INTERCHANGE JUSTIFICATION STUDY

TABLE OF CONTENTS

1.0 Introduction 1
1.1 Study Purpose and Scope 1
1.2 Description of Project Area 2
1.3 Relationship to Other Highway Improvement Plans and Programs 5
2.0 Preliminary Planning Data 6
2.1 Land Use 6
2.2 Environmental Concerns 7
2.3 Traffic Served 10
2.4 Crash Analysis 27
2.5 Proposed Improvements 28
2.6 Discussion of Options 32
3.0 Engineering Investigation 35
3.1 Traffic Operations 35
3.2 Access Analysis (FWHA Policy Analysis) 41
3.3 Cost Estimate 45
4.0 Summary and Conclusions 47
4.1 TDOT Design Division Concurrence 48

Tables
1.1 U.S. Census Population Trends 2
2.1 - Level of Service (LOS) Description 11
2.2 - Study Interchange Traffic Volumes (Two-Way) - Existing System 12
$2.3-2.7$ - Capacity Analysis Results - Existing System 13-17
2.8 - Study Interchange Traffic Volumes (Two-Way) - Proposed System 18
2.9-2.15 - Capacity Analysis Results - Proposed System 20-26
2.16 - APD-40 Crash Data Summary 27

Figures

1.1 - Location Map 3
1.2 - Proposed Interchange Overview Area 3
1.3 - Westbound View along APD-40 from Humphrey Bridge Rd 4
1.4 - Eastbound View along APD-40 toward the US 11 Interchange 4
2.1 - Existing Land Use 8
2.2 - Future Land Use 9
2.3 - Concept Plan 30
2.4 - US 11/South Lee Highway Improvements 31
2.5 - Concept 2 33
2.6 - Concept 3 34
2.7 - Concept 4 34
3.1 - APD-40 Mainline Level of Service Summary 2013 AM Peak Hour 37
3.2 - APD-40 Mainline Level of Service Summary 2013 PM Peak Hour 38
3.3 - APD-40 Mainline Level of Service Summary 2033 AM Peak Hour 39
3.4 - APD-40 Mainline Level of Service Summary 2033 PM Peak Hour 40

Appendix

A. Traffic Data
B. Functional Plans
C. Other Options Considered
D. Cost Estimate Worksheets
E. Crash Diagrams
F. I-75 Exit 20 Interchange Modification Functional Plans
G. Ocoee Regional Gateway: Land Use Report
H. Coordination Meeting Summaries
I. Highway Capacity Analysis Output Files

1.0 INTRODUCTION

1.1 Study Purpose and Scope

Purpose

The purpose of this study is to investigate the need and viability of a new interchange located on APD-40 (State Route 311/US74/US 64 Bypass), approximately 0.6-mile east of the Exit 20 interchange with I-75 and 0.9 mile west of the South Lee Highway (US 11) interchange with APD-40 in Cleveland, Tennessee.

Scope

The scope of the study is to provide a detailed evaluation of potential interchange locations and configurations to better accommodate traffic anticipated with potential development in the immediate area. This study is at the request of the Tennessee Department of Transportation (TDOT) on behalf of local, state, and federal officials representing Cleveland, Tennessee.

The Cleveland Urban Area Metropolitan Planning Organization (CUAMPO) has identified this potential project as being supported by the natural characteristics of the land, existing and proposed utilities, and existing and proposed complimentary roadway system including, but not limited to, the proposed improvements to the nearby I-75 Exit 20.

Project Need

This proposed new interchange is needed to meet current passenger and freight transportation demands, to mitigate safety and congestion concerns, and to support the future logical pattern of development within the study area. According to the CUAMPO, the addition of a new interchange is justified in terms of economic necessity and support of the future regional and national transportation system. The transportation improvements outlined in this study are necessary to support the current needs of the area as well as the envisioned future land use and economic development.

The natural characteristics of the area, the existing and proposed utilities, and the existing and proposed roads supports the proposed economic development. The proposed slip ramp will provide direct access to southeast quadrant of the study interchange for the following proposed economic developments:

- The United States Forest Service (USFS) is planning to relocate their Cherokee National Forest headquarters to this site. The USFS site will also serve as a tourist destination prior to entering the Cherokee National Forest on APD-40 which will include the historical and cultural resources associated with the Trail of Tears National Trail.
- An Ocoee River Gateway site for visitors providing a natural entrance to the Ocoee River rafting and recreation area.
- A Visitor Welcome Center to draw attention to the area by promoting the many regional and recreational opportunities for the thousands of visitors who access the Cherokee National Forest and the Ocoee River area via the study interchange.
- A convention center serving the southern Cleveland/Bradley County area.
- An industrial park to support the new Volkswagen plant facility near I-75 Exit 9 interchange in Chattanooga.

At this time, there is an Interchange Modification Study (IMS) concurrently underway at the I-75 Exit 20 interchange. Although these are separate studies, they have been reviewed collectively
and prepared concurrently to assure that the future implementation is a collaborated and coordinated system.

1.2 Description of Project Area

This project area, located in the City of Cleveland in Bradley County, is along APD-40 between Exit 20 on 1-75 and the South Lee Highway (US 11) interchange on APD-40. Figure 1.1 depicts the study location and the surrounding area with the proximity of the adjacent interchanges. Figure 1.2 highlights the immediate interchange area on an aerial photograph. APD-40 is a part of the Appalachian Regional network also known as Corridor K and connects this area to Polk County and further into North Carolina. Figure 1.3 presents a photograph taken from the Humphrey Bridge Road overpass to the west. Figure 1.4 depicts a view to the east from the same location. Both photographs illustrate that the horizontal alignment is fairly straight for the majority of the corridor.

APD-40 route starts at approximately the mid-point of the bridge overpass at Exit 20 (Over I-75). To the west of this location, the road is known as Pleasant Grove Road and is a two lane facility. The bridge over I-75 is also a two-lane facility. Traveling east from I-75, APD-40 widens to a four-lane facility throughout the remainder of the study corridor.

Exit-20 at 1-75 Interchange Study

The nearest interchange to the west is Exit 20 at I-75. An IMS is being prepared for this location and has been coordinated with this study effort to ensure the recommended modifications are compatible with this study.

Population and Growth

The population in Bradley County increased by 27% from the year 1990 to 2006. This is slightly ahead of the statewide pace of 26.2%. Table 1.1 presents population trends for the area.

Table 1.1 - U.S. Census Population Trends

Year	City of Cleveland	Bradley County	Tennessee
1990	36,138	73,712	4.88 Mil
2000	37,192	87,965	5.69 mil
2006	38,627	93,728	6.16 mil

The land area in close proximity to this interchange has been targeted by the local jurisdiction for future development. This subarea's growth rate will be greater than the overall rate for Cleveland and Bradley County.

Figure 1.1 - Location Map

Figure 1.2 - Proposed Interchange Overview Area

South Lee Highway (US 11) at APD-40
The nearest interchange to the east is at South Lee Highway (US 11). This interchange is a traditional diamond and provides access to the southern area of Cleveland, Bradley County, and the northern reaches of Hamilton County. South Lee Highway is a multi-lane facility in this area and the ramp terminals are currently unsignalized.

Figure 1.3 - Westbound View along APD-40 from Humphrey Bridge Rd

Figure 1.4 - Eastbound View along APD-40 toward the US 11 Interchange

1.3 Relationship to Other Highway Improvement Plans and Programs

The proposed APD-40 access is included in the CUAMPO Long Range Transportation plan. The section of APD-40 just east of Exit 20 is a controlled access facility and property development has been curtailed because of the controlled access. The City of Cleveland has requested to be allowed access from APD-40 to allow for development along these areas.

This project has received funding in three Federal earmarks in the most recent SAFETEA-LU highway bill of 2005. Funding for environmental studies for Exit 20 and a new interchange on APD-40 are in the CUAMPO 2006-2008 Transportation Improvement Program (TIP). In addition, TDOT's 2010-2012 Proposed Comprehensive Multimodal Program has identified preliminary engineering for this proposed interchange.

This study is developed in cooperation with an IMS at the Exit 20 at I-75 interchange. The recommended configuration for a proposed Exit 20 interchange modification is presented in Appendix F. In a later section of this study, Figure 2.3 presents a depiction of how the two interchanges will be coordinated.

2.0 PRELIMINARY PLANNING DATA

2.1 Land Use

In preparation of this study effort, officials from Cleveland in conjunction with the CUAMPO prepared a detailed land use report that contains specific land use projections for the study area. As this report provides valuable information, it is provided in its entirety in Appendix \mathbf{G}. Specific areas adjacent to this proposed interchange are discussed below.

Western Area (Exit 20 Interchange)

There is a gas station/convenience store (Brewer's Exxon) located in the northwest quadrant of the interchange. This business attracts a large amount of truck traffic. There is also a fireworks discount store in the same area. A new Toyota dealership was constructed and opened for business during the first part of 2008 behind Brewer's Exxon.

In the southwest quadrant there is a multiplex movie theatre complex and another fireworks store. There is an abandoned service station in this quadrant that occupies the area between the fireworks store and Pleasant Grove Road. Just west of the movie theatre is a relatively new automobile travel center (Horizon) that includes a service station, convenience mart, and two restaurants.

