
Movement	7	8	9		10	11	11		12
	L	Т	R		L	Т	Т		R
Volume (veh/h)					126	126		5	541
Peak-Hour Factor, PHF	0.88	0.88	0.88	?	0.88	0.88		0	.88
Hourly Flow Rate, HFR (veh/h)	0	280	146		32	146			0
Percent Heavy Vehicles	12	0	12		12	0			12
Percent Grade (%)		0				0			
Flared Approach		N				N			
Storage		0				0			
RT Channelized			0						0
Lanes	0	0	0		1	0			1
Configuration					L		ĺ		R
Delay, Queue Length,	and Level of Se	ervice							
Approach	Northbound	Southbound	,	Westbour	nd	E	Eastbo	und	
Movement	1	4	7	8	9	10	1.	1	12
Lane Configuration	L		L		R				
v (veh/h)	32		143		614				
C (m) (veh/h)	1082		457		875				
v/c	0.03	(0.31		0.70	1			
95% aueue lenath	0.09		1.32		5.97				
Control Delay (s/veh)	8.4		16.4		18.2				
LOS	A	<u> </u>	C		С.	1			
Approach Delay (s/yeh) 1			17.8				I		
Approach LOS C									

 $HCS+^{TM}$ Version 5.2

Generated: 3/3/2009 12:52 PM

	TW	O-WAY STOP	CONTR		IMARY				
General Informatio	n		Site I	nformat	tion				
Analyst	DHS		Interse	ection		SR 249 8	& I-40 V	NB R	amps
Agency/Co.	GSP		Jurisd	iction		Kingston	Spring	gs, TN	V
Date Performed	2/17/2009	9	Analys	sis Year		2014			
Analysis Time Period	2014 AM	Peak							
Project Description Si	R 249 & I-40 WI	B Ramps 2014	AM Peak						
East/West Street: 1-40	Ramps		North/S	South Stre	eet: SR 249	9			
Intersection Orientation:	North-South		Study	Period (hr	rs): <i>0.25</i>				
Vehicle Volumes a	nd Adjustme	ents							
Major Street		Northbound				Southbou	und		
Movement	1	2	3		4	5			6
	L	000	К		L	070			<u> </u>
Volume (ven/n) Roak Hour Factor, PHE	47	220	0.00	,	0.00	6/6		0	//
Hourly Flow Bate HFR	0.00	0.00	0.00	<u> </u>	0.00	0.00		0	.00
(veh/h)	0	0	0		31	0		1	164
Percent Heavy Vehicles	0				12		Í		
Median Type				Undivide	ed				
RT Channelized			0						0
Lanes	1	1	0		0	1			0
Configuration	L	Т							TR
Upstream Signal		0				0	0		
Minor Street		Eastbound				Westbou	ind		
Movement	7	8	9		10	11	11		12
	L	Т	R		L	Т			R
Volume (veh/h)					28			1	145
Peak-Hour Factor, PHF	0.88	0.88	0.88	<u>}</u>	0.88	0.88		0	.88
Hourly Flow Rate, HFR (veh/h)	0	768	87		53	250			0
Percent Heavy Vehicles	12	0	12		0	0			0
Percent Grade (%)		0				0			
Flared Approach		N				N			
Storage		0				0	Í		
RT Channelized			0				Î		0
Lanes	0	0	0		1	0	Í		1
Configuration					L				R
Delay, Queue Length,	and Level of Se	ervice							
Approach	Northbound	Southbound	,	Westbour	nd	E	Eastbo	und	
Movement	1	4	7	8	9	10	11	1	12
Lane Configuration	L		L		R				
v (veh/h)	53	(31		164				
C (m) (veh/h)	793		202		794				
v/c	0.07		0.15		0.21				
95% queue length	0.21		0.53		0.77				
Control Delay (s/veh)	99		26.0		10.7	¦			
	Δ		 		R 10.7				
			12 1			I			
Approach LOC				10.1					
Approach LOS B									

 $HCS+^{TM}$ Version 5.2

Generated: 3/3/2009 12:53 PM

	TW	O-WAY STOP	CONTR	OL SI	JMI	MARY				
General Informatio	n		Site I	nform	atio	on				
Analyst	DHS		Interse	ection			SR 249 8	a I-40	WB F	Ramps
Agency/Co.	GSP		Jurisd	iction			Kingston	Sprir	ngs, Tl	V
Date Performed	2/17/200	9	Analys	sis Yea	r		2014			
Analysis Time Period	2014 PM	Peak								
Project Description SI	R 249 & I-40 WI	B Ramps 2014	PM Peak							
East/West Street: 1-40	Ramps		North/S	South S	Stree	t: SR 249)			
Intersection Orientation:	North-South	<u> </u>	Study	Period	(hrs)	: 0.25				
Vehicle Volumes a	nd Adjustme	ents					0 11 1			
Major Street		Northbound				4	Southbou	ind		
Movement		2 T				4	5 T			6 D
Volumo (voh/h)	L	148				L	282			n 1/8
Peak-Hour Factor PHF	0.88	0.88	0.88	2		0.88	0.88		(1 40 1 88
Hourly Flow Rate, HFR	0.00	0.00	0.00			100	0.00			700
(veh/h)	0	0	0			163	0			/02
Percent Heavy Vehicles	12					12				
Median Type				Undiv	videc	1	. <u> </u>			
RT Channelized			0				ļ			0
Lanes	1	1	0			0	1			0
Configuration	L	T								TR
Upstream Signal		0					0			
Minor Street		Eastbound					Westbou	nd		
Movement	7	8	9			10		11 T		12
	L	T	R			L	Т			R
Volume (veh/h)						144		(518	
Peak-Hour Factor, PHF	0.88	0.88	0.88			0.88	0.88		Ĺ	1.88
(veh/h)	0	320	168			38	168			0
Percent Heavy Vehicles	12	0	12			12	0			12
Percent Grade (%)		0					0			
Flared Approach		N					N			
Storage		0					0			
RT Channelized			0							0
Lanes	0	0	0			1	0			1
Configuration						L				R
Delay, Queue Length, a	and Level of Se	ervice								
Approach	Northbound	Southbound		Westbo	ound		E	Eastb	ound	
Movement	1	4	7	8		9	10	1	1	12
Lane Configuration	L		L			R				
v (veh/h)	38		163			702				
C (m) (veh/h)	1025		404			851				
v/c	0.04	[0.40			0.82	1			
95% queue length	0.12		1.91			9.40				
Control Delay (s/veh)	8.6		19.8	i		25.7	1			
LOS	A		C	 		D	1			
Approach Delay (s/yeh) 24.6										
Approach LOS				 	-		<u> </u>			
	l			<u> </u>			I			

 $HCS+^{TM}$ Version 5.2

Generated: 3/3/2009 12:53 PM

	TW	O-WAY STOP	CONTR	OL SU	M	MARY				
General Informatio	n		Site I	nforma	atio	on				
Analyst	DHS		Interse	ection			SR 249 8	a I-40	WB F	lamps
Agency/Co.	GSP		Jurisd	iction			Kingston	Sprin	ngs, Tl	V
Date Performed	2/17/2009	9	Analys	sis Year			2034			
Analysis Time Period	2034 AM	Peak								
Project Description Si	R 249 & I-40 WI	B Ramps 2034	AM Peak							
East/West Street: 1-40	Ramps		North/S	South St	ree	t: SR 249)			
Intersection Orientation:	North-South		Study	Period (h	hrs)	: 0.25				
Vehicle Volumes a	nd Adjustme	ents								
Major Street		Northbound	a				Southbou	ind		
Movement	1	2	3			4	5			6
	L	T	R			L	T			R
Volume (veh/h)	70	327				0.00	1006			114
Peak-Hour Factor, PHF	0.88	0.88	0.88			0.88	0.88		ι	1.88
(veh/h)	0	0	0			46	0		ź	245
Percent Heavy Vehicles	0					12				
Median Type				Undivid	dea	1				
RT Channelized			0							0
Lanes	1	1	0			0	1			0
Configuration	L	Т								TR
Upstream Signal		0					0			
Minor Street		Eastbound					Westbou	nd		
Movement	7	8	9			10	11	11		12
	L	Т	R			L	Т	Т		R
Volume (veh/h)						41			ź	216
Peak-Hour Factor, PHF	0.88	0.88	0.88	<u> </u>		0.88	0.88		0).88
Hourly Flow Rate, HFR (veh/h)	0	1143	129			79	371			0
Percent Heavy Vehicles	12	0	12			0	0			0
Percent Grade (%)		0					0			
Flared Approach		N					N			
Storage		0					0			
RT Channelized			0							0
Lanes	0	0	0			1	0			1
Configuration						L				R
Delay, Queue Length,	and Level of Se	ervice								
Approach	Northbound	Southbound	,	Westbou	und		E	Eastb	ound	
Movement	1	4	7	8		9	10	1	1	12
Lane Configuration	L		L			R				
v (veh/h)	79		46			245				
C (m) (veh/h)	553		83			679				
v/c	0.14		0.55	i		0.36				
95% queue length	0.50		2.44	i		1.64				
Control Delay (s/yeh)	12.6		92.6	 		13 3				
	72.0 P		52.0 E	 		P 10.0				
LUG B F		05.0		D						
Approach LOS D										