The Tri-State Exhibition Center is situated approximately one mile west of the I-75 Exit 20 interchange. The Center has scheduled events almost every weekend from April through November. Most events are 3-day events, usually spanning a weekend. The Bradley County Landfill is further west.

Eastern Area (South Lee Highway (US 11) Interchange)

Automotive dealerships occupy the areas on the northwest and southeast quadrants. The area to the north is increasingly commercial. The area to the south transitions to a more rural setting.

Northern Area

The majority of the land on the north side adjacent to APD-40 is undeveloped. Further north, there are residential areas with low volume, low speed local roads.

Southern Area

The development to the south of APD-40 within the study limits is limited. There is a power station situated between the two existing interchanges along with a few businesses and some farm/pasture land.

This area has been identified by local officials as ideal for an industrial park as the future land use plans indicated that this relatively undeveloped area will become more commercial in the future. However, for development to survive, a direct connection to APD-40 is necessary to eliminate the need to travel east along substandard local roads to South Lee Highway.

Other Study Conclusions

The land in the study area is a logical location for future urban development including commercial, industrial, and residential uses. The following summarizes the local opinion of the area as extracted from the previously mentioned study provided in Appendix G.

Abstract

"These future land uses are supported by the plans of the Cleveland Urban Area MPO, Bradley County, and the City of Cleveland. The natural characteristics of the land, existing and proposed utilities, and existing and proposed roads would support such a development pattern. The proposed improvements to I-75 Exit 20 and the nearby APD-40 interchange or intersection are needed to meet current passenger and freight transportation needs, to mitigate safety and congestion concerns, and to support the aforementioned future logical pattern of development within the study area. The proposed improvements are also justified in terms of their connection to regional economic development in nearby Chattanooga, in terms of tourism and the public's access to the Cherokee National Forest and the historical and cultural resources associated with the Trail of Tears, and in terms of the future regional and national transportation systems that must make efficient use of existing facilities, provide intermodal connections, and enhance transportation security. The primary transportation improvements contemplated in this study, the improvements to I-75 Exit 20 and the nearby APD-40 interchange or intersection, are needed to support current needs of the area as well as the envisioned future land use and economic development. "

Figure 2.1 and Figure 2.2 depict Land Use Maps extracted from the CUAMPO Land Use Plan for the area. As depicted in Figure 2.1, the majority of land adjacent to APD-40 between the I-75 Exit 20 and South Lee Highway Interchanges is currently zoned natural with a scattering of businesses, residential developments, and institutional resources. Figure 2.2 presents the future land use plan where the entire frontage to APD-40 will be transformed to industrial and business/commercial. Note that on both figures, a proposed intersection is indicated. These figures were prepared prior to this study. At the time of the land use plan preparation, it was thought that one option may be to add an intersection between the two existing interchanges. This was not a consideration for this study.

2.2 Environmental Concerns

There is an existing lake in the southeast quadrant of the Exit 20 interchange. Several initial concepts would have directly impacted this lake. The recommended concept plan does not affect the lake area. There are several utility implications that would need to be considered with the potential new interchange location.

As this project progresses in the NEPA process, it will be necessary to conduct other studies to determine environmental and historical impact. The Tennessee Department of Transportation will perform all necessary studies including ecological and historical studies.

Figure 2.1 - Existing Land Use
(Extracted from the CAUMPO Land Use Report. See Appendix G for full Report)

Figure 2.2 - Future Land Use
(Extracted from the CAUMPO Land Use Report. See Appendix G for full Report)

2.3 Traffic Served

The proposed study interchange is located on APD-40 between I-75 and S.R. 2 (U.S 11/South Lee Highway) in the City of Cleveland, Bradley County, Tennessee. Within the interchange study area, APD-40 is a four-lane, divided, limited access freeway.

Traffic volume estimates for I-75 and APD-40 for this study were developed from the Cleveland Urban Area Metropolitan Planning Organization (CUAMPO) Transportation Demand Model (TDM). The TDM was updated to analyze two transportation alternatives, hereinafter described as traffic condition scenarios. The first traffic condition scenario was the evaluation of the existing system on APD-40 between I-75 and S.R. 2 (U.S 11/South Lee Highway) and the second traffic condition scenario was the evaluation of the proposed system that included a proposed APD-40 interchange between I-75 and S.R. 2 (U.S 11/South Lee Highway). Two technical memorandums were prepared to document the TDM findings and results. In addition to the two traffic condition scenarios, a slip ramp to Stone Lake Road is being proposed to diverge from the I-75 northbound to APD-40 off-ramp. A discussion of the slip ramp is included in Section 2.3.1.

A total of four traffic condition scenarios were subsequently developed using the combinations of with/without the proposed interchange and with/without the proposed slip ramp as described below:

- Existing System (without the Proposed Interchange) without the Slip Ramp
- Existing System with the Slip Ramp
- Proposed System (with the Proposed Interchange) without the Slip Ramp
- Proposed System with the Slip Ramp

Since the traffic impacts to the study interchange vary with each traffic condition scenario, this report contains the capacity analyses for each traffic condition scenario. A complete compilation of the traffic data and memorandums, including the Average Annual Daily Traffic (AADT) Volumes and the Design Hour Volumes (DHV) for the horizon years 2013 and 2033 can be found in Appendix A of this report.

The capacity of a facility is defined in the Highway Capacity Manual (HCM) as the maximum hourly rate at which vehicles can reasonably be expected to traverse a point or uniform section of a lane or roadway during a given time period under prevailing roadway, traffic, and control conditions. Any change in these conditions will result in a change in the capacity of a facility.

The analysis of highway capacity is a set of procedures used to estimate the traffic-carrying ability of facilities over a range of defined operational conditions known as levels-of-service (LOS). LOS is defined as a qualitative measure describing operational conditions within a traffic stream and their perception by motorists and/or passengers. A LOS definition generally describes these operational conditions in terms of such factors as speed and travel time, freedom to maneuver, traffic interruptions, comfort and convenience, and safety. Table 2.1 presents descriptions for each LOS.

Table 2.1 - Level of Service (LOS) Description

LOS	Level of Service Description
A	Free Flow operations. Vehicles are almost completely unimpeded in their ability to maneuver within the traffic stream. The general level of physical and psychological comfort provided the driver is high.
B	Reasonably free flow operations. The ability to maneuver within the traffic stream is only slightly restricted and the general level of physical and psychological comfort provided to the driver is high.
C	Flow with speeds at or near free flow. Freedom to maneuver within the traffic stream is noticeably restricted and lane changes require more vigilance on the part of the driver. The driver notices an increase in tension because of additional vigilance required for safe operation.
D	Speeds decline with increasing traffic. Freedom to maneuver within the traffic stream is noticeably limited. The driver experiences reduced physical and psychological comfort levels.
E	At the lower boundary, the facility is at capacity. Operations are volatile because there are virtually no gaps in the traffic stream. There is little or no room to maneuver. The driver experiences poor levels of physical and psychological comfort.
F	Breakdowns in traffic flow. The number of vehicles entering the highway section exceeds the capacity, or ability of the highway to accommodate that number of vehicles. There is little or no room to maneuver. The driver experiences poor levels of physical and psychological comfort.

Source: Highway Capacity Manual (2000), Transportation Research Board
The Highway Capacity Software (HCS) was used to obtain the capacity analysis LOS results presented in this study for different facility types: Freeway Segments, Ramp Merges, Ramp Diverges, Weave Areas, Multi-Lane Highways, Two-Lane Highways, Signalized Intersections, and Unsignalized Intersections. It should be noted that I-75 was assumed to be widened to sixlanes in all of the 2033 capacity analyses. The HCS printouts for all of the capacity analyses can be found in Appendix I of this report.

The capacity analyses for the existing system also included the evaluation of a proposed slip ramp diverging from the I-75 northbound off-ramp to Stone Lake Road. Proposed economic development accommodating commercial, industrial, and residential uses is planned for on both sides of APD-40 between the I-75 and US 11 (South Lee Highway) interchanges. The location of this slip ramp will allow vehicles to directly enter the proposed economic development area in the southeast quadrant of the interchange without traveling on APD-40. The return for these traffic volumes will be a proposed interchange on APD-40 or a new access road extending Stone Lake Road to US 11 (South Lee Highway). Without the proposed interchange, Stone Lake Road intersects with Humphrey Bridge Road that would be re-routed to US 11 (South Lee Highway).

The proposed slip ramp capacity analysis results for both the existing and proposed systems are included in Section 2.3.1 and Section 2.3.2, respectively.

2.3.1 Existing System

The existing system is defined in this study interchange as the traffic condition scenarios without the proposed interchange on APD-40.

APD-40 Study Area Traffic Volumes

The existing system Average Annual Daily Traffic (AADT) Volumes and the Design Hour Volumes (DHV) for the horizon years 2013 and 2033 are shown in Table 2.2 within the APD-40 study area.