 $HCS+^{TM}$ Version 5.2

Generated: 3/3/2009 12:53 PM

General Information Site Information Inalyst DHS Intersection SR 249 & 1-40 WB Ramps Agency/Co. GSP Unrisdiction Kingston Springs, TN Analysis Time Period 2034 PM Peak Intersection SR 249 & 1-40 WB Ramps Project Description SR 249 & 1-40 WB Ramps 2034 PM Peak Intersection Status EastWest Street I-40 Ramps North/South Street: Status Status Major Street North-South Study Period (hrs): 0.25 Vehicle Volumes and Adjustments Major Street Northbound Southbound Movement 1 2 3 4 5 6 More reactor, PHF 0.88 0.89 1045 Cyclo Period Participan Singling 0 0 0 0 0 0 10 <td< th=""><th></th><th>TW</th><th>O-WAY STOP</th><th>CONTR</th><th>OL SU</th><th>MMAR</th><th>Y</th><th></th><th></th><th></th><th></th></td<>		TW	O-WAY STOP	CONTR	OL SU	MMAR	Y				
Analyst DHS Intersection SR 249 & I-40 WB Ramps Agency/Co. GSP Jurisdiction Kingston Springs, TN Date Performed 2/17/2009 Analysis Time Period 2034 Analysis Time Period 2034 PM Peak 2034 Project Description SR 249 & I-40 WB Ramps 2034 PM Peak 2034 EastWest Street: I-40 Ramps North/South Street: SR 249 Intersection Orientation: North-South Study Period (hrs): 0.25 Vehicle Volumes and Adjustments Major Street Northbound Southbound Movement 1 2 3 4 5 6 Volume (veh/h) 50 220 420 220 220 Peak-Hour Factor, PHF 0.88 0.88 0.88 0.88 0.88 0.88 Hourly Flow Rate, HFR 0 0 0 243 0 1045 Percent Heavy Vehicles 12 12 RT Channelized 0 0 0	General Informatio	n		Site I	nforma	ation					
Agency/Co. GSP Jurisdiction Kingston Springs, TN Date Performed 2/17/2009 Analysis Year 2034 Analysis Time Period 2034 PM Peak 2034 Project Description SR 249 & I-40 WB Ramps North/South Street: SR 249 Intersection Orientation: North-South Study Period (hrs): 0.25 Vehicle Volumes and Adjustments Major Street North/South Street: Southbound Major Street Northbound Southbound 6 Movement 1 2 3 4 5 6 Volume (veh/h) 50 220 420 220 220 Peak-Hour Factor, PHF 0.88 0.88 0.88 0.88 0.88 0.88 Hourly Flow Rate, HFR 0 0 0 1045 20 20 Percent Heavy Vehicles 12 12 - - Median Type 1 1 0 0 1 0 Lanes 1	Analyst	DHS		Interse	ection			SR 249 8	a I-40	WB F	Ramps
Date Performed 2/17/2009 Analysis Year 2034 Analysis Time Period 2034 PM Peak Project Description SR 249 & 1-40 WB Ramps 2034 PM Peak East/West Street: 1-40 Ramps North/South Street: SR 249 Intersection Orientation: North-South Study Period (hrs): 0.25 Vehicle Volumes and Adjustments Major Street Northbound Southbound Movement 1 2 3 4 5 6 Volume (veh/h) 50 220 420 220 200 420 220 0 1045 200 <	Agency/Co.	GSP		Jurisdi	iction			Kingston	Sprir	ngs, Tl	V
Analysis Time Period 2034 PM Peak Project Description SR 249 & I-40 WB Ramps - 2034 PM Peak EastWest Street: I-40 Ramps Intersection Orientation: North/South Study Period (hrs): 0.25 Vehicle Volumes and Adjustments Major Street Northbound L T R L T R Volume (veh/h) 50 220 Peak-Hour Factor, PHF 0.88 0.88 0.88 0.88 0.88 Hourly Flow Rate, HFR 0 0 0 1045 Vehicled 12 12 Median Type Undivided 0 0 0 RT Channelized 0 0 0 0 Lanes 1 1 0 0 12 Value (veh/h) 1 0 0 12 12 Grannelized 0 0 0 0 10 Lanes 1 1	Date Performed	2/17/2009	9	Analys	sis Year			2034			
Project Description SR 249 & I-40 WB Ramps 2034 PM Peak East/West Street: I-40 Ramps North/South Street: SR 249 Intersection Orientation: North/South Study Period (hrs): 0.25 Vehicle Volumes and Adjustments Northbound Southbound Major Street Northbound Southbound Movement 1 2 3 4 5 6 Volume (veh/h) 50 220 420 220 Peak-Hour Factor, PHF 0.88 0.88 0.88 0.88 0.88 0.88 0.88 Hourly Flow Rate, HFR 0 0 0 243 0 1045 Percent Heavy Vehicles 12 12 Median Type Undivided 7 0 0 1 0 Configuration L T R U T R Upstream Signal 0 1 1 2 0 1 Upstream Signal	Analysis Time Period	2034 PM	Peak								
East/West Street: <i>140 Ramps</i> North/South Street: <i>SR 249</i> Intersection Orientation: North-South Study Period (hrs): 0.25 Vehicle Volumes and Adjustments Major Street Northbound Southbound Movement 1 2 3 4 5 6 L T R L T R R 20 220 Peak-Hour Factor, PHF 0.88 0.89 1045 1045 1045 1045 1045 1045 1045 1045 1045 1045 1045 1045 1045 1045 1045 1045	Project Description SI	R 249 & I-40 WE	B Ramps 2034	PM Peak							
Intersection Orientation: North-South Study Period (hrs): 0.25 Wajor Street Northbound Southbound Mayor Street Northbound Southbound Movement 1 2 3 4 5 6 L T R L T R Volume (veh/h) 50 220 420 220 Peak-Hour Factor, PHF 0.88 0.88 0.88 0.88 0.88 Hourly Flow Rate, HFR 0 0 0 243 0 1045 Percent Heavy Vehicles 12 12 Median Type Undivided T 0 0 1 0 Lanes 1 1 0 0 1 0 0 Lanes 1 1 0 0 1 1 1 Upstream Signal 0 0 0 0 1 1 1 Upstream	East/West Street: 1-40	Ramps		North/S	South Str	reet: S	R 249)			
Vehicle Volumes and Adjustments Major Street Northbound Southbound Movement 1 2 3 4 5 6 L T R L T R Volume (veh/h) 50 220 420 220 Peak-Hour Factor, PHF 0.88 0.89 1045	Intersection Orientation:	North-South		Study I	Period (h	nrs): <i>0.</i> .	25				
Major Street Northbound Southbound Movement 1 2 3 4 5 6 L T R L T R L T R Volume (veh/h) 50 220 420 220 220 Peak-Hour Factor, PHF 0.88 0.89 0 104/5 0	Vehicle Volumes a	nd Adjustme	ents								
Movement 1 2 3 4 5 6 Volume (veh/h) 50 220 T R L T R Peak-Hour Factor, PHF 0.88 0.89 10 1 0	Major Street		Northbound					Southbou	ind		
L I R L I R Volume (veh/h) 50 220 420 220 Peak-Hour Factor, PHF 0.88 0.89 10 10 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 10 10 10 10 10 10 10 10 10 10 10 10 10 11 12 12 10 11 12 12 10 11 12 12	Movement	1	2	3		4		5			6
Volume (ver/n) 30 220 420 220 Peak-Hour Factor, PHF 0.88 0.89 0		L	000			L					<u> </u>
Preak-Hour Factor, PHP 0.88 0.8	Volume (ven/n) Rook Hour Footor, PHE	50	220	0.00	,	0.00		420		2	220
Notify From Fact, First 0 0 0 243 0 1045 Percent Heavy Vehicles 12 12 Median Type Undivided 0 0 1 0 0 RT Channelized 0 0 1 0 0 1 0 Lanes 1 1 0 0 1 0 0 1 0 Configuration L T 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 1 <td>Hourly Flow Bate HFR</td> <td>0.00</td> <td>0.00</td> <td>0.00</td> <td><u> </u></td> <td>0.00</td> <td></td> <td>0.00</td> <td></td> <td></td> <td></td>	Hourly Flow Bate HFR	0.00	0.00	0.00	<u> </u>	0.00		0.00			
Percent Heavy Vehicles1212Median TypeUndividedRT Channelized00Lanes1100Lanes1100ConfigurationLT77Upstream Signal00Minor StreetEastboundWestboundMovement78910LTRLTVolume (veh/h)214920Peak-Hour Factor, PHF0.880.880.880.880.880.880.88Hourly Flow Rate, HFR (veh/h)012Percent Heavy Vehicles12012Percent Grade (%)000Flared ApproachNNStorage000RT Channelized000010Lanes00Channelized00Channelized00Channelized00Channelized00Channelized00Configuration01Channelized01Configuration10Configuration10Configuration10Configuration10Configuration10Configuration10Configuration10Configuration10<	(veh/h)	0	0	0		243		0		1	045
Median TypeUndividedRT Channelized00Lanes110010ConfigurationLTUpstream Signal00Minor StreetEastboundMovement7891011112LTRLTRVolume (veh/h)214Peak-Hour Factor, PHF0.880.880.880.880.880477250562500Percent Heavy Vehicles12012Part ApproachNStorage0000000100010120120120131414151515161217121801911191010110110114015111611712181219101911191019111910191019101910191019101	Percent Heavy Vehicles	12				12					
RT Channelized 0 0 0 Lanes 1 1 0 0 1 0 Configuration L T 7 7 7 7 Upstream Signal 0 0 0 0 7 7 Minor Street Eastbound Westbound 0 11 12 Movement 7 8 9 10 11 12 L T R L T R Volume (veh/h) 214 920 Peak-Hour Factor, PHF 0.88 0.88 0.88 0.88 0.88 Hourly Flow Rate, HFR 0 477 250 56 250 0 Percent Heavy Vehicles 12 0 12 12 0 12 Percent Grade (%) 0 0 0 0 12 0 12 RT Channelized 0 0 0 0 0 0 1 Lanes 0 0 0 1 0 1 <td>Median Type</td> <td></td> <td></td> <td></td> <td>Undivid</td> <td>ded</td> <td></td> <td></td> <td></td> <td></td> <td></td>	Median Type				Undivid	ded					
Lanes110010ConfigurationLTTTRUpstream Signal000Minor StreetEastboundWestboundMovement789101112LTRLTRVolume (veh/h)214920Peak-Hour Factor, PHF0.880.880.880.880.880.88Hourly Flow Rate, HFR (veh/h)0477250562500Percent Heavy Vehicles1201212012Percent Grade (%)000000RT Channelized000101Lanes0010101	RT Channelized			0							0
ConfigurationLTTRUpstream Signal000Minor StreetEastboundWestboundMovement789101112LTRLTRVolume (veh/h)214920Peak-Hour Factor, PHF0.880.880.880.880.880.88Hourly Flow Rate, HFR (veh/h)0477250562500Percent Heavy Vehicles1201212012Percent Grade (%)000000Flared ApproachN000101RT Channelized0001010Lanes00010101	Lanes	1	1	0		0		1			0
Upstream Signal 0 0 0 Minor Street Eastbound Westbound Movement 7 8 9 10 11 12 Movement 1 1 1 12 1 1 12 Movement 1 1 1 1 12 1 1 12 Volume (veh/h) 1 1 1 1 12 1 1 12 Peak-Hour Factor, PHF 0.88	Configuration	L	Т								TR
Minor StreetEastboundWestboundMovement789101112 L TRLTRVolume (veh/h)214920Peak-Hour Factor, PHF0.880.880.880.880.88Hourly Flow Rate, HFR (veh/h)0477250562500Percent Heavy Vehicles1201212012Percent Grade (%)000000Flared ApproachN00000RT Channelized000101Configuration001010	Upstream Signal		0					0			
Movement 7 8 9 10 11 12 L T R L T R Image: Constraint of the state	Minor Street		Eastbound					Westbou	nd		
L T R L T R Volume (veh/h) 214 920 Peak-Hour Factor, PHF 0.88 0.85 0.85 <t< td=""><td>Movement</td><td>7</td><td>8</td><td>9</td><td></td><td>10</td><td></td><td>11</td><td></td><td></td><td>12</td></t<>	Movement	7	8	9		10		11			12
Volume (veh/h) 214 920 Peak-Hour Factor, PHF 0.88 0.85 0.88 <td< td=""><td></td><td>L</td><td>Т</td><td>R</td><td></td><td>L</td><td></td><td colspan="2">Т</td><td></td><td>R</td></td<>		L	Т	R		L		Т			R
Peak-Hour Factor, PHF 0.88	Volume (veh/h)					214				9	920
Hourly Flow Rate, HFR (veh/h) 0 477 250 56 250 0 Percent Heavy Vehicles 12 0 12 12 0 12 Percent Grade (%) 0 0 0 0 0 12 12 0 12 Flared Approach N 0 0 0 0 0 0 0 12 0 12 12 0 12 12 0 12 12 0 12 12 0 12 12 0 12 12 0 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 <t< td=""><td>Peak-Hour Factor, PHF</td><td>0.88</td><td>0.88</td><td>0.88</td><td>; </td><td>0.88</td><td></td><td>0.88</td><td></td><td>0</td><td>).88</td></t<>	Peak-Hour Factor, PHF	0.88	0.88	0.88	; 	0.88		0.88		0).88
Percent Heavy Vehicles 12 0 12 12 0 12 Percent Grade (%) 0	Hourly Flow Rate, HFR (veh/h)	0	477	250		56 250				0	
Percent Grade (%)00Flared ApproachNNStorage00RT Channelized00Lanes00Configuration01	Percent Heavy Vehicles	12	0	12		12		0			12
Flared ApproachNNStorage00RT Channelized00Lanes00Configuration01	Percent Grade (%)		0					0			
Storage 0 0 RT Channelized 0 0 0 Lanes 0 0 1 0 1 Configuration 1 0 1 0 1	Flared Approach		N					N			
RT Channelized 0 0 0 0 0 0 0 0 0 1 0	Storage		0					0			
Lanes 0 0 0 1 0 1	RT Channelized			0							0
Configuration	Lanes	0	0	0		1		0			1
	Configuration					L					R
Delay, Queue Length, and Level of Service	Delay, Queue Length, a	and Level of Se	ervice								
Approach Northbound Southbound Westbound Eastbound	Approach	Northbound	Southbound		Westbou	und		E	Eastb	ound	
Movement 1 4 7 8 9 10 11 12	Movement	1	4	7	8		9	10	1	11	12
Lane Configuration L L R	Lane Configuration	L		L		ŀ	7				
v (veh/h) 56 243 1045	v (veh/h)	56		243		10	45				
C (m) (veh/h) 832 254 765	C (m) (veh/h)	832		254		70	65				
v/c 0.07 0.96 1.37	v/c	0.07		0.96		1.	37				
95% queue length 0.22 8.88 43.92	95% queue length	0.22		8.88		43	.92				
Control Delay (s/veh) 9.6 88.1 190.4	Control Delay (s/veh)	9.6		88.1	i	19	0.4		ĺ		
LOS A F F	LOS	A		F	1		5				
Approach Delay (s/veh) 171.1	Approach Delay (s/veh) 171.1		1			A					
Approach LOS F	Approach LOS	roach LOS F									