Table 2.2 - APD-40 Study Area Traffic Volumes (Two-Way Volumes)
(Existing System)

Location		Traffic Volume	2013		2033		
		W/O Slip Ramp	With Slip Ramp	W/O Slip Ramp	With Slip Ramp		
APD-40	Between I-75 and South Lee Highway		AADT	27,500	26,050	41,700	38,880
		DHV - AM Peak	3,190	3,023	4,882	4,630	
		DHV - PM Peak	3,326	3,203	5,072	4,884	
	East of South Lee Highway	AADT	26,400	26,400	38,500	38,500	
		DHV - AM Peak	2,776	2,776	4,249	4,249	
		DHV - PM Peak	3,031	3,031	4,504	4,504	
I-75	North of APD-40	AADT	59,600	59,600	86,800	86,800	
		DHV - AM Peak	4,324	4,324	6,244	6,244	
		DHV - PM Peak	5,766	5,766	8,312	8,312	
	South of APD-40	AADT	79,600	79,600	113,100	113,100	
		DHV - AM Peak	5,987	5,987	8,747	8,747	
		DHV - PM Peak	7,485	7,485	10,958	10,958	
Pleasant Grove Road	West of I-75	AADT	4,800	4,800	7,200	7,200	
		DHV - AM Peak	423	423	643	643	
		DHV - PM Peak	481	481	722	722	
South Lee Highway	North of APD-40	AADT	17,800	17,800	27,900	27,900	
		DHV - AM Peak	1,607	1,607	2,497	2,497	
		DHV - PM Peak	2,062	2,062	3,231	3,231	
	South of APD-40	AADT	15,700	14,250	27,700	24,880	
		DHV - AM Peak	1,697	1,530	2,652	2,400	
		DHV - PM Peak	2,019	1,896	3,183	2,995	

For the existing system capacity analyses, the truck percentages for each roadway are:

- I-75 north of APD-40: 30\%
- I-75 south of APD-40: 24%
- APD-40 between I-75 and S.R. 2 (U.S. 11/South Lee Highway): 15\%
- APD-40 east of S.R. 2 (U.S. 11/South Lee Highway): 14\%
- Pleasant Grove Road west of I-75: 3\%
- S.R. 2 (U.S. 11/South Lee Highway) north of APD-40: 3\%
- S.R. 2 (U.S. 11/South Lee Highway) south of APD-40: 3\%

APD-40 Study Area Mainline Capacity Analyses

The mainline capacity analyses for the existing system were conducted for each direction and leg of the interchange. The freeway segment analysis was used for I-75 and APD-40 and the two-lane highway analysis was used for Pleasant Grove Road. The mainline capacity analyses results for the existing system are summarized in Table 2.3.

Table 2.3 - APD-40 Study Area Mainline Capacity Analysis Results
(Existing System)

Location		Direction	Peak Period	2013		$2033{ }^{1}$		
		W/O Slip Ramp		With Slip Ramp	W/O Slip Ramp	With Slip Ramp		
APD-40	Between I-75 and South Lee Highway		EB	AM	B	B	C	C
		PM		C	B	D	C	
		WB	AM	C	C	D	D	
			PM	B	B	D	D	
	East of South Lee Highway	EB	AM	B	B	C	C	
			PM	C	C	D	D	
		WB	AM	B	B	D	D	
			PM	B	B	C	C	
I-75	North of APD-40	NB	AM	B	B	B	B	
			PM	D	D	D	D	
		SB	AM	C	C	C	C	
			PM	C	C	C	C	
	South of APD-40	NB	AM	C	C	C	C	
			PM	$\mathrm{F}(\mathrm{C})^{2}$	$\mathrm{F}(\mathrm{C})^{2}$	E	E	
		SB	AM	D	D	D	D	
			PM	D	D	D	D	
Pleasant Grove Road	West of I-75	Two-Way	AM	C	C	C	C	
			PM	C	C	C	C	
South Lee Highway	North of APD-40	NB	AM	A	A	B	B	
			PM	A	A	B	B	
		SB	AM	B	B	B	B	
			PM	B	B	C	C	
	South of APD-40	NB	AM	A	A	A	A	
			PM	B	B	C	C	
		SB	AM	B	B	C	B	
			PM	B	A	B	B	

1. Indicates that I-75 is assumed widened to a six-lane facility for the 2033 results.
2. Indicates that LOS C would be achieved with I-75 widened to a six-lane facility.

APD-40 Study Area Merge and Diverge Ramp Capacity Analyses

The ramp capacity analyses for the existing system were conducted for both merge and diverge situations within the APD-40 study area. The ramp merge and diverge capacity analysis results for the existing system are summarized in Table 2.4.

Table 2.4-Capacity Analysis Results for the APD-40 Study Area Merge and Diverge Ramps
(Existing System with/without the Proposed Slip Ramp)

Location	Direction	Peak Period	2013		$2033{ }^{1}$	
			$\begin{aligned} & \hline \text { W/O Slip } \\ & \text { Ramp } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { With Slip } \\ & \text { Ramp } \\ & \hline \end{aligned}$	WIO Slip Ramp	$\begin{aligned} & \text { With Slip } \\ & \hline \end{aligned}$ Ramp
MERGE						
$\begin{gathered} \text { APD-40 } \\ \text { at I-75 } \end{gathered}$	EB Entrance Ramp	AM	Free-Flow Traffic Movement			
APD-40 at South Lee Highway	EB Entrance Ramp	AM	B	B	B	B
		PM	B	B	B	B
	WB Entrance Ramp	AM	B	B	B	B
		PM	B	B	B	B
$\begin{gathered} \quad \mathrm{I}-75 \\ \text { at APD-40 } \end{gathered}$	NB Entrance Ramp	AM	C	C	C	C
		PM	D	D	D	D
	SB Entrance Ramp	AM	D	D	D	D
		PM	D	D	D	D
DIVERGE						
$\begin{gathered} \text { APD-40 } \\ \text { at I-75 } \end{gathered}$	WB Exit Ramp	AM	B	B	B	B
		PM	B	B	B	B
APD-40 at South Lee Highway	EB Exit Ramp	AM	B	B	C	C
		PM	B	B	C	C
	WB Exit Ramp	AM	B	B	B	B
		PM	B	B	B	B
$\begin{aligned} & \quad \mathrm{I}-75 \\ & \text { at APD-40 } \end{aligned}$	NB Exit Ramp ${ }^{2}$	AM	B	B	B	B
		PM	$\mathrm{F}(\mathrm{B})^{3}$	$\mathrm{F}(\mathrm{B})^{3}$	D	D
	NB Exit Slip Ramp	AM	A	A	B	B
		PM	B	B	C	C
	SB Exit Ramp	AM	C	C	C	C
		PM	C	C	C	C

1. Indicates that I-75 is assumed widened to a six-lane facility for the 2033 results.
2. The NB Exit Ramp is assumed widened to two lanes.
3. Indicates that LOS B would be achieved with I-75 widened to a six-lane facility.

I-75/APD-40 NB and SB Ramp Terminal Intersections

The intersection capacity analyses for the existing system were conducted for both the l-75/ APD-40 NB and SB ramp terminal intersections, which are both signalized. The capacity analyses for the I-75/APD-40 NB ramp terminal intersection does not include any right turn traffic volumes to/from APD-40 because of their channelized movements being outside the influence of the traffic signal operation. The I-75/APD-40 NB and SB ramp terminal capacity analysis results for the existing system are the same with and without the proposed slip ramp, which are summarized in Table 2.5.

Table 2.5 - Capacity Analysis Results for the I-75/APD-40 NB and SB Ramp Terminal Intersections
(Existing System with/without the Proposed Slip Ramp)

Location	Approach and Movement		Peak Period	$2013{ }^{1}$	$2013{ }^{2}$	$2033{ }^{1}$	$2033{ }^{2}$
	Overall		AM	D	B (B)	F	C (C)
			PM	C	B (B)	F	C (C)
		EB Left Turn	AM	A	B (B)	A	B (B)
			PM	A	B (B)	A	B (B)
		WB Thru	AM	E	C (C)	F	D (D)
			PM	D	C (C)	F	C (C)
		NB Left Turn	AM	E	C (C)	F	D (D)
			PM	D	C (C)	F	C (C)
	Overall		AM	F	C	F	D
			PM	D	C	F	C
		EB Thru	AM	F	C	F	D
			PM	D	C	F	C
		WB Left Turn	AM	F	C	F	E
			PM	D	C	F	C
		SB Left Turn	AM	F	C	F	D
			PM	D	C	F	C

1. Indicates the capacity results with the existing geometry (i.e. no improvements).
2. Indicates the capacity results with the proposed geometry, which for the NB ramp terminal intersection includes 1 EB Left Turn Lane, 2 EB Thru Lanes, 2 WB Thru Lanes, and 1 NB Left Turn Lane (2 NB Left Turn Lanes). The proposed geometry for the SB ramp terminal intersection includes 2 EB Thru Lanes, 2 WB Left Turn Lanes, 2 WB Thru Lanes, 2 SB Left Turn Lanes, and 2 SB Right Turn Lanes.

ADP-40/South Lee Highway EB and WB Ramp Terminal Intersections
The intersection capacity analyses for the existing system were conducted for the APD-40/ South Lee Highway EB and WB ramp terminal intersections, which are both unsignalized. South Lee Highway is also known as S.R. 2 and U.S. 11. The APD-40/South Lee Highway ramp terminal capacity analysis results for the existing system are summarized in Table 2.6.