 $HCS+^{TM}$ Version 5.2

Generated: 3/3/2009 12:54 PM

			Warr	ants S	Summa	ry						
Information												
Analyst Di Agency/Co G Date Performed 2/ Project ID SI East/West Street I-4 File Name I-4	HS SP 13/2009 R 249 & I0 I0 EB_S FB Ban	I-40 EB R 249.x	Ramps hy	 	ntersectio Jurisdictio Jnits Time Peri North/Sou Major Stro	on on od Analy uth Stree eet	/zed t		SR 249 & Kingston U.S. Cus SR 249 North-Sc	& I-40 E Spring stomary buth	B Ram s, TN	os
General	1	ipo					Boad	way Ne	twork			
Major Street Speed (mph) 30		Рори	lation <	10.000			Two	Maior F	Routes		1	
Nearest Signal (ft) 1400		Coor	dinated S	Signal S	System		Wee	kend Co				
Crashes (per year) 0		Adeq	uate Tria	als of A	Iternative	S	5-vr	Growth	Factor			2
	<u>,</u>	 FB			WB			NB			SB	
Geometry and Traffic	LT	 TH	RT	LT	TH	RT	LT	TH	RT	LT	ТН	RT
Number of lanes, N	1	0	1	0	0	0	0	1	0	1	1	0
Lane usage	L		R		1			TR		L	Т	
Vehicle Volume Averages (vph)	45	0	25	0	0	0	0	92	71	209	117	0
Peds (ped/h) / Gaps (gaps/h) / / / / /												
Delay (s/veh) / (veh-hr) / / / / /												
Warrant 1: Eight-Hour Vehicula	r Volum	е						-				
1 A. Minimum Vehicular Volumes	(Both m	ajor app	roaches	and	higher m	inor app	roach)	or				
1 B. Interruption of Continuous Tra	affic (Bot	h major	approac	hesa	nd high	er minor	approa	ach)or	·			
1 80% Vehicularand Interruption	on Volun	nes (Bot	h major a	approa	chesan	d highe	er mino	r approa	ach)			
Warrant 2: Four-Hour Vehicular	Volume)										
2 A. Four-Hour Vehicular Volumes	s (Both n	najor ap	oroaches	sand-	- higher	minor ap	proach))				
Warrant 3: Peak Hour												
3 A. Peak-Hour Conditions (Minor	delay	and mi	nor volu	mear	nd total	volume)	or					
3 B. Peak- Hour Vehicular Volume	es (Both	major a	oproache	esanc	d higher	minor a	pproacl	n)				
Warrant 4: Pedestrian Volume												
4 A. Pedestrian Volumes (Four ho	ursor-	- one ho	ur)anc	3								
4 B. Gaps Same Period (Four hou	rsor	one hou	ir)									
Warrant 5: School Crossing												
5. Student Volumes and												
S. Gaps Same Fenou	Sustam											
6. Degree of Platooning (Predominant direction or both directions)												
Warrant 7: Crash Experience												
7 A. Adequate trials of alternatives	, observ	ance an	d enforc	ement	faileda	nd						
7 B. Reported crashes susceptible to correction by signal (12-month period)and												
7 C. 80% Volumes for Warrants 1.	A, 1Bc	or 4 are	e satisfie	d								

Warrant 8: Roadway Network	
8 A. Weekday Volume (Peak hour total and projected warrants 1, 2 or 3) or	
8 B. Weekend Volume (Five hours total)	

Warrants Volume

Copyright © 2005 University of Florida, All Rights Reserved

 $HCS+^{TM}$ Version 5.2

Generated: 3/3/2009 12:46 PM

				Warr	ants S	Summa	iry						
Information													
Analyst Agency/Co Date Performed Project ID East/West Street File Name	DH GS 2/1 SF I-4 I-4	HS SP 13/2009 R 249 & 0 0 WB_9	I-40 WE SR 249.2	3 Ramps xhy	ן כ ר י	ntersect Jurisdicti Jnits Fime Per North/So Major Str	ion on iod Anal <u>y</u> uth Stree reet	yzed et		SR 249 & Kingston U.S. Cus SR 249 North-So	& I-40 V Spring stomary puth	VB Ram s, TN	ps
Project Description SR 249 8	& I-40	WB Rar	nps										
General								Road	way Ne	twork			
Major Street Speed (mph)	30	×	Ρορι	lation <	10,000			Two	Major F	Routes			
Nearest Signal (ft)	1400		Coor	dinated	Signal S	System		Wee	kend Co	ount			
Crasnes (per year)	0		Adec	quate Tria	als of A	Iternative	es	5-yr	Growth	Factor	1		2
Geometry and Traffic			EB			WB	-		NB			SB	-
		LT	TH	RT	LT	ТН	RT	LT	TH	RT	LT	ТН	RT
Number of lanes, N 0 0 0 1 0 1 1 0 0 1										0			
Lane usage													
Vehicle Volume Averages (vph) 0 0 0 54 0 210 27 106 0 0 266									83				
Peds (ped/h) / Gaps (gaps/h) / / / / /													
Delay (s/veh) / (veh-hr) / / / / / <th <="" th=""> <th <="" th=""> / /<</th></th>											<th <="" th=""> / /<</th>	/ /<	
Warrant 1: Eight-Hour Veh	icular	[.] Volum	е										
1 A. Minimum Vehicular Volu	umes ((Both m	ajor app	roaches	and	higher n	ninor app	roach)	or				
1 B. Interruption of Continuo	us Tra	affic (Bot	h major	approad	chesa	nd higł	ner minor	approa	ach)or	·			
1 80% Vehicular and Inte	rruptio	on Volun	nes (Bot	th major	approa	chesai	nd highe	er mino	r approa	ach)			
Warrant 2: Four-Hour Vehi	cular	Volume)										×
2 A. Four-Hour Vehicular Vo	lumes	(Both n	najor ap	proache	sand-	- higher	minor ap	proach)				×
Warrant 3: Peak Hour													
3 A. Peak-Hour Conditions (Minor	delay	and m	inor volu	mear	nd total	volume)	or					
3 B. Peak- Hour Vehicular V	olume	s (Both	major a	pproache	esand	d highe	r minor a	pproacl	h)				
Warrant 4: Pedestrian Volu	ıme												
4 A. Pedestrian Volumes (Fo	our hou	ursor-	- one ho	our)and	d								
4 B. Gaps Same Period (Fou	ur hou	rsor	one hou	ur)									
Warrant 5: School Crossin	g												
5. Student Volumes and													
5. Gaps Same Period													
Warrant 6: Coordinated Sig	gnal S	System	otion or	both dir	octione								
Werrent 7: Creek Experier		iant une		Doth une	ections)								
7 A Adequate trials of altern		obsor	anco or	nd enforc	omont	failed	und						
7 B. Reported crashes succ	antible	to corr	ance di		12-mon	th period	uiu h)and						
7 C. 80% Volumes for Warrs	ante 1/	1R	or 1 21	o signal (d		u)anu	-					
7 G. 00 % Volumes for Walla		ч, тос	/ + alt	saisie	u								

Warrant 8: Roadway Network	
8 A. Weekday Volume (Peak hour totaland projected warrants 1, 2 or 3)or	
8 B. Weekend Volume (Five hours total)	

Warrants Volume

Copyright © 2005 University of Florida, All Rights Reserved

Totals

Generated: 3/3/2009 12:47 PM

Appendix C Stakeholder Coordination and Field Review Summary

November 7, 2008

STAKEHOLDER MEETING NOTES

EXIT 188 ON INTERSTATE 40 & STATE ROUTE 249/ LUYBEN HILLS ROAD, FROM I-40 TO SR 249/KINGSTON SPRINGS ROAD, KINGSTON SPRINGS, CHEATHAM COUNTY, TENNESSEE

MEETING DATE: November 7, 2008

- PARTICIPANTS: Steve Allen TDOT Bill Hart — TDOT Bridget Jones — Cumberland Region Tomorrow Jim Schippers — Kingston Springs City Council John McLeroy — Mayor, Kingston Springs Pam Lorenz — Vice Mayor, Kingston Springs Laurie Cooper — City Manager, Kingston Springs Mike Flatt — Gresham, Smith and Partners Lori Lange — Gresham, Smith and Partners Margaret Tyler — Gresham, Smith and Partners
- DISCUSSION: TDOT PLANNING ASSISTANCE FOR EXIT 188 ON I-40 IN KINGSTON SPRINGS, CHEATHAM COUNTY, TENNESSEE

In a letter dated September 16, 2008, the town of Kingston Springs requested planning assistance from the Tennessee Department of Transportation (TDOT) to evaluate the functionality and appearance of Exit 188 on Interstate 40 (I-40) in Kingston Springs, Cheatham County, Tennessee. On October 7, 2008, TDOT agreed to assist with this planning effort. Through an on-call planning contract with TDOT, Gresham, Smith and Partners (GS&P) was contacted to assist with this work.

The purpose of the subject meeting was to gather additional information from Kingston Springs about their issues and concerns with Exit 188 and State Route (SR) 249/Luyben Hills Road, and for Gresham, Smith and Partners (GS&P) to gather the information needed to develop a scope of work and budget for the project.

A summary of the discussion is outlined below.

1. In spring 2008, Cumberland Region Tomorrow (CRT) and the American Institute of Architects (AIA) collaborated with the Town of Kingston Springs though the AIA 150 Blueprint/Quality Growth Toolbox Pilot Project. (At the request of GS&P, Laurie Cooper brought a copy of the report to the meeting for GS&P use.)

Design Services For The Built Environment

1400 Nashville City Center / 511 Union Street / Nashville, Tennessee 37219-1733 / Phone 615.770.8100 / www.gspnet.com Firm's Florida Cert. No. AAP000034 / EB0003806 / IB26000797

MEETING NOTES EXIT 188 ON INTERSTATE 40 & STATE ROUTE 249/ LUYBEN HILLS ROAD November 11, 2008 Page 2

- 2. As discussed by the Town of Kingston Springs representatives, in its current state Exit 188 does not represent the character that the Town of Kingston Springs desires. Specifically, the Town of Kingston Springs has safety, aesthetics, and traffic flow concerns. The Town of Kingston Springs want a safe, walkable, attractive interchange and corridor that functions effectively. The SR 249/Kingston Springs Road corridor should address safety, accommodate pedestrians and address access management issues. Access to undeveloped parcels behind existing commercial development is important to the town and needs to be considered.
- 3. Kingston Springs values and hopes to grow its open space network/greenway network particularly connecting the subject segment of SR 249 and downtown Kingston Springs. Any proposed recommendations will need to allow for (and contribute to) the future development of this network.
- 4. A Transportation Planning Report (TPR) will be prepared for Exit 188 and SR 249/ Luyben Hills Road, from I-40 to SR 249/Kingston Springs Road. The Scope of Work should be broken down into two elements: the interstate interchange and the SR 249 corridor. Steve Allen explained the current funding issues TDOT is facing, and explained that less expensive projects have a greater chance of being implemented. The TPR will break the recommended improvements down into discrete projects so that they can be constructed individually as money becomes available.
- 5. The interstate interchange scope of work will need to assess the interchange's operational deficiencies and functionality of the ramp proper. Work should also include traffic counts (including turning movement counts and truck counts), and signal warrant analysis. Specifically, the turning radius at the ramp intersections will be reviewed. The existing bridge crossing I-40 will be evaluated to determine if sidewalks could be constructed within the existing bridge limits. Also, the existing directional signage off the interstate will be reviewed.
- 6. The scope of work for State Route 249/Luyben Hills Road to SR 249/Kingston Springs Road should include assessment of a curb and gutter typical section with driveway access per TDOT standards. As an alternative, defined curbing limiting access points for each property will be studied. The recommendations should be oriented towards "greening" the corridor, and accommodating pedestrian and truck movement. Signage and provisions for additional streetlights along the corridor should be considered. At the intersection of Luyben Hills Road and Kingston Springs Road, GS&P will check how recent the traffic counts are at this location, and review the capacity provided through this existing section. The

MEETING NOTES EXIT 188 ON INTERSTATE 40 & STATE ROUTE 249/ LUYBEN HILLS ROAD November 11, 2008 Page 3

existing signage will be reviewed. Limits of the State Route to the south side will be checked.

- 7. Truck traffic is an issue along the corridor. Trucks traveling north off the interstate on Luyben Hills Road have difficulty turning around back towards the interstate once they have stopped at adjacent businesses. There was a discussion about the possibility of a roundabout at the intersection of Luyben Hills Road and Kingston Springs Road to address safety concerns, while also acting as an attractive gateway to the community and a good visual focal point traveling north on SR 249/Luyben Hills Road from I-40. This will be evaluated in the TPR. Any existing safety issues at this intersection will also be reviewed by consulting TDOT crash data.
- 8. The town of Kingston Springs should talk to Shawn Bible at TDOT about interchange beautification. Her phone number is 615.532.3488, and her email address is shawn.a.bible@state.tn.us.
- 9. The planning process will not include public involvement; the group present at the meeting will act as a stakeholder committee and will meet several times during the project. The group will meet after the feasibility of a roundabout is determined and it is determined whether a traffic signal is warranted at the interchange. A field visit will also be completed. A final meeting will be held after approval of the TPR.
- 10. GS&P will get aerial mapping from TDOT and GIS data from Cheatham County.
- 11. The deliverable will be a TPR and boards illustrating the proposed recommendations for use by Kingston Springs.
- 12. When a field review is conducted, the possibility of turning the continuous center turn lane on SR 249/Kingston Springs Road into a median will be evaluated. This can be handled as a separate task.
- 13. GS&P is to investigate if an existing 27 acre parcel off of the interstate has an agreement for access off of the state right-of-way; the tract owner is Joyce Wiley.
- 14. Bi-weekly progress reports will be sent to TDOT and the Town of Kingston Springs.
- 15. The Town of Ridgeway was mentioned by the Town of Kingston Springs as a possible example of aesthetic improvements.

MEETING NOTES EXIT 188 ON INTERSTATE 40 & STATE ROUTE 249/ LUYBEN HILLS ROAD November 11, 2008 Page 4

This represents our understanding of the items discussed at this meeting. If you have any questions or comments concerning any of the information contained herein, please contact Lori Lange at (615)770-8554 or me at (615)770-8476.

Prepared by: Margaret Bass Tyler Gresham, Smith and Partners

Copy Participants Margaret Slater, Gresham, Smith and Partners

STAKEHOLDER MEETING AND FIELD REVIEW SUMMARY FEBRUARY 11, 2009 STATE ROUTE 249/LUYBEN HILLS ROAD TRANSPORTATION IMPROVEMENTS TOWN OF KINGSTON SPRINGS, TENNESSEE

The Tennessee Department of Transportation (TDOT) conducted a stakeholder meeting and field review for the State Route (SR) 249/Luyben Hills corridor on Wednesday, February 11, 2009 from 10:00 a.m. to 12:00 p.m. at the Kingston Springs City Hall. The meeting was facilitated by TDOT's subconsultant, Gresham, Smith & Partners (GS&P). The purpose of the meeting was to gather input that would assist TDOT and GS&P in the preparation of a *Transportation Planning Report (TPR*). The *TPR* is an early planning study that will:

- Establish the need for the project;
- Identify environmental and other constraints and issues; and
- Develop and evaluate project concepts.

Stakeholder Meeting

Sixteen people attended the meeting (see attached list), including Mayor John McLeroy, Vice Mayor Pam Lorenz and City Manager Laurie Cooper. Other attendees represented:

- Kingston Springs City Commission;
- Kingston Springs Planning Commission;
- TDOT; and
- GS&P.

Meeting attendees were invited to sign in and were given a handout, which included:

- A meeting agenda;
- An 8.5x11 aerial map of the project corridor; and
- An 11x17 map of the project corridor illustrating a conceptual layout developed by GS&P for a 100-foot diameter roundabout at the intersection of SR 249/Luyben Hills Road and Kingston Springs Road.

The meeting opened with a call to order by Mayor John McLeroy. He thanked everyone for their attendance and expressed the Town's appreciation of the work being conducted on the SR 249/Luyben Hills Road corridor. He expressed hope that the concepts can be implemented quickly.

Following Mayor John McLeroy's introductory comments, Margaret Tyler, GS&P Project Planner, reviewed the agenda for the meeting, briefly explained the TPR process, and asked that attendees introduce themselves. Following introductions, Margaret Tyler led a discussion on project needs and corridor issues. Jeremy Kubac and Jonathan Haycraft, GS&P Project Engineers, then discussed ideas for project concepts, issues and constraints in the project area. The group discussed the possibility of constructing a roundabout at the intersection of SR 249/Luyben Hills Road and Kingston Springs Road. The group also discussed the possibility of turning the continuous center turn lane on SR 249/East Kingston Springs Road into a raised median. Margaret Tyler then summarized the path forward for the project. Finally, thirteen attendees drove the project corridor in a van. These discussions are summarized below.

Purpose and Need:

Margaret Tyler explained the importance of the clearly identifying the need for the project early in the planning and project development process. Stakeholders were asked to provide input regarding why they think the project is needed. The responses below were recorded on an easel pad:

- Trucks mistakenly turn northbound on SR 249/Luyben Hills Road from Interstate 40 (I-40) and then have no place to turn around. Kingston Springs put up a sign that says no truck turnaround (with TDOT's approval), but trucks still make northbound turning movements. It is difficult to say why this is happening.
- If there is a wreck on I-40, truck traffic detours through the project corridor (this is also a problem downtown).
- There is pedestrian traffic throughout the SR 249/Luyben Hills Road corridor (including pedestrians crossing the interstate bridge to and from the truck stop) but there are no pedestrian facilities. This poses safety concerns for pedestrians and drivers. Often, the pedestrians are truckers getting something to eat or people walking to and from the hotels. Pedestrians need their own defined space/path within this commercial corridor.
- It is difficult to take a left-turn from businesses along the corridor in the mornings and evenings (particularly the Sonic, the Kingston Springs United States Post Office, and Heritage Bank).
- There is poor access control throughout the corridor. This poses safety concerns.
- There is a steep grading issue by EI Jardin that poses safety issues.
- Truck signage and commercial signage along the corridor needs improvement.
- In its current condition, the corridor does not reflect the unique character of Kingston Springs. It needs aesthetic improvements, and it needs to act as a better gateway to the community.
- The truck stop south of the interchange regularly fills up by dark (it is the first big truck stop outside of Nashville). As a result, there are issues with trucks parking in the grassy areas along the interchange ramps. The grassy areas have tall weeds and trash thrown out by the truckers accumulates there.
- School buses use the corridor and they stop immediately north of the McDonalds. Kids are getting off and going to the Mobile Home Park on the west side of the corridor. They are also crossing SR 249/Luyben Hills Road in that location. School buses and children need to be safely accommodated in this location.
- The *TPR* should consider the future commercial development of the parcel east/south of the McDonalds. There was a discussion about the possibility of making the TDOT access road into a local street. There would be traffic implications associated with this access point, and all agreed that this road should only accommodate right-in/right-out movements.
- There is a constant flow of northbound traffic on SR 249/Luyben Hills Road from I-40.