Table 2.6 - Capacity Analysis Results for the ADP-40/South Lee Highway EB and WB Ramp Terminal Intersections
(Existing System)

	Approach and Movement		Peak Period	Unsignalized				Signalized				
			2013	2033		2013		$2033{ }^{1}$				
			$\begin{aligned} & \text { W/O } \\ & \text { S.R. } \end{aligned}$	$\begin{aligned} & \text { With } \\ & \text { S.R. } \end{aligned}$	$\begin{aligned} & \text { W/O } \\ & \text { S.R. } \end{aligned}$	$\begin{aligned} & \text { With } \\ & \text { S.R. } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { W/O } \\ & \text { S.R. } \end{aligned}$	$\begin{aligned} & \text { With } \\ & \text { S.R. } \end{aligned}$	$\begin{aligned} & \text { W/O } \\ & \text { S.R. } \end{aligned}$	$\begin{aligned} & \text { With } \\ & \text { S.R. } \end{aligned}$		
	Overall			AM	N/A				B	B	C (C)	C (C)
			PM	C					C	E (D)	D (C)	
		SB Left		AM	A	A	B	B	B	B	D (D)	C (C)
		Turn	PM	C	C	F	F	D	C	F (E)	E (D)	
		EB Left	AM	F	F	F	F	B	B	C (C)	C (C)	
		Turn	PM	F	F	F	F	C	C	D (D)	E (D)	
		EB Right	AM	C	B	F	C	C	B	D (D)	C (C)	
			PM	B	B	D	C	D	C	F (E)	D (D)	
	Overall		AM	N/A				B	B	C (C)	C (C)	
			PM					B	B	D (C)	D (C)	
		NB Left	AM	B	B	E	E	B	B	D (D)	D (D)	
		Turn	PM	D	D	F	F	C	C	E (D)	E (D)	
		WB Left	AM	F	F	F	F	B	B	D (D)	D (D)	
		Turn	PM	F	F	F	F	C	C	E (D)	E (D)	
		WB Right	AM	B	B	B	B	B	B	D (D)	D (D)	
		Turn	PM	B	B	C	C	C	C	E (D)	E (D)	

1. The parenthesis indicates the capacity results with the proposed geometry, which for the EB ramp terminal intersection includes 2 NB Thru Lanes, 1 NB Right Turn Lane, 2 SB Left Turn Lanes, 2 SB Thru Lanes, 1 EB Left Turn Lane, and 1 EB Right Turn Lane. The proposed geometry for the WB ramp terminal intersection includes 2 NB Left Turn Lanes, 2 NB Thru Lanes, 2 SB Thru Lanes, 1 SB Right Turn Lane, 1 WB Left Turn Lane, and 1 WB Right Turn Lane.

Proposed I-75 NB to Stone Lake Road Slip Ramp Intersection

The intersection capacity analyses were conducted for the proposed I-75 NB slip ramp terminal intersection at Stone Lake Road which are the same for both the existing and proposed systems. The following assumptions were made for the intersection capacity analyses:

- Proposed I-75 NB slip ramp is one-way and terminates at Stone Lake Road.
- Stone Lake Road traffic volumes assumed based on a 500 acre Industrial Park development built in the southeast quadrant of the study interchange and 67% of the development is built south of the proposed slip ramp intersection.
- The proposed development is 60\% built-out in 2013 and 100\% built-out in 2033.

The proposed I-75 NB slip ramp terminal capacity analysis results are summarized in Table 2.7.
Table 2.7 - Capacity Analysis Results for the Proposed I-75 NB Slip Ramp Terminal Intersection at Stone Lake Road (Existing and Proposed Systems)

Location	Approach and Movement		Peak Period	Unsignalized ${ }^{1}$		Signalized ${ }^{1}$		
			2013	2033	2013	$2033{ }^{2}$		
Proposed I-75 NB Slip Rampat Stone Lake Road	Overall			AM	N/A		D	F (D)
			PM	D			$F(D)$	
		EB Left Turn	AM	D	F	D	$F(C)$	
			PM	D	F	D	$F(D)$	
		EB Right Turn	AM	F	F	E	F (D)	
			PM	B	B	E	$F(D)$	
		NB Thru	AM	A	A	A	A (A)	
			PM	A	A	E	$F(D)$	
		SB Thru	AM	A	A	D	$F(D)$	
			PM	A	A	A	A (A)	

1. The proposed geometry includes 1 NB Thru Lane, 1 SB Thru Lane, 1 EB Left Turn Lane, and 1 EB Right Turn Lane.
2. The parenthesis indicates the capacity results with Stone Lake Road widened from two lanes to four lanes.

Table 2.7 depicts the capacity results for worst case scenario. If the development density occurs similar to this analyzed development and the proposed interchange is not constructed, then Stone Lake Road would need to be widened to four lanes to handle these worst case traffic volumes. However, since the actual developments may change, this study proposes that the intersection of the proposed slip ramp with Stone Lake Road be unsignalized and consist of one approach lane on Stone Lake Road along with a two lane approach (1 Left Turn Lane and 1 Right Turn Lane) on the slip ramp.

2.3.2 Proposed System

The proposed system is defined in this study interchange as the traffic condition scenarios with the proposed interchange on APD-40.

APD-40 Study Area Traffic Volumes
The proposed system Average Annual Daily Traffic (AADT) Volumes and the Design Hour Volumes (DHV) for the horizon years 2013 and 2033 are shown in Table 2.8 within the APD-40 study area.

Table 2.8 - APD-40 Study Area Traffic Volumes (Two-Way Volumes)
(Proposed System)

Location		Traffic Volume	2013		2033		
		WIO Slip Ramp	With Slip Ramp	W/O Slip Ramp	With Slip Ramp		
APD-40	Between I-75 and the Proposed Interchange		AADT	29,900	28,450	47,800	44,980
		DHV - AM Peak	3,268	3,101	5,055	4,803	
		DHV - PM Peak	3,518	3,395	5,428	5,240	
	Between theProposedInterchange andSouth Lee Highway	AADT	27,500	27,500	41,700	41,700	
		DHV - AM Peak	2,887	2,887	4,429	4,429	
		DHV - PM Peak	2,918	2,918	4,469	4,469	
	East of South Lee Highway	AADT	29,400	29,400	46,000	46,000	
		DHV - AM Peak	3,055	3,055	4,780	4,780	
		DHV - PM Peak	3,130	3,130	4,880	4,880	
I-75	North of APD-40	AADT	62,900	62,900	95,000	95,000	
		DHV - AM Peak	4,693	4,693	6,834	6,834	
		DHV - PM Peak	6,233	6,233	9,097	9,097	
	South of APD-40	AADT	79,600	79,600	113,100	113,100	
		DHV - AM Peak	5,987	5,987	8,747	8,747	
		DHV - PM Peak	7,485	7,485	10,958	10,958	
Pleasant Grove Road	West of I-75	AADT	5,100	5,100	7,800	7,800	
		DHV - AM Peak	514	514	786	786	
		DHV - PM Peak	522	522	799	799	
Proposed Interchange Mainline	North of APD-40	AADT	6,800	6,800	10,900	10,900	
		DHV - AM Peak	759	759	1,201	1,201	
		DHV - PM Peak	787	787	1,269	1,269	
	South of APD-40	AADT	7,900	6,450	12,500	9,680	
		DHV - AM Peak	812	645	1,285	1,033	
		DHV - PM Peak	735	612	1,164	976	
South Lee Highway	North of APD-40	AADT	18,300	18,300	29,100	29,100	
		DHV - AM Peak	1,628	1,628	2,596	2,596	
		DHV - PM Peak	2,348	2,348	3,734	3,734	
	South of APD-40	AADT	13,700	13,700	22,500	22,500	
		DHV - AM Peak	1,224	1,224	1,955	1,955	
		DHV - PM Peak	1,898	1,898	3,031	3,031	

For the proposed system capacity analyses, the truck percentages for each roadway are:

- I-75 north of APD-40: 30\%
- I-75 south of APD-40: 24%
- APD-40 between I-75 and Proposed Interchange Mainline: 15\%
- APD-40 between Prop. Interchange Mainline and S.R. 2 (U.S. 11/South Lee Hwy.): 14\%
- APD-40 east of S.R. 2 (U.S. 11/South Lee Highway): 14\%
- Pleasant Grove Road west of I-75: 3\%
- Proposed Interchange Mainline north of APD-40: 5\%
- Proposed Interchange Mainline south of APD-40: 5\%
- S.R. 2 (U.S. 11/South Lee Highway) north of APD-40: 3\%
- S.R. 2 (U.S. 11/South Lee Highway) south of APD-40: 3\%

APD-40 Study Area Mainline Capacity Analyses

The mainline capacity analyses for the proposed system were conducted for each direction and leg of the interchange. The freeway segment analysis was used for I-75 and APD-40 and the two-lane highway analysis was used for Pleasant Grove Road. The mainline capacity analyses results for the proposed system are summarized in Table 2.9.