Concepts, Issues and Constraints:

Jeremy Kubac, GS&P Project Engineer, then discussed some of the issues GS&P has identified along the corridor. Issues discussed are summarized below:

- Harpeth Hills Drive, which is located in the southwest quadrant of the I-40 interchange, is located very close to the Interchange. Eugene Ivey, Kingston Springs Public Safety Chief, stated that cars do "dart across the intersection".
- Sidewalks can be constructed within the existing right-of-way (ROW) throughout the project corridor, including across I-40, with the exception of two problem locations. The parking spaces in front of the liquor and wine store will be blocked and work would take place close to the building. As a result, the installation of sidewalks would require close coordination with the property owner. In addition, small portions of ROW may be needed from the landscaped areas in front of the Mapco. Sidewalks can be constructed on the bridge, but the installation of handrails on the existing barrier would be needed.
- The SR 249/Luyben Hills Road Corridor needs defined access points. There is a state policy on access regulations that must be followed.
- There is a grade issue in front of EI Jardin that needs to be addressed.
- Curb and gutter would work well for the corridor.

Ron Baker (TDOT) asked about signalization at the ramp. GS&P responded that a signal warrant analysis is being prepared for the interchange.

Participants expressed their desire that the decision-making process not be guided solely by vehicles; the community desires solutions that safely accommodate pedestrians while also enhancing the aesthetics of the project corridor.

Participants also expressed the desire for the concepts to include landscaping between the curb and sidewalk. There was a discussion that the typical section can vary throughout the corridor.

Roundabout

The Town of Kingston Springs has an issue with truck traffic mistakenly turning north on SR 249/Luyben Hills Road from I-40. Once truck traffic has made this turn, it is difficult for them to turn around. At the request of Kingston Springs, the possibility of constructing a roundabout at the intersection of SR 249/Luyben Hills Road and Kingston Springs Road was evaluated. This intersection is currently signalized.

GS&P found that an "Urban Compact" roundabout with a 100-foot inscribed diameter would be of sufficient size to allow for truck traffic to carefully make a U-turn while minimizing impacts to adjacent properties. A handout was distributed that illustrates the conceptual design on aerial photography. The roundabout would have one 16-foot travel lane and an 18-foot truck apron. The center of the roundabout would be about 30 feet in diameter, and could be landscaped with low shrubs. A roundabout this exact size can be seen at the intersection of Briley Parkway and Two Rivers Parkway in Nashville. Although it is a tight turn for truck traffic and they will likely make the turn at low speeds, this size roundabout can accommodate truck traffic (as well as school bus traffic). This design could accommodate the business entrance on the north side of the intersection; however, the residential drive north of Kingston Springs Road would need to be relocated.

A roundabout would eliminate T-bone (side) collisions and reduce vehicular speeds. Roundabouts also require minimal maintenance. It would also address the issue of long queues of cars at the light, particularly in the evenings and mornings. There was a discussion that queuing issues might also be addressed by adjusting the signal timing. The roundabout will not, however, improve the

situation for people turning left onto SR 249/Luyben Hills Road from the Sonic and the Kingston Springs Post Office.

Meeting attendees asked whether a roundabout of this size can adequately handle the intersection's traffic volumes. GS&P explained that this is just a preliminary analysis and no detailed traffic analysis was conducted; however, a review of FHWA standards indicates that this roundabout should be able to adequately accommodate the traffic travelling through the intersection.

Jim Schippers asked if the roundabout could be larger. Project engineers responded that, in order for it to function as a larger roundabout, the roundabout (and footprint) would have to be considerably larger. Also, the graphic distributed to meeting attendees is not based on a survey, so the roundabout may be shifted five to 10 feet in various directions.

A median would need to be constructed at the roundabout approaches, and this would block leftturns into Heritage Bank. This access point would need to be closed and access could be redirected to their existing access point of Kingston Springs Road. The existing access point on SR 249/Luyben Hills Road could become a right-in/right-out, but there are safety issues associated with an access point being located that close to the roundabout. Minimal ROW, if any, would be needed from the Heritage Bank.

It was stressed that these are planning level discussions, and no decisions are being made. All questions regarding this project should be directed to Laurie Cooper so that questions are answered consistently.

Pam Lorenz stated that there seems to be two issues Kingston Springs can keep moving forward independent of the SR 249/Luyben Hills Road *TPR*: adjusting the signal at SR 249/Luyben Hills Road and Kingston Springs Road, and working with TDOT to obtain the access road north of I-40 with hopes of eventually converting it to a local road.

Conversion of East Kingston Springs Road Center Turn Lane into a Median

During the Stakeholder meeting held in November 2008, Kingston Springs asked that TDOT consider whether the center turn lane on SR 249/East Kingston Springs Road could be converted into a landscaped median because cars use it as a passing lane. They are also concerned about cars driving too fast past the schools. They also think it is aesthetically unpleasing.

Several alternatives were discussed in this area. A median would be possible, due to the relatively low number of access points along the corridor. (There isn't an issue with cars backing up in the center turn lane during school pick-up and drop-off hours.)

Another option that was discussed was to sign the existing 8-foot shoulders as bike lanes. Conversations during the field review indicated that this is a popular area for recreational bikers, and there are bike lanes on US 70 near Montgomery Bell State Park.

One attendee suggested the construction of a roundabout at Harpeth View Trail to slow traffic down. During the field review it was discussed that one problem with a roundabout in this location is that roundabouts are not as suitable for pedestrian crossings. Pedestrians are an important consideration because children from the schools regularly cross SR 249/East Kingston Springs Road in this location (to access sports fields).

A memorandum detailing this discussion and the issues and opportunities associated with the various options will be drafted and submitted to TDOT. This issue will not be addressed in the SR 249/Luyben Hills Road *TPR*.

Path Forward:

Margaret Tyler then discussed the next steps in completion of the TPR.

- The meeting notes will be distributed next week;
- A purpose and need for the project will be developed next week;

- Preliminary concepts will be developed and coordinated with TDOT in the next three weeks;
- Once the preliminary concepts are approved, GS&P will begin the preparation of the TPR;
- A memorandum prepared by GS&P for TDOT documenting the discussion about the possibility of turning the continuous turn lane on SR 249/East Kingston Springs Road into a median will be prepared and submitted to TDOT. It will outline the various options that were discussed and summarize their advantages and disadvantages; and
- The TPR will include a discussion about the possibility of constructing a roundabout at the intersection of SR 249/Luyben Hills Road and Kingston Springs Road. It will document the type of roundabout discussed and it will summarize the advantages and disadvantages of a roundabout in that location.

Prepared by: Margaret Tyler, Gresham Smith and Partners, February 20, 2009

Appendix D

Corridor Typical Sections and Business Entrance Layout Plan Sheets

Index Of Sheets

ET NO.	SHEET NAME
1	TITLE SHEET
2-2B	TYPICAL SECTIONS
2C-2E	GRAPHICAL TYPICAL SECTIONS
3-4	S.R. 249 AT I-40 INTERCHANGE
5-6	BUSINESS ENTRANCE LAYOUTS
7	ROUNDABOUT LAYOUT
8	PROJECT LIMITS ON USGS MAP

STATE OF TENNESSEE DEPARTMENT OF TRANSPORTATION BUREAU OF ENGINEERING

CHEATHAM COUNTY

STATE ROUTE 249 LUYBEN HILLS ROAD TRANSPORTATION IMPROVEMENTS

PROJEC

N RD. RD. PINE C-S BLUFF RD. RD. END PROJ 4MCSJON STA. 126 KINGSTON 1-40 SPRINGS 249 X , outn R. BEGIN PROJECT STA. 103+53.02 BRUSH Brush RD. ιŢj SPECIAL NOTES PROPOSALS MAY BE REJECTED BY THE COMMISSIONER IF ANY OF THE UNIT PRICES CONTAINED THEREIN ARE OBVIOUSLY UNBALANCED, EITHER EXCESSIVE OR BELOW THE REASONABLE COST ANALYSIS VALUE. SCALE: 1"=4000" THIS PROJECT TO BE CONSTRUCTED UNDER THE STANDARD SPECIFICATIONS OF THE TENNESSEE DEPARTMENT OF TRANSPORTATION DATED MARCH 1, 2006 AND ADDITIONAL SPECIFICATIONS AND SPECIAL PROVISIONS CONTAINED IN THE PLANS AND IN THE PROPOSAL CONTRACT. TDOT C.E. MANAGER 1 OR TDOT TRANSPORTATION MANAGER 1_____ TDOT ROAD SP. SV. 2 DESICNED BY_____ PM DESIGNED BT_______ DESIGNER _______ GRESHAM, SMITH AND PARTNERS ______ CHECKED BY______ P.E. NO._ PIN NO.

		YEAR	SHEET NO.
	1 L ININ .	2009	1
	FED. AID PROJ. NO.		
	STATE PROJ. NO.		
5-5			
STEWART KONGORER'S ROBERTSON SUNNEF	MACON CLAY FENTRESS SCOTT	CLAIBORNE HANCOC	ANNE INS SULLIVAN
WEAKLEY HENRY HOUSTON B DAVIDSON WI		DERSON DEFFERSON	GREENE UNCO
GIBSUN CARROLL	ORO DEKALB WHITE CUMBERLAND ROANE	KNOX CON	ike
MADISON	RD COFFEE	BLOUNT	
SAUNT MCNAIRY HARDIN WAYNE SUCH GILES	GRUNDY CHIN	MONROE	
	FRANKLIN MARION	.I	
LUCATION			
ст			
-04.24			
	APPROVED:		
	APPROVED :		
	APPROVED:		CHIEF ENGINEER
	APPROVED: 		CHIEF ENGINEER
	APPROVED: DATE: APPROVED:		CHIEF ENGINEER
	APPROVED: DATE: APPROVED:		
	APPROVED : 		CHIEF ENGINEER
	APPROVED: DATE: APPROVED:		CHIEF ENGINEER
	APPROVED: DATE: APPROVED: U.S. DEPAR	TMENT OF TRANS	CHIEF ENGINEER COMMISSIONER
	APPROVED: DATE: APPROVED: U.S. DEPAR FEDERAL #	TMENT OF TRANS	CHIEF ENGINEER COMMISSIONER
· · · · · · · · · · · · · · · · · · ·	APPROVED: DATE: APPROVED: U.S. DEPAR FEDERAL H	TMENT OF TRANS	CHIEF ENGINEER COMMISSIONER
	APPROVED: DATE: APPROVED: U.S. DEPAR FEDERAL H	TMENT OF TRANS IIGHWAY ADMINIS	CHIEF ENGINEER COMMISSIONER
	APPROVED: DATE: APPROVED: U.S. DEPAR FEDERAL #	TMENT OF TRANS IIGHWAY ADMINIS	CHIEF ENGINEER COMMISSIONER
	APPROVED: DATE: APPROVED: U.S. DEPAR FEDERAL F	TMENT OF TRANS HIGHWAY ADMINIS	CHIEF ENGINEER COMMISSIONER
	APPROVED: DATE: APPROVED: U.S. DEPAR FEDERAL H APPROVED:	TMENT OF TRANS IIGHWAY ADMINIS	CHIEF ENGINEER COMMISSIONER

16/2009 2:13:55 PM \2700102\t\sheet02.sht

TENNESSEE DESIGN DI

<2700102\+

		_		_
	TYPE	YEAR	PROJECT NO.	SHEET NO.
I	TPR	2009		2
~				
T IN FRONT OF				
TING GUARDRAIL				
G/R				
<				
``\\.				
Δ				
P. G/R				
I				
3.,				
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				
NDRAIL				
I				
	[		STATE OF TEMMEGGES	
		DEPAI	TTMENT OF TRANSPORTA	TION
			TYPICAL	
			TITICAL	
			SECTIONS	
			SEGMENT 1	
			N.I.S.	



-CURB

EXISTING GROUND

└─CURB

TANGENT SECTION

STA. 113+82.00 TO STA. 123+30.00

OPTION 1

NOTE: FOR BOTH OPTIONS, THE LANDSCAPE BUFFERS AND SIDEWALK WIDTHS AND LOCATIONS CAN VARY DEPENDING ON THE CONTEXT (UTILITIES, ETC.) AND THE NEED FOR LARGER OR SMALLER WIDTHS OF THE BUFFERS. IT IS IMPORTANT TO KEEP A CONSISTENT THEME THROUGH THE PROJECT CORRIDOR.

6′

LCURB

└-1¼″ MILL & OVERLAY



	TYPE	YEAR	PROJECT NO.	SHEET NO.
	TPR	2009		2 A
Γ				







16/2009 2:15:00 PM \2700102\t\sheet02b.st

TYPE	YEAR	PROJECT NO.	SHEET NO.
TPR	2009		2B

Proposed Handrail

State Route 249 Bridge over Interstate 40 2-12' Travel Lanes and 12' Turn Lane with 6' Sidewalks



	TYPE	YEAR	PROJECT NO.	SHEET
	TPR	2009		20
	1)			
	/			
NOTE: Bridge will not	need	to	be widene	d
			STATE OF TENNESSEE	
		DEPAR	TMENT OF TRANSPORT	ATION
G S & P		CI		

TYPICAL SECTION

ILE NO

Existing Right of Wa Piravellane She 70 Buffet 70

State Route 249 - OPTION 1 Road Segment from I-40 Interchange to Approximately 450' South of Kingston Springs Road 6' Shoulder with 8' Sidewalk and Landscaped Buffers



TYPE	YEAR	PROJECT NO.	SHEET NO.
TPR	2009		2D



STATE OF TENMESSEE DEPARTMENT OF TRANSPORTATION GRAPHICAL

SECTION

TYPI



**State Route 249 - OPTION 2** Road Segment from I-40 Interchange to Kingston Springs Road *Curb & Gutter with Landscaped Buffers and 10' Multi-Use Path* 



TYPE	YEAR	PROJECT NO.	SHEET NO.
TPR	2009		2E



STATE OF TEMMESSEE DEPARTMENT OF TRANSPORTATION GRAPHICAL

(D)

SECTION







PROJECT NO. SHEET NO. 3

> STATE OF TENNESSEE DEPARTMENT OF TRANSPORTATIO







/10/2009 11:01:41 AM :\2700102\t\sheet05.sh

TYPE	YEAR	PROJECT NO.	SHEET NO.
TPR	2009		5



BUSINESS

ENTRANCE LAYOUT STA.115+00 TO STA.121+50 SCALE: 1"=50"
TENNESSEE D.O.T DESIGN DIVISION



4/16/2009 2:16:45 PM P:\2700102\t\sheet06.sh

A STATISTICS AND A STATISTICS	TYPE	YEAR PROJECT NO.	SHEET
	TPR	2009	6
			<u> </u>
			<u> </u>
2			
§			
10			
15 2 1			
19			
E III			
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
1000			
33			
1 13			
No 19 mar			
and the second se			
No. of Concession, Name			
Marker and Marker and			
and the second			
- Alberton - Contraction - Con			
Bank			
munity Bank & Trust)			
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
and the second sec			
Contraction of the Contraction o			
and the second second			
and the second			
and the second se			
all and the second s			
The second second			
A CONTRACTOR OF THE OWNER OF THE			
ALC: NOT THE REAL PROPERTY OF			
and the second			
State and a state of			
		state ae temmegapp	
		DEPARTMENT OF TRAMSPORT	ATION
		BUSINESS	
and the second se		ENTRANCE	
		LAYUUI	-
		STA. 121+50 TO E.O.	Ρ
		JUALL: 1 -DU	

4/16/2009 2:17:38 PM P:\2700102\+\shee+07clip.sht

TENNESSEE D.O.T. DESIGN DIVISION

ILE NO.





## **Appendix E** Preliminary Cost Estimates

OPTION 1
SR 249 - 0.426 Miles from Truck Stop to Intersection with Kingston Springs Road
2-12' Lanes with 12' Turn Lane, 6' Shoulders, Curbed Islands with Buffer Strips and 6' Sidewalks

OPTION 1 RIGHT-OF-WAY COST						
DESCRIPTION RIGHT-OF-WAY COST	UNIT	QUANTITY	AVG. UNIT PRICE	HIGH UNIT PRICE	AVG. COST EST.	HIGH COST EST.
LAND	ACRES	0.022	\$150,000.00	\$200,000.00	\$3,300	\$4,400

					SUB-TOTAL	\$3,300	\$4,400
	ORTION 1						
				11/0		11/0	
				AVG.	HIGH	AVG.	HIGH
ITEM NO.	DESCRIPTION	UNII	QUANITIY	UNIT PRICE	UNIT PRICE	COST	COST
				<b>.</b>		EST.	EST.
105-01	CONSTRUCTION STAKES, LINES AND GRADES	L.S.	1	\$24,000.00	\$30,000.00	\$24,000	\$30,000
203-06	WATER	M.G.	235	\$7.90	\$9.50	\$1,857	\$2,233
203-10	EMBANKMENT (COMPACTED IN PLACE)	C.Y.	9460	\$7.60	\$8.30	\$71,896	\$78,518
209-05	SEDIMENT REMOVAL	C.Y.	50	\$5.90	\$7.10	\$295	\$355
209-08.02	TEMPORARY SILT FENCE (WITH BACKING)	L.F.	2500	\$4.90	\$5.30	\$12,250	\$13,250
209-40.30	CATCH BASIN PROTECTION (TYPE A)	EACH	11	\$425.00	\$450.00	\$4,675	\$4,950
303-01	MINERAL AGGREGATE, TYPE A BASE, GRADING D	TON	480	\$16.20	\$18.80	\$7,776	\$9,024
303-01.03	GRANULAR BACKFILL (RETAINING WALLS)	TON	120	\$41.50	\$55.20	\$4,980	\$6,624
307-02.01	ASPHALT CONCRETE MIX (PG70-22) (BPMB-HM) GRADING A	TON	146	\$68.40	\$79.00	\$9,986	\$11,534
307-02.02	ASPHALT CEMENT (P70-22) (BPMB-HM) GRADING A-S	TON	4	\$770.00	\$910.00	\$3,080	\$3,640
307-02.03	AGGREGATE (BPMB-HM) GRADING A-S MIX	TON	110	\$38.00	\$42.10	\$4,180	\$4,631
307-02.08	ASPHALT CONCRETE MIX (PG70-22) (BPMB-HM) GRADING B-M2	TON	955	\$74.20	\$83.10	\$70,861	\$79,361
402-01	BITUMINOUS MATERIAL FOR PRIME COAT (PC)	TON	1	\$456.70	\$562.30	\$594	\$731
402-02		TON	5	\$26.70	\$28.00	\$136	\$143
403-01			1	\$396.20	\$475.40	\$475	\$570
407-20.05		L.F.	/00	\$2.30	\$3.20	\$1,610	\$2,240
411-02.10	ACS MIX(PG70-22) GRADING D	TON	660	\$75.50	\$79.00	\$49,830	\$52,140
415-01.02		S.Y.	10000	\$1.70	\$2.60	\$17,000	\$26,000
604-01.04	1-1/2" STEEL PIPE HANDRAIL	L.F.	610	\$127.50	\$155.00	\$77,775	\$94,550
604-07.01	RETAINING WALL	S.F.	600	\$90.00	\$120.00	\$54,000	\$72,000
607-03.02	18" CONCRETE PIPE CULVERT (CLASS III)	L.F.	1500	\$41.50	\$50.00	\$62,250	\$75,000
607-05.02		L.F.	800	\$49.60	\$55.50	\$39,680	\$44,400
611-09.01	ADJUSTMENT OF EXISTING CATCHBASIN	EACH	2	\$625.00	\$1,000.00	\$1,250	\$2,000
611-12.02	CATCH BASINS, TYPE 12, > 4' - 8' DEPTH	EACH	9	\$2,010.00	\$2,500.00	\$18,090	\$22,500
611-16.02	CATCH BASINS, TYPE 16, > 4' - 8' DEPTH	EACH	2	\$4,320.00	\$5,300.00	\$8,640	\$10,600
701-01.01		S.F.	24000	\$3.35	\$3.45	\$80,400	\$82,800
701-02		5.F.	2700	\$5.80	\$7.00	\$15,660	\$18,900
701-02.03		<u> 5.г.</u>	3800	\$9.80 \$200 FO	\$11.70 \$255.40	\$37,240	\$44,460
702-01		C.Y.	160	\$292.50	\$300.40	\$46,800 \$45,400	\$30,804 \$40,075
702-03			75	\$202.50	\$245.00 ¢c5.00	\$10,188	\$18,375
705-01.01		L.F.	50	\$30.50 \$19.50	\$05.00 \$10.50	\$2,020	\$3,230 \$0,750
705-02.02			500	\$10.50	\$19.50	\$9,250	\$9,750
703-04.03			4400	\$303.00 ¢15.25	\$16.00	\$1,170 \$67,100	¢70.400
707-08.10			4400	\$10.20 \$2.95	\$10.00 \$2.10	\$07,100	\$70,400
712-01			1000	\$2.00 \$16.000.00	\$3.10 \$10,000,00	\$4,500	\$4,900
712-01		EACH	125	\$38.20	\$16,000.00	\$10,000	\$5,863
712-04.01	WARNING LIGHTS (TYPE A)	EACH	40	\$36.35	\$46.60	\$1.454	\$1,864
712-05.01	WARNING LIGHTS (TYPE C)	FACH	40	\$39.60	\$50.70	\$1.58/	\$2,028
712-05.05	SIGNS (CONSTRUCTION)	SE	500	\$9.75	\$11.25	\$4,875	\$5,625
72-02 02		1 F	200	\$21.20	\$31.30	\$4 240	\$6,260
712-08 02			200	\$1 325 00	\$1.510.00	\$2,650	\$3,020
713-16.01			2	\$7,525.00	\$1,310.00 \$11,100.00	\$15 100	\$22,020
713-16-20			<u>∠</u>	φι,000.00	\$11,100.00 \$270.00	φ15,100 ¢022	φ22,200 \$1,090
713-16.20			4	₹233.00 \$275.00	¢200.00	⊕932 \$275	\$1,080 \$200
716-02.01			20	\$3 050 00	φουυ.υυ ¢3 300 00	φ∠70 \$6.100	\$6,600
716-02.01		⊂.IVI. ⊂ ∨	2.0	φ3,030.00 \$10.40	\$3,300.00 \$22 ED	\$1.164	\$1,800
716-02.04		5.1.   E	200	\$12.40 \$12.00	ψ22.00 \$16.00	\$2,600	\$3.200
716-02.00			200	\$152.00 \$152.50	ψ10.00 \$170.70	¢2,000 \$2,000	\$2,200
716-02.00			380	\$26.90	ψττ2.70 \$33.10	\$10,222	\$12.578
716-02.09	PLASTIC WORD PVMT MARKING (LONGT ODINAL OROGO-WALK)		200	Ψ20.90 \$180.30	\$207 10	\$361	\$114
801-01	SEEDING (WITH MULCH)		2 Q	\$30.00	\$32 <i>1</i> 0	\$270	\$202
801-01 07	TEMPORARY SEEDING (WITH MULCH)		7	\$26.00	\$20 RU	\$182	\$200
801-03	WATER (SEEDING & SODDING)	MC	35	\$20.00	\$20.50	\$700	\$1,068
803-01	SODDING (NEW SOD)	SV	1200	\$2.55	\$3.00	\$3,060	\$3,600
SP-1	TRAFFIC SIGNAL AT WESTBOUND INTERCHANGE RAMP	1.5	1	\$80,000,00	\$100,000,00	\$80,000	\$100,000
SP-2	I ANDSCAPE BUFFERS (PLANTINGS & STREET FURNITURE)	1.9	1	\$135,000,00	\$151,000.00	\$135,000	\$151,000
SP-3	I AMP FIXTURES/POSTS INSTALLATION/WIRING	FACH	26	\$6,000,00	\$8,000.00	\$156,000	\$208,000