Table 2.9-Mainline Capacity Analysis Results
(Proposed System)

Location		Direction	Peak Period	2013		$2033{ }^{1}$		
		W/O Slip		With Slip	WIO Slip	With Slip		
APD-40	Between I-75 and the Proposed Interchange		EB	AM	B	B	C	C
		PM		C	B	D	D	
		WB	AM	C	C	D	D	
			PM	C	C	D	D	
	Between the Proposed Interchange and South Lee Hwy.	EB	AM	B	B	C	C	
			PM	B	B	D	D	
		WB	AM	C	C	D	D	
			PM	B	B	C	C	
	East of South Lee Highway	EB	AM	B	B	C	C	
			PM	C	C	D	D	
		WB	AM	C	C	D	D	
			PM	B	B	C	C	
I-75	North of APD-40	NB	AM	B	B	B	B	
			PM	D	D	D	D	
		SB	AM	C	C	C	C	
			PM	C	C	C	C	
	South of APD-40	NB	AM	C	C	C	C	
			PM	$\mathrm{F}(\mathrm{C})^{2}$	$\mathrm{F}(\mathrm{C})^{2}$	E	E	
		SB	AM	D	D	D	D	
			PM	D	D	D	D	
Pleasant Grove Road	West of I-75	Two-Way	AM	C	C	C	C	
			PM	C	C	C	C	
Proposed Interchange Mainline	North of APD-40	NB	AM	A	A	A	A	
			PM	A	A	A	A	
		SB	AM	A	A	A	A	
			PM	A	A	A	A	
	South of APD-40	NB	AM	A	A	A	A	
			PM	A	A	A	A	
		SB	AM	A	A	A	A	
			PM	A	A	A	A	
South Lee Highway	North of APD-40	NB	AM	A	A	B	B	
			PM	B	B	C	C	
		SB	AM	A	A	B	B	
			PM	B	B	C	C	
	South of APD-40	NB	AM	A	A	A	A	
			PM	B	B	C	C	
		SB	AM	A	A	B	B	
			PM	A	A	B	B	

1. Indicates that I-75 is assumed widened to a six-lane facility for the 2033 results.
2. Indicates that LOS C would be achieved with I-75 widened to a six-lane facility.

APD-40 Study Area Merge and Diverge Ramp Capacity Analyses

The ramp capacity analyses for the proposed system were conducted for both merge and diverge situations within the APD-40 study area. The ramp merge and diverge capacity analysis results for the existing system are summarized in Table 2.10.

Table 2.10 - Capacity Analysis Results for the APD-40 Study Area Merge and Diverge Ramps
(Proposed System with/without the Proposed Slip Ramp)

Location	Direction	Peak Period	2013		$2033{ }^{1}$	
			$\begin{aligned} & \text { W/O Slip } \\ & \text { Ramp } \end{aligned}$	With Slip Ramp	$\begin{aligned} & \hline \text { WIO Slip } \\ & \text { Ramp } \end{aligned}$	With Slip Ramp
MERGE						
$\begin{gathered} \text { APD-40 } \\ \text { at I-75 } \end{gathered}$	EB Entrance Ramp	$\begin{aligned} & \hline \frac{A M}{P M} \\ & \hline \end{aligned}$	Free-Flow Traffic Movement			
APD-40 at the Proposed Interchange	EB Entrance Ramp	AM	B	B	B	B
		PM	B	B	C	C
	WB Entrance Ramp	AM	B	B	D	D
		PM	B	B	D	D
APD-40 at South Lee Highway	EB Entrance Ramp	AM	B	B	B	B
		PM	C	C	D	D
	WB Entrance Ramp	AM	B	B	D	D
		PM	B	B	B	B
$\begin{gathered} \mathrm{I}-75 \\ \text { at APD-40 } \end{gathered}$	NB Entrance Ramp	AM	C	C	C	C
		PM	D	D	D	D
	SB Entrance Ramp	AM	D	D	D	D
		PM	D	D	D	D
DIVERGE						
$\begin{gathered} \text { APD-40 } \\ \text { at I-75 } \end{gathered}$	WB Exit Ramp	AM	B	B	D	D
		PM	B	B	D	D
APD-40 at the Proposed Interchange	EB Exit Ramp	AM	B	B	C	C
		PM	B	B	D	C
	WB Exit Ramp	AM	B	B	D	D
		PM	B	B	B	B
APD-40 at South Lee Highway	EB Exit Ramp	AM	B	B	B	B
		PM	B	B	D	D
	WB Exit Ramp	AM	C	C	D	D
		PM	B	B	C	C
$\begin{gathered} \mathrm{I}-75 \\ \text { at APD-40 } \end{gathered}$	NB Exit Ramp ${ }^{2}$	AM	B	B	B	B
		PM	$\mathrm{F}(\mathrm{B})^{3}$	$\mathrm{F}(\mathrm{B})^{3}$	D	D
	NB Exit Slip Ramp	AM	A	A	B	B
		PM	B	B	C	C
	SB Exit Ramp	AM	C	C	C	C
		PM	C	C	C	C

1. Indicates that I-75 is assumed widened to a six-lane facility for the 2033 results.
2. The NB Exit Ramp is assumed widened to two lanes.
3. Indicates that LOS B would be achieved with I-75 widened to a six-lane facility.

APD-40 Weave Areas

A weave area does not currently exist on APD-40 because the distance between I-75 and South Lee Highway entrance/exit ramps is greater than 2500 feet. The proposed interchange will establish weave areas on APD-40 as the distance between entrance/exit ramps will be reduced to less than 2500 feet on both sides of the proposed interchange. The weave area capacity analysis results for the APD-40 EB and WB directions are summarized in Table 2.11.

Table 2.11 - Capacity Analysis Results for the APD-40 Weave Areas

Location		Peak Period	2013		2033		
		W/O Slip Ramp	With Slip Ramp	W/O Slip Ramp	With Slip Ramp		
	Between I-75 and the Proposed Interchange		AM	B	B	E	C
		PM	D	C	F	F	
	Between the Proposed Interchange and South Lee Highway	AM	B	B	B	B	
		PM	B	B	D	D	
$\begin{aligned} & \infty \\ & 3_{1} \\ & 0 \\ & \vdots \\ & 0 \\ & 0 \end{aligned}$	Between South Lee Highway and the Proposed Interchange	AM	B	B	D	D	
		PM	B	B	B	B	
	Between the Proposed Interchange and I-75	AM	C	C	E	E	
		PM	C	C	F	F	

Auxiliary Lanes

Since LOS E and LOS F were present within the APD-40 mainline, ramp, and weave area analyses, auxiliary lanes were analyzed between the APD-40 entrance and exit ramps. The APD-40 mainline EB and WB capacity analysis results comparison with and without the auxiliary lane are shown in Table 2.12.

Table 2.12 - APD-40 Auxiliary Lanes Capacity Analysis Comparison

Location		Facility Type	Peak Period	2013		2033		
		No Auxiliary Lanes		Auxiliary Lanes	No Auxiliary Lanes	Auxiliary Lanes		
			Freeway Segment	AM	B (B)	A (A)	C (C)	B (B)
		PM		C (B)	B (B)	D (D)	C (B)	
		Weave Area	AM	B (B)	B (B)	E (C)	C (B)	
			PM	D (C)	B (B)	F (F)	D (C)	
		Ramp Merge	AM	Free-Flow Traffic Movement				
		(From I-75)	PM					
		Ramp Diverge	AM	B (B)	B (B)	C (C)	C (C)	
		(To Prop. Interchange)	PM	B (B)	B (B)	D (C)	D (C)	
		Freeway Segment	AM	B	A	C	B	
			PM	B	B	D	C	
		Weave Area	AM	B	A	B	B	
			PM	B	B	D	B	
		Ramp Merge (From Prop Interchange)	AM	B	A	B	B	
			PM	B	B	C	B	
		Ramp Diverge (To South Lee Highway)	AM	B	A	B	B	
			PM	B	B	D	C	
$\begin{aligned} & \infty \\ & \sum_{3} \\ & 0 \\ & \vdots \\ & \vdots \\ & \vdots \\ & < \end{aligned}$		Freeway Segment	AM	C	B	D	C	
			PM	B	A	C	B	
		Weave Area	AM	B	B	D	B	
			PM	B	A	B	B	
		Ramp Merge(From South Lee Highway)	AM	B	B	D	B	
			PM	B	B	B	B	
		Ramp Diverge (To Prop. Interchange)	AM	B	B	D	C	
			PM	B	B	B	B	
		Freeway Segment	AM	C	B	D	C	
			PM	C	B	D	C	
		Weave Area	AM	C	B	E	C	
			PM	C	B	F	C	
		Ramp Merge(From Prop Interchange)	AM	B	B	D	C	
			PM	B	B	D	C	
		Ramp Diverge (To I-75)	AM	B	B	D	C	
			PM	B	B	D	D	

1. The parenthesis indicates the capacity results with the slip ramp.
2. Indicates the capacity results with/without the slip ramp.

I-75/APD-40 NB and SB Ramp Terminal Intersections

The intersection capacity analyses for the proposed system were conducted for both the l-75/ APD-40 NB and SB ramp terminal intersections, which are both signalized. The capacity analyses for the I-75/APD-40 NB ramp terminal intersection does not include any right turn traffic volumes to/from APD-40 because of their channelized movements being outside the influence of the traffic signal operation. The I-75/APD-40 NB and SB ramp terminal capacity analysis results for the proposed system are the same with and without the proposed slip ramp, which are summarized in Table 2.13.

Table 2.13 - Capacity Analysis Results for the I-75/APD-40 NB and SB Ramp Terminal Intersections (Proposed System with/without the Proposed Slip Ramp)

Location	Approach and Movement		Peak Period	$2013{ }^{1}$	$2013{ }^{2}$	$2033{ }^{1}$	$2033{ }^{2}$
	Overall		AM	D	B (B)	F	C (C)
			PM	C	B (B)	F	C (C)
	$\begin{aligned} & \stackrel{\rightharpoonup}{0} \\ & \stackrel{\text { E}}{\omega} \\ & \sum_{0}^{0} \\ & \stackrel{U}{U} \\ & \stackrel{N}{V} \end{aligned}$	EB Left Turn	AM	A	B (B)	A	C (C)
			PM	A	B (B)	A	B (B)
		WB Thru	AM	E	C (C)	F	D (D)
			PM	D	C (C)	F	C (C)
		NB Left Turn	AM	E	C (C)	F	D (D)
			PM	D	C (C)	F	C (C)
	Overall		AM	F	C	F	E
			PM	D	C	F	C
		EB Thru	AM	F	C	F	E
			PM	D	C	F	C
		WB Left Turn	AM	F	C	F	E
			PM	D	C	F	C
		SB Left Turn	AM	F	C	F	E
			PM	D	C	F	C

1. Indicates the capacity results with the existing geometry (i.e. no improvements).
2. Indicates the capacity results with the proposed geometry, which for the NB ramp terminal intersection includes 1 EB Left Turn Lane, 2 EB Thru Lanes, 2 WB Thru Lanes, and 1 NB Left Turn Lane (2 NB Left Turn Lanes). The proposed geometry for the SB ramp terminal intersection includes 2 EB Thru Lanes, 2 WB Left Turn Lanes, 2 WB Thru Lanes, 2 SB Left Turn Lanes, and 2 SB Right Turn Lanes.

ADP-40/Proposed Interchange EB and WB Ramp Terminal Intersections
The intersection capacity analyses for the proposed system were conducted for the APD-40/ Proposed Interchange EB and WB ramp terminal intersections. The APD-40/Proposed Interchange ramp terminal capacity analysis results for the proposed system are summarized in Table 2.14.

Table 2.14 - Capacity Analysis Results for the ADP-40/Proposed Interchange EB and WB Ramp Terminal Intersections (Proposed System)

	Approach and Movement		Peak Period	Unsignalized				Signalized				
			2013	2033		2013		$2033{ }^{1}$				
			$\begin{aligned} & \text { W/O } \\ & \text { S.R. } \end{aligned}$	$\begin{aligned} & \text { With } \\ & \text { S.R. } \end{aligned}$	$\begin{aligned} & \text { W/O } \\ & \text { S.R. } \end{aligned}$	$\begin{aligned} & \text { With } \\ & \text { S.R. } \end{aligned}$	$\begin{aligned} & \text { WIO } \\ & \text { S.R. } \end{aligned}$	$\begin{aligned} & \text { With } \\ & \text { S.R. } \end{aligned}$	$\begin{aligned} & \text { WIO } \\ & \text { S.R. } \end{aligned}$	$\begin{aligned} & \text { With } \\ & \text { S.R. } \\ & \hline \end{aligned}$		
	Overall			AM	N/A				B	B	C	C
			PM	C					C	C	C	
		SB Left		AM	A	A	A	A	C	C	C	C
			PM	A	A	B	B	C	C	C	C	
		EB Left	AM	C	C	F	F	C	C	C	C	
		Turn	PM	B	B	E	E	C	C	C	C	
		EB Right	AM	B	A	B	B	C	B	C	C	
		Turn	PM	A	A	B	A	C	C	C	C	
	Overall		AM	N/A				B	B	B	B	
			PM					C	C	C	C	
			AM	A	A	A	A	C	C	C	C	
			PM	A	A	D	D	C	C	C	C	
	WB Left Turn		AM	C	C	F	F	C	C	C	C	
			PM	D	D	F	F	C	C	C	C	
	$\frac{0}{0}$	WB Right Turn	AM	B	B	B	B	C	C	C	C	
			PM	A	A	A	A	C	C	C	C	

1. The parenthesis indicates the capacity results with the proposed geometry, which for the EB ramp terminal intersection includes 2 NB Thru Lanes, 1 NB Right Turn Lane, 2 SB Left Turn Lanes, 2 SB Thru Lanes, 1 EB Left Turn Lane, and 1 EB Right Turn Lane. The proposed geometry for the WB ramp terminal intersection includes 2 NB Left Turn Lanes, 2 NB Thru Lanes, 2 SB Thru Lanes, 1 SB Right Turn Lane, 2 WB Left Turn Lanes, and 1 WB Right Turn Lane.

ADP-40/South Lee Highway EB and WB Ramp Terminal Intersections

The intersection capacity analyses for the proposed system were conducted for the APD-40/ South Lee Highway EB and WB ramp terminal intersections, which are both unsignalized. South Lee Highway is also known as S.R. 2 and U.S. 11. The APD-40/ South Lee Highway ramp terminal capacity analysis results for the existing system are the same with and without the proposed slip ramp, which are summarized in Table 2.15.

Table 2.15 - Capacity Analysis Results for the ADP-40/South Lee Highway EB and WB Ramp Terminal Intersections
(Proposed System with/without the Proposed Slip Ramp)

厄	Approach and Movement		Peak Period	Unsignalized		Signalized		
			2013	2033	2013	$2033{ }^{1}$		
	Overall			AM	N/A		B	C (C)
			PM	C			E (D)	
		SB Left	AM	A	B	B	C (C)	
			PM	D	F	C	F (E)	
		EB Left	AM	F	F	B	C (C)	
		Turn	PM	F	F	C	F (E)	
		EB Right	AM	B	C	B	C (C)	
		Turn	PM	B	C	C	D (D)	
	Overall		AM	N/A		B	C (C)	
			PM			B	C (C)	
		NB Left	AM	B	C	B	C (D)	
		Turn	PM	B	F	B	D (D)	
		WB Left	AM	C	F	B	C (C)	
		Turn	PM	F	F	B	C (C)	
		WB Right	AM	B	C	B	C (D)	
		Turn	PM	C	F	C	D (D)	

1. The parenthesis indicates the capacity results with the proposed geometry, which for the EB ramp terminal intersection includes 2 NB Thru Lanes, 1 NB Right Turn Lane, 2 SB Left Turn Lanes, 2 SB Thru Lanes, 1 EB Left Turn Lane, and 1 EB Right Turn Lane. The proposed geometry for the WB ramp terminal intersection includes 2 NB Left Turn Lanes, 2 NB Thru Lanes, 2 SB Thru Lanes, 1 SB Right Turn Lane, 1 WB Left Turn Lane, and 1 WB Right Turn Lane.

Proposed I-75 NB to Stone Lake Road Slip Ramp Intersection

The intersection capacity analyses for the proposed I-75 NB slip ramp terminal intersection at Stone Lake Road is contained in the Section 2.3.2.

2.4 Crash Analysis

The crash data used in this analysis was provided by TDOT and included reports from 20032005. A collision diagram and summary can be found in Appendix E of this study. A total of 10 crashes were reported along APD-40 between the Exit 20 interchange area and the South Lee Highway Interchange area. Table 2.16 summarizes the crash data for the given period. This data does not include crashes associated with the Exit 20 interchange. The companion I-75 Exit 20 Interchange Modification Study includes an analysis of that area. Along this stretch of study corridor, access is fully controlled, therefore, crashes are limited to those typical of interstate type facilities (i.e, rear end, sideswipe, and run off the road).

Table 2.16- APD-40 Crash Data Summary

DESCRIPTION	2003	2004	2005	Total	PCT. OF TOTAL
Rear-end		1		1	10.0\%
Left-turn					-
Head-on					-
Right-angle					-
Sideswipe	1	3		4	40.0\%
Pedestrian/cyclist					-
Struck fixed object/Animal in Road					-
Run off the road	4			4	40.0\%
Overturn			1	1	10.0\%
INVOLVEMENT					
All Vehicles	6	9	1	16	100.0\%
ROAD SURFACE					
Dry (No Adverse Conditions)	2	4	1	7	70.0\%
Wet (Rain)	3			3	30.0\%
DAMAGE					
Property Damage only	3	3	1	7	70.0\%
Injury Crashes (No Fatalities)	2	1		3	30.0\%
Fatality Crashes					-
Number of Injuries	2	2		4	-
Number of Fatalities					-
CRASH SUMMARY					
Total Crashes	5	4	1	10	-
Percentage of Total	50.0\%	40.0\%	10.0\%	-	-

2.5 Proposed Improvements

This study recommends the construction of a new interchange along APD-40 between the existing interchanges of Exit 20 on I-75 and South Lee Highway (US 11). The proposed interchange will need auxiliary lanes connecting the two adjoining interchanges. Appendix B presents the functional plans for the proposed interchange. Figure 2.3 and Figure 2.4 present a schematic of the proposed work. Figure 2.3 also shows the relationship to the I-75 Exit 20 proposed interchange modification (dashed) and how the two projects interconnect.