SUB-TOTAL \$1,277,190 \$1,516,232

**OPTION 1, UTILITY COST** 

Assumes no utility relocations, due to roadway width staying the same and sidewalk can be shifted around power poles as needed. A contingency for possible utility issues involving the underground drainage system is included below.

MOBILIZATION

Low = \$50,000 + 4.5% OF TOTAL CONST. EST. OVER \$1 MILLION EXC. MOBILIZATION High = \$230,000 + 4% OF TOTAL CONST. EST. OVER \$5 MILLION EXC. MOBILIZATION

UTILITY CONTINGENCY (5% OF CONSTRUCTION COST)	\$63,859	\$75,812
CONTINGENCY (15% OF CONSTRUCTION COST + UTILITY COST)	\$201,157	\$238,807
TOTAL CONSTRUCTION COST	\$1,604,680	\$1,921,500
PRELIMINARY ENGINEERING (10% OF TOTAL CONST. COST)	\$160,468	\$192,150
TOTAL (WITHOUT INFLATION)	\$1,765,148	\$2,113,650
INFLATION (6% PER YEAR OVER 5 YEARS)	\$596,973	\$714,836
		•

\$62,474 **\$90,649** 

TOTAL COSTS OPTION 1	\$2,365,421	\$2,832,886

SR 249 - 0.426 Miles from Truck Stop to Intersection with Kingston Springs Road CURB & GUTTER WITH LANDSCAPED BUFFERS AND 10' MULTI-USE PATHS							
OPTION 2 RIGHT-OF-WAY COST							
DESCRIPTION RIGHT-OF-WAY COST	UNIT	QUANTITY	AVG. UNIT PRICE	HIGH UNIT PRICE	AVG. COST EST.	HIGH COST EST.	
LAND	ACRES	0.022	\$150,000.00	\$200,000.00	\$3,300	\$4,400	

					SUB-TOTAL	\$3,300	\$4,400
	CONSTRUCTION COST						
				AVG	HIGH	AVG	HIGH
ITEM NO.	DESCRIPTION	UNIT	QUANTITY	UNIT PRICE	UNIT PRICE	COST	COST
		•••••		••••••	••••••	EST.	EST.
105-01	CONSTRUCTION STAKES, LINES AND GRADES	L.S.	1	\$24,000.00	\$30,000.00	\$24,000	\$30,000
202-03.01	REMOVAL OF ASPHALT PAVEMENT	S.Y.	1200	\$16.20	\$31.20	\$19,440	\$37,440
203-06	WATER	M.G.	235	\$7.90	\$9.50	\$1,857	\$2,233
203-10	EMBANKMENT (COMPACTED IN PLACE)	C.Y.	8500	\$7.60	\$8.30	\$64,600	\$70,550
209-05	SEDIMENT REMOVAL	C.Y.	50	\$5.90	\$7.10	\$295	\$355
209-08.02	TEMPORARY SILT FENCE (WITH BACKING)	L.F.	2500	\$4.90	\$5.30	\$12,250	\$13,250
209-40.30	CATCH BASIN PROTECTION (TYPE A)	EACH	19	\$425.00	\$450.00	\$8,075	\$8,550
303-01	MINERAL AGGREGATE, TYPE A BASE, GRADING D	TON	720	\$16.20	\$18.80	\$11,664	\$13,536
303-01.03	GRANULAR BACKFILL (RETAINING WALLS)	TON	120	\$41.50	\$55.20	\$4,980	\$6,624
307-02.01	ASPHALT CONCRETE MIX (PG/0-22) (BPMB-HM) GRADING A	TON	215	\$68.40	\$79.00	\$14,706	\$16,985
307-02.02	AGGREGATE (BPMB-HM) GRADING A-S		165	\$770.00	\$910.00	\$4,020	\$5,400 \$6,047
307-02.03	ASONEGATE (DI MIDTIMI) OKADINO A O MIX ASPHALT CONCRETE MIX (PG70-22) (BPMB-HM) GRADING B-M2	TON	1 400	\$74.20	\$83.10	\$103.880	\$116 340
402-01	BITUMINOUS MATERIAL FOR PRIME COAT (PC)	TON	2	\$456.70	\$562.30	\$913	\$1,125
402-02	AGGREGATE FOR COVER MATERIAL (PC)	TON	8	\$26.70	\$28.00	\$200	\$210
403-01	BITUMINOUS MATERIAL FOR TACK COAT (TC)	TON	1	\$396.20	\$475.40	\$475	\$570
407-20.05	SAW CUTTING ASPHALT PAVEMENT	L.F.	700	\$2.30	\$3.20	\$1,610	\$2,240
411-02.10	ACS MIX(PG70-22) GRADING D	TON	660	\$75.50	\$79.00	\$49,830	\$52,140
415-01.02	COLD PLANING BITUMINOUS PAVEMENT	S.Y.	10000	\$1.70	\$2.60	\$17,000	\$26,000
604-01.04	1-1/2" STEEL PIPE HANDRAIL	L.F.	610	\$127.50	\$155.00	\$77,775	\$94,550
604-07.01	RETAINING WALL	S.F.	600	\$90.00	\$120.00	\$54,000	\$72,000
607-03.02	18" CONCRETE PIPE CULVERT (CLASS III)	L.F.	1700	\$41.50	\$50.00	\$70,550	\$85,000
607-05.02		L.F.	1100	\$49.60	\$55.50	\$54,560	\$61,050
611-09.01		EACH	2	\$625.00	\$1,000.00	\$1,250	\$2,000
611-12.02	CATCH BASINS, TYPE 12, > 4 - 8 DEPTH	EACH	15	\$2,010.00	\$2,500.00	\$30,150	\$37,500
701-01-01	CONCRETE SIDEWALK (A")	SE	4 27600	\$4,320.00 \$3.35	\$5,300.00 \$3.45	\$17,200	\$21,200 \$95,220
701-01.01	CONCRETE DRIVEWAY	S.F.	27000	\$5.80	\$7.00	\$15,660	\$18,900
701-02.03	CONCRETE HANDICAP RAMP	S.F.	3800	\$9.80	\$11.70	\$37,240	\$44,460
702-01	CONCRETE CURB	C.Y.	95	\$292.50	\$355.40	\$27,788	\$33,763
702-03	CONCRETE COMBINED CURB & GUTTER	C.Y.	200	\$202.50	\$245.00	\$40,500	\$49,000
705-01.01	GUARDRAIL AT BRIDGE ENDS	L.F.	50	\$56.50	\$65.00	\$2,825	\$3,250
705-02.02	SINGLE GUARDRAIL (TYPE 2)	L.F.	500	\$18.50	\$19.50	\$9,250	\$9,750
705-04.05	GUARDRAIL TERMINAL (TYPE-IN-LINE)	EACH	2	\$585.00	\$670.00	\$1,170	\$1,340
707-08.10		L.F.	4400	\$15.25	\$16.00	\$67,100	\$70,400
710-02	AGGREGATE UNDERDRAINS (WITH PIPE)	L.F.	800	\$2.85	\$3.10	\$2,280	\$2,480
712-01			125	\$16,000.00	\$19,000.00	\$16,000	\$19,000
712-04.01		EACH	125	\$36.20	\$40.90	\$4,775 \$1.454	\$0,000 \$1,864
712-05.03	WARNING LIGHTS (TYPE C)	FACH	40	\$39.60	\$50.70	\$1,584	\$2,028
712-06	SIGNS (CONSTRUCTION)	S.F.	500	\$9,75	\$11.25	\$4,875	\$5.625
72-02.02	INTERCONNECTED PORTABLE BARRIER RAIL	L.F.	200	\$21.20	\$31.30	\$4,240	\$6,260
712-08.03	ARROW BOARD (TYPE C)	EACH	2	\$1,325.00	\$1,510.00	\$2,650	\$3,020
713-16.01	CHANGEABLE MESSAGE SIGN UNIT	EACH	2	\$7,550.00	\$11,100.00	\$15,100	\$22,200
713-16.20	SIGNS (STREET NAME SIGNS)	EACH	4	\$233.00	\$270.00	\$932	\$1,080
713-16.24	SIGNS (STOP)	EACH	1	\$275.00	\$300.00	\$275	\$300
716-02.01	PLASTIC PAVEMENT MARKING (4" LINE)	L.M.	1.5	\$3,050.00	\$3,300.00	\$4,575	\$4,950
716-02.04	PLASTIC PAVEMENT MARKING (CHNZ STRIPING)	S.Y.	60.0	\$19.40	\$22.50	\$1,164	\$1,350
716-02.05	PLASTIC PAVEMENT MARKING (STOP LINE)	L.F.	200	\$13.00	\$16.00	\$2,600	\$3,200
716-02.06	PLASTIC PAVEMENT MARKING (TURN LANE ARROW)	EACH	15	\$152.50	\$172.70	\$2,288	\$2,591
716-02.09	PLASTIC PAVEMENT MARKING (LONGITUDINAL CROSS-WALK)	L.F.	380	\$26.90	\$33.10	\$10,222	\$12,578
716-03.01			2	\$180.30	\$207.10	\$361 \$370	\$414 \$202
801-01 801-01 07	TEMPORARY SEEDING (WITH MILLCH)		9		a32.40 €20.90	⇒∠70 \$190	\$292 \$200
801-01.07	WATER (SEEDING & SODDING)	MG	1 25			φ1ο∠ \$700	⊕∠09 \$1.068
803-01	SODDING (NEW SOD)	SY	1340	\$2.55	\$3.00	\$3 417	\$4,020
SP-1	TRAFFIC SIGNAL AT WESTBOUND INTERCHANGE RAMP	LS	1	\$80,000.00	\$100,000.00	\$80.000	\$100.000
SP-2	LANDSCAPE BUFFERS (PLANTINGS & STREET FURNITURE)	LS	1	\$144,000.00	\$162,000.00	\$144,000	\$162,000
SP-3	LAMP FIXTURES/POSTS INSTALLATION/WIRING	EACH	26	\$6,000.00	\$8,000.00	\$156,000	\$208,000

SUB-TOTAL \$1,406,166 \$1,680,327

## **OPTION 2, UTILITY COST** Assumes no utility relocations, due to roadway width staying the same and sidewalk can be shifted around power poles as needed. A contingency for possible utility issues involving the underground drainage system is included below.