The scope of work for the proposed interchange includes the following work items:

- Construction of a new bridge, approximately 320 linear feet, over APD-40. This bridge would consist of six (6) travel lanes with shoulders for a total width of 96 feet measured out-to-out.
- A minimum of 300 feet access control in each direction from ramp terminals.
o A new intersection with Stone Lake Road to the south.
o To the north, the TDOT controlled section will be stubbed and it will be a local government responsibility to tie future improvements to this location.
- Eastbound Ramp Terminal Intersection:
o Construct a single lane off ramp that develops a dual right-turn and a separate left-turn lane at the intersection.
o Construct two northbound and southbound thru lanes for the mainline.
o Construct a separate northbound right-turn lane.
o Construct two separate southbound left-turn lanes.
o Construct a dual lane on-ramp that tapers to a single lane prior to merging with APD-40 eastbound.
o Install traffic signalization.
- Westbound Ramp Terminal Intersection:
o Construct a single lane off ramp that develops a dual left-turn and a separate right-turn lane at the intersection.
o Construct two northbound and southbound thru lanes for the mainline.
o Construct two separate northbound left-turn lanes.
o Construct a separate southbound right-turn lane.
o Construct a dual lane on-ramp that tapers to a single lane prior to merging with APD-40 westbound.
o Install traffic signalization.
- Relocate Stone Lake Road for the area impacted by the interchange location. Approximately 1800 linear feet will be obliterated and replaced with 2,200 feet on new location.
- Add auxiliary lanes along APD-40 connecting ramp movement to adjoining interchanges
o 2,600 linear feet of westbound auxiliary lane between the new interchange and South Lee Highway.
o 2,400 linear feet of eastbound auxiliary lane between the new interchange and South Lee Highway.
o 1,300 linear feet of eastbound auxiliary lane between the new interchange and I-75 Exit 20.
o 1,300 linear feet of westbound auxiliary lane between the new interchange and I-75 Exit 20 northbound on-ramp (assuming l-75 Exit 20 modifications are completed).
- A Commitment from local government to build necessary infrastructure on the north side of the proposed interchange. Currently, the concept plan shows an estimated alignment location. The exact location is to be determined by local officials except for the location at which it connects to the TDOT controlled portion of the interchange (300 ft north of the ramp terminal).

Other recommended improvements for the area include:

APD-40/South Lee Highway Interchange

Construct two northbound left turn lanes at the westbound ramp terminal intersection on the north side of APD-40. Construct a separate northbound right-turn lane and two separate southbound left-turn lanes at the eastbound ramp terminal intersection on the south side of APD-40. Install traffic signalization at both ramp terminal intersections.

APD-40/I-75 Interchange (Discussed in detail in separate Interchange Modification Study)

As detailed in a companion Interchange Modification Study, it is proposed to widen the APD-40 bridge over I-75 to accommodate two eastbound and two westbound thru lanes, two westbound left turn lanes (traffic heading south on I-75), and one eastbound left turn lane (traffic heading north on I-75). Ramp improvements will be included to improve overall operations at the ramp terminals. The proposed slip ramp to Stone Lake Road is discussed further in this IMS.

2.6 Discussion of Options

During the course of the study, a number of options were discussed, conceptualized and removed from further consideration for a variety of reasons. The process included a number of coordination meetings and events that served to reduce this list of potential options to the recommended configuration. The following list identifies the various coordination meetings since study inception and Appendix \boldsymbol{H} contains the meeting summaries for each.

Schedule of Meetings \& Coordination Activities and key dates:

- Cleveland Coordination Meeting on October 17, 2007
- TDOT Coordination Meeting on October 29, 2007
- TDOT Initial Concepts Meeting on November 21, 2007
- Cleveland Area Stakeholder Meeting on December 20, 2007
- Traffic Operations Review meeting on January 14, 2008
- Coordination meeting with the FHWA on April 2, 2008
- Concurrence with Concept 1 from TDOT Design Division in April 2008

In October of 2007, the initial list of concepts totaled approximately six variations of interchanges, slip ramps, flyover, and frontage roads. This list was refined to the four most viable concepts and advanced for presentation to area stakeholders at a meeting on December 20, 2007.

Gathering input from the stakeholder meeting, two concepts were identified as preferred by local stakeholders (Concept 1 and Concept 4). After the December 20, 2007 Cleveland area stakeholder meeting, traffic data was obtained and analysis was conducted on the four (4) concepts carried through the Cleveland area stakeholder meeting.

It was determined at this time that Concepts 2 and 3 could be dropped from further consideration due to lack of support from local stakeholders and TDOT, and the finding of the traffic operations analysis which indicated that Concepts 1 and 4 were superior. The local preference was to maximize use of the developable land adjacent to the interchange area. Concepts 2 and 3 had complex movements that were contrary to driver expectancy and large footprints that would require significant right-of-way. This is counterproductive to what the local stakeholders envision for the area.

On April 2, 2008, a coordination meeting was held with the Federal Highway Administration (FHWA) Nashville, Tennessee office. The purpose of this meeting was to present a status report of the studies prior to making submittal of the actual reports and to present Concepts 1 and 4 to FWHA for comment. It was confirmed at the meeting that Concept 1 was preferred to Concept 4.

Recommended - Concept 1

From the previously mentioned process, Concept 1 emerged as the preferred and recommended concept. Several of the key criteria for it selection included the fact:

- That it would be the least expensive concept to build;
- Require local participation to build a connecting road to the north only;
- Minimizes the footprint when compared to other concepts thereby minimizing required right-of-way; and
- It would be typical of driver expectancy, unlike some of the other concepts.

Other Concepts

The following discussion pertains to other considered concepts. Appendix C presents enlarged schematics of the concepts, along with bullets highlighting advantages and disadvantages of each, as presented at the December 20, 2007 stakeholder meeting in Cleveland, Tennessee.

Concept 2

Concept 2, shown in Figure 2.5, created a new interchange with separated ramps that are connected via a frontage road system located between the existing I-75 and South Lee Highway interchanges. This concept attempts to satisfy one of the earlier requests by local stakeholders to keep a new interchange close to and visible from I-75 Exit 20. The main issue inherent with this configuration is the short weave distances created between new ramps and the adjoining existing ramps at I-75 Exit 20 and South Lee Highway.

Figure 2.5 - Concept 2

Concept 3

Concept 3, shown in Figure 2.6, is similar to Concept 2 along APD-40, but with a different frontage road system. Once the right-of-way requirements were estimated it became clear that the overall impact of the footprint was greater than what was anticipated by local stakeholders. In addition, the requirement to basket weave ramps increased the initial cost estimates for structures and left this concept less attractive than other options.

Figure 2.6 - Concept 3

Concept 4
Concept 4, shown in Figure 2.7, entails a new system of separated on-ramps and off-ramps that are connected via a frontage road system located between the existing I-75 and South Lee Highway interchanges. The two-way frontage road connecting the ramp areas would be a local road and development would be allowed to have direct access to it. Figure 2.7 shows a proposed right-of-way limit to the north of the frontage road that was later determined as not necessary.

The major concern for Concept 4 is meeting driver expectations with the non-traditional ramp locations and the challenge to effectively sign and provide positive guidance for the configuration. As a result, Concept 1 was advanced in lieu of Concept 4.

Figure 2.7-Concept 4

3.0 ENGINEERING INVESTIGATION

Analysis was made to determine the potential impacts of a proposed interchange and the effect these changes may have on APD-40 and the adjacent interchanges. Section 2.3 summarized the expected LOS for the recommended concept plan.

3.1 Traffic Operations

An initial capacity analysis summarized in Section 2.3 was made within the APD-40 study area for two scenarios, one scenario without the proposed interchange and one scenario with the proposed interchange. Based on these capacity analysis results, the following recommended improvements are summarized below.

New Interchange

The scope of work for the proposed interchange consists of constructing a new bridge (approximately 320 linear feet) over APD-40. This bridge would consist of six (6) travel lanes with shoulders for a total width of 96 feet measured out-to-out. There would be a minimum of 300 feet access control in each direction from the ramp terminals. Location of the new interchange would require approximately 1800 linear feet of relocation for Stone Lake Road.

The scope of work for the proposed interchange includes the following work items:

- Construction of a new bridge, approximately 320 linear feet, over APD-40. This bridge would consist of six (6) travel lanes with shoulders for a total width of 96 feet measured out-to-out.
- A minimum of 300 feet access control in each direction from ramp terminals.
o A new intersection with Stone Lake Road to the south.
o To the north, the TDOT controlled section will be stubbed and it will be a local government responsibility to tie future improvements to this location.
- Eastbound Ramp Terminal Intersection:
o Construct a single lane off ramp that develops a dual right-turn and a separate left-turn lane at the intersection.
o Construct two northbound and southbound thru lanes for the mainline.
o Construct a separate northbound right-turn lane.
o Construct two separate southbound left-turn lanes.
o Construct a dual lane on-ramp that tapers to a single lane prior to merging with APD-40 eastbound.
o Install traffic signalization.
- Westbound Ramp Terminal Intersection:
o Construct a single lane off ramp that develops a dual left-turn and a separate right-turn lane at the intersection.
o Construct two northbound and southbound thru lanes for the mainline.
o Construct two separate northbound left-turn lanes.
o Construct a separate southbound right-turn lane.
o Construct a dual lane on-ramp that tapers to a single lane prior to merging with APD-40 westbound.
o Install traffic signalization.
- Relocate Stone Lake Road for the area impacted by the interchange location. Approximately 1800 linear feet will be obliterated and replaced with 2,200 feet on new location.
- Add auxiliary lanes along APD-40 connecting ramp movement to adjoining interchanges
o 2,600 linear feet of westbound auxiliary lane between the new interchange and South Lee Highway.
0 2,400 linear feet of eastbound auxiliary lane between the new interchange and South Lee Highway.
o 1,300 linear feet of eastbound auxiliary lane between the new interchange and I-75 Exit 20.
o 1,300 linear feet of westbound auxiliary lane between the new interchange and I-75 Exit 20 northbound on-ramp (assuming l-75 Exit 20 modifications are completed).
- A Commitment from local government to build necessary infrastructure on the north side of the proposed interchange. Currently, the concept plan shows an estimated alignment location. The exact location is to be determined by local officials except for the location at which it connects to the TDOT controlled portion of the interchange (300 ft north of the ramp terminal).

Other recommended improvements that will improve the overall system include:

APD-40/South Lee Highway Interchange

Construct two northbound left turn lanes at the westbound ramp terminal intersection on the north side of APD-40. Construct a separate northbound right-turn lane and two separate southbound left-turn lanes at the eastbound ramp terminal intersection on the south side of APD-40. Install traffic signalization at both ramp terminal intersections.

Proposed I-75 NB Slip Ramp at Stone Lake Road

Construct a one-lane slip ramp diverging from the I-75 NB to APD-40 exit ramp connecting to Stone Lake Road. At the ramp terminal intersection, Stone Lake Road should consist of a fourlane roadway section and the slip ramp should consist of a separate left-turn lane and right-turn lane. Traffic signalization should be installed at the ramp terminal intersection.

APD-40/I-75 Interchange (Discussed in detail in separate Interchange Modification Study)

As detailed in a companion Interchange Modification Study, it is proposed to widen the APD-40 bridge over I-75 to accommodate two eastbound and two westbound thru lanes, two westbound left turn lanes (traffic heading south on I-75), and one eastbound left turn lane (traffic heading north on I-75). Ramp improvements will be included to improve overall operations at the ramp terminals.

Figure 3.1 to 3.4 further depict the anticipated 2013 and 2033 LOS for the recommended configuration. Appendix I presents the detailed HCS output for the recommended concept.

3.2 Access Analysis (FHWA Policy Analysis)

This study is undertaken in accordance with the Federal Highway Administration's (FHWA) policy regarding requests for additional or revised access points to the Interstate System. The FWHA policy is described in the Federal Register Notice Volume 63, No. 28, dated February 11, 1998. This analysis demonstrates the impacts of modifications to the studied interchange. The FHWA requires evaluation of eight policy statements. These are listed below in bulleted italics, followed by the response as analyzed for this location.

1. The existing interchanges and/or local roads and streets in the corridor can neither provide the necessary access nor be improved to satisfactorily accommodate the design-year traffic demands while at the same time providing the access intended by the proposal.

This proposed interchange, as identified by the Cleveland Area Urban Metropolitan Planning Organization (CAUMPO), is significant for regional mobility. The primary transportation improvements outlined in this study are needed to support current needs of the area as well as the envisioned future land use and economic development.

The area in which the recommended interchange is proposed is targeted for significant future development. The natural characteristics of the land, existing and proposed utilities, and existing and proposed roads would support such a development pattern. The proposed APD-40 interchange is necessary to satisfy the needs of the region and to support the previously mentioned logical pattern of development within the study area.

Currently, there are no suitable parallel routes to APD-40 that could accommodate the targeted development traffic anticipated for the area that could be used to connect to existing interchange ramps at I-75 Exit 20 and South Lee Highway. For I-75 Exit 20, the closest interchanges are five and nine miles respectively, and with the APD-40 route bisecting from the east, no opportunities are presented to accommodate development traffic to the I-75 Exit 20 Interchange without providing new access to APD-40 via a new interchange. The closest connection to APD-40 is via the South Lee Highway Interchange (US 11). Without a new interchange on APD-40, development traffic would be forced to navigate a constrained local road system to get to APD-40.

The natural characteristics of the area, the existing and proposed utilities, and the existing and proposed roads supports the proposed economic development. The proposed slip ramp will provide direct access to southeast quadrant of the study interchange for the following proposed economic developments:

- The United States Forest Service (USFS) is planning to relocate their Cherokee National Forest headquarters to this site. The USFS site will also serve as a tourist destination prior to entering the Cherokee National Forest on APD-40 which will include the historical and cultural resources associated with the Trail of Tears National Trail.
- An Ocoee River Gateway site for visitors providing a natural entrance to the Ocoee River rafting and recreation area.
- A Visitor Welcome Center to draw attention to the area by promoting the many regional and recreational opportunities for the thousands of visitors who access the Cherokee National Forest and the Ocoee River area via the study interchange.
- A convention center serving the southern Cleveland/Bradley County area.
- An industrial park to support the new Volkswagen plant facility near I-75 Exit 9
interchange in Chattanooga.

2. Transportation System Management: FHWA policy states: "All reasonable alternatives for design options, location, and transportation system management type improvements (such as ramp metering, mass transit, and HOV facilities) have been assessed and provided for if currently justified, or provisions are included for accommodating such facilities if a future need is identified.

The proposed interchange is necessary to improve access to the area and support economic development and regional growth projections. A local road system is needed to connect the interchange to APD-40, however a local road system improvement by itself would not meet the needs of the area.

This area has been aggressively targeted by the local and regional stakeholders for significant development. A majority of the development is contingent upon the ability to access APD-40 and $\mathrm{I}-75$. A new interchange at this location is critical to the planning effort. Without the interchange, the connection back to l-75 would result in significant indirect travel through residential areas in order to access South Lee Highway, then APD-40.

Currently, there are no HOV options for APD-40 or I-75 in the project area. Transit service is limited and park and ride lots are non-existent. With the development of a new interchange, there may be potential to add a park-and-ride facility for Chattanooga commuters or even a rapid transit bus stop if Chattanooga transit options extended further northeast along I-75.

Consideration was made for frontage road improvements only but those would require access to APD-40 at either the I-75 interchange area or at South Lee Highway through residential areas. The interchange option combined with auxiliary lanes provides direct access to APD-40 and minimizes the weave impacts between the adjacent interchanges. The interchange location also keeps development traffic close to APD-40 and I-75 and out of the local road system and residential area.

Consideration was made for an at-grade intersection on APD-40 between two existing interchanges. It was determined that introducing a traffic signal less than one mile from the new signals at the I-75 Exit 20 ramp may queue traffic along the mainline of APD-40 and be detrimental for through traffic. An interchange with auxiliary lanes would provide better traffic operations
3. The proposed access point does not have a significant adverse impact on the safety and operation of the Interstate facility based on an analysis of current and future traffic. The operational analysis for existing conditions shall, particularly in urbanized areas, include an analysis of sections of Interstate to and including at least the first adjacent existing or proposed interchange on each side. Crossroads and other roads and streets shall be included in the analysis to the extent necessary to assure their ability to collect and distribute traffic to and from the interchange with the new or revised access points.

An operational analysis of current and future traffic was made for sections of the Interstate and all ramps and ramp termini within the limits of the study area. This includes analysis for Exit-20 at I-75 and South Lee Highway at APD-40. Technically, the existing adjacent interchanges related to the subject interchange are outside the influence of weaving. However, it is recommended that auxiliary lanes be constructed along APD-40.

The proposed slip ramp provides many benefits for regional traffic whose destination will be this proposed economic development, especially the development planned for in the study interchange's southeast quadrant. The highway capacity and safety benefits include the reduction in APD-40 eastbound traffic volumes heading eastbound away from I-75 which in turn, will also reduce the weaving traffic volumes for the same APD-40 segment with the construction of the proposed Interchange.

Under Chapter 3 of this study, summary tables are presented which highlight future levels of service for the existing and proposed interchange locations in addition to mainline APD-40 operations. Appendix I presents details Highway Capacity Summary output files for the recommended concept. Results of the capacity analyses presented in Section 2.3 indicate that no significant traffic operational issues are expected with construction of the improvements identified in Section 2.5.
4. The proposed access connects to a public road only and will provide for all traffic movements. Less than "full interchanges" for special purpose access for transit vehicles, for HOV's, or into park and ride lots may be considered on a case-bycase basis. The proposed access will be designed to meet or exceed current standards for Federal-aid projects on the Interstate System.

The recommended proposal is for a full interchange and will provide for all traffic movements. On the South side of APD-40, the interchange connector will tie to a relocated Stone Lake Road. This will provide access east and west along Stone Lake Road and the Humphreys Bridge Road to the east. On the north side, local officials will be responsible for providing the connection to a public facility. The recommended concept plan depicts a sample connection that may change based on development patterns. However, the intent is to provide for an improved local facility