MOBILIZATIONLow = \$50,000 + 4.5% OF TOTAL CONST. EST. OVER \$1 MILLION EXC. MOBILIZATIONHigh = \$230,000 + 4% OF TOTAL CONST. EST. OVER \$5 MILLION EXC. MOBILIZATION

**OPTION 2** 

UTILITY CONTINGENCY (5% OF CONSTRUCTION COST)	\$70,308	\$84,016
CONTINGENCY (15% OF CONSTRUCTION COST + UTILITY COST)	\$221,471	\$264,651
TOTAL CONSTRUCTION COST	\$1,766,223	\$2,126,208
PRELIMINARY ENGINEERING (10% OF TOTAL CONST. COST)	\$176,622	\$212,621
TOTAL (WITHOUT INFLATION)	\$1,942,845	\$2,338,829
INFLATION (6% PER YEAR OVER 5 YEARS)	\$657,070	\$790,992

\$68,277 \$97,213

TOTAL COSTS OPTION 2	\$2,603,216	\$3,134,221

## **ROUNDABOUT OPTION** Roundabout Intersection Improvement at Kingston Springs Road Only the costs for changing intersection to a roundabout

Roundabout Option RIGHT-OF-WAY COST						
DESCRIPTION RIGHT-OF-WAY COST	UNIT	QUANTITY	AVG. UNIT PRICE	HIGH UNIT PRICE	AVG. COST EST.	HIGH COST EST.
LAND	ACRES	0	\$150,000.00	\$200,000.00	\$0	\$0

					SUB-TOTAL	\$0	\$0
	ROUNDABOUT OPTION CONSTRUCTION COST						
ITEM NO.	DESCRIPTION	UNIT	QUANTITY	AVG. UNIT PRICE	HIGH UNIT PRICE	AVG. COST EST.	HIGH COST EST.
202-03.01	REMOVAL OF ASPHALT PAVEMENT	SY	215	\$16.20	\$31.20	\$3 483	\$6 708
203-06	WATER	MG	1	\$7.90	\$9.50	\$8	\$10
203-10	EMBANKMENT (COMPACTED IN PLACE)	C.Y.	200	\$7.60	\$8.30	\$1,520	\$1,660
209-05	SEDIMENT REMOVAL	C.Y.	10	\$5.90	\$7.10	\$59	\$71
209-08.02	TEMPORARY SILT FENCE (WITH BACKING)	1 F	1100	\$4.90	\$5.30	\$5,390	\$5,830
209-40.30	CATCH BASIN PROTECTION (TYPE A)	EACH	2	\$425.00	\$450.00	\$850	\$900
303-01	MINERAL AGGREGATE, TYPE A BASE, GRADING D	TON	29	\$16.20	\$18.80	\$470	\$545
307-02.01	ASPHALT CONCRETE MIX (PG70-22) (BPMB-HM) GRADING A	TON	9	\$68.40	\$79.00	\$616	\$711
307-02.02	ASPHALT CEMENT (P70-22) (BPMB-HM) GRADING A-S	TON	0.3	\$770.00	\$910.00	\$193	\$228
307-02.03	AGGREGATE (BPMB-HM) GRADING A-S MIX	TON	7	\$38.00	\$42.10	\$266	\$295
307-02.08	ASPHALT CONCRETE MIX (PG70-22) (BPMB-HM) GRADING B-M2	TON	57	\$74.20	\$83.10	\$4,229	\$4,737
402-01	BITUMINOUS MATERIAL FOR PRIME COAT (PC)	TON	0.1	\$456.70	\$562.30	\$46	\$56
402-02	AGGREGATE FOR COVER MATERIAL (PC)	TON	0.3	\$26.70	\$28.00	\$8	\$8
403-01	BITUMINOUS MATERIAL FOR TACK COAT (TC)	TON	0.4	\$396.20	\$475.40	\$139	\$166
407-20.05	SAW CUTTING ASPHALT PAVEMENT	I F	200	\$2.30	\$3.20	\$460	\$640
411-02.10	ACS MIX(PG70-22) GRADING D	TON	206	\$75.50	\$79.00	\$15.553	\$16,274
415-01.02	COLD PLANING BITUMINOUS PAVEMENT	SY	3100	\$1.70	\$2.60	\$5 270	\$8,060
501-01.03	PORTLAND CEMENT CONCRETE PAVEMENT (PLAIN) 10"	S.Y.	330	\$46.40	\$164.30	\$15,312	\$54,219
502-03.13	CONCRETE PAVEMENT REMOVAL	S.Y.	75	\$34.00	\$50.00	\$2,550	\$3,750
607-03.02	18" CONCRETE PIPE CUI VERT (CLASS III)	1 F	100	\$41.50	\$50.00	\$4 150	\$5,000
611-09.01	ADJUSTMENT OF EXISTING CATCHBASIN	FACH	1	\$625.00	\$1,000,00	\$625	\$1,000
611-12 02	CATCH BASINS, TYPE $12 > 4' - 8'$ DEPTH	FACH	2	\$2,010,00	\$2,500,00	\$4 020	\$5,000
701-01 01	CONCRETE SIDEWALK (4")	SE	2550	\$3.35	\$3.45	\$8,543	\$8,798
701-02	CONCRETE DRIVEWAY	S.F.	950	\$5.80	\$7.00	\$5,510	\$6,650
701-02.03	CONCRETE HANDICAP RAMP	S.F.	1000	\$9.80	\$11.70	\$9,800	\$11,700
702-01	CONCRETE CURB	C Y	8	\$292.50	\$355.40	\$2,340	\$2 843
702-03	CONCRETE COMBINED CURB & GUTTER	C Y	98	\$202.50	\$245.00	\$19.845	\$24,010
707-08 10	TEMPORARY CONSTRUCTION FENCE	U.1.	1400	\$15.25	\$16.00	\$21,350	\$22,400
710-02	AGGREGATE UNDERDRAINS (WITH PIPE)	LF	600	\$2.85	\$3.10	\$1 710	\$1,860
712-04.01	FLEXIBLE DRUMS (CHANNELIZING)	FACH	50	\$38.20	\$46.90	\$1,910	\$2,345
712-05.01	WARNING LIGHTS (TYPE A)	EACH	25	\$36.35	\$46.60	\$909	\$1 165
712-05.03	WARNING LIGHTS (TYPE C)	FACH	25	\$39.60	\$50.70	\$990	\$1,268
712-06	SIGNS (CONSTRUCTION)	S.F.	200	\$9.75	\$11.25	\$1.950	\$2,250
72-02.02	INTERCONNECTED PORTABLE BARRIER RAII	L.F.	100	\$21.20	\$31.30	\$2,120	\$3,130
712-08-03	ARROW BOARD (TYPE C)	FACH	3	\$1,325,00	\$1,510,00	\$3,975	\$4,530
713-16.01	CHANGEABLE MESSAGE SIGN UNIT	EACH	3	\$7,550,00	\$11 100 00	\$22,650	\$33,300
713-16.20	SIGNS (STREET NAME SIGNS)	EACH	3	\$233.00	\$270.00	\$699	\$810
713-16.24	SIGNS (STOP)	EACH	1	\$275.00	\$300.00	\$275	\$300
716-02.01	PLASTIC PAVEMENT MARKING (4" LINE)		0.6	\$3,050,00	\$3,300,00	\$1,830	\$1.980
716-02.04	PLASTIC PAVEMENT MARKING (CHNZ STRIPING)	S Y	45.0	\$19.40	\$22.50	\$873	\$1,000
716-02.04	PLASTIC PAVEMENT MARKING (STOP LINE)	1 F	50	\$13.00	\$16.00	\$650	\$800
716-02.00	PLASTIC PAVEMENT MARKING (TIRN LANE ARROW)	EACH	5	\$152.50	\$172.70	\$763	\$864
716-02.00	PLASTIC PAVEMENT MARKING (LONGITUDINAL CROSS-WALK)	1 F	130	\$26.90	\$33.10	\$3 497	\$4,303
730-01 02		EACH	13	\$842.00	\$1,882,00	\$10.946	\$24,466
801-01 07	TEMPORARY SEEDING (WITH MULICH)	LINIT	3	\$26.00	\$29.80	\$78	\$89
801-03	WATER (SEEDING & SODDING)	MG	12	\$20.00	\$30.50	\$240	\$366
803-01	SODDING (NEW SOD)	SY	450	\$2 55	\$3.00	\$1 148	\$1,350
SP-2	LANDSCAPE RUFFERS (PLANTINGS & STREET FURNITURE)	19	1	\$32,000,00	\$47,000,00	\$32,000	\$47,000
SP-3	LAMP FIXTURES/POSTS INSTALLATION/WIRING	EACH	8	\$6,000,00	\$8,000.00	\$48,000	\$64,000

SUB-TOTAL \$269,815 \$389,456

\$45,578

UNDABOUT OPTION, UTILITY COST	
sumes no utility relocations, due to roadway width staying the same and side	ewalk
be shifted around power poles as needed. A contingency for possible utilit	y
les involving the underground drainage system is included below.	-

MOBILIZATION	\$17,142
\$50,000 + 4.5% OF TOTAL CONST. EST. OVER \$1 MILLION EXC. MOBILIZATION	

Low = High = \$230,000 + 4% OF TOTAL CONST. EST. OVER \$5 MILLION EXC. MOBILIZATION

UTILITY CONTINGENCY (5% OF CONSTRUCTION COST)	\$13,491	\$19,473
CONTINGENCY (15% OF CONSTRUCTION COST + UTILITY COST)	\$42,496	\$61,339
		<b>A5 1 5 0 1 7</b>
	\$342,943	\$515,847
	<b>*</b> 04.004	<b>A</b> E4 505
PRELIMINARY ENGINEERING (10% OF TOTAL CONST. COST)	\$34,294	\$51,585
	<b>MOTT 007</b>	<b><b><b><b><b><b></b></b></b></b></b></b>
	\$377,237	\$567,431
	¢107 500	¢101 005
INFLATION (0% FER TEAR OVER 5 TEARS)	\$127,30Z	\$191,905
	<b><i><b>¢</b></i>E04040</b>	<b>Ф750 007</b>
	JD04,819	\$159,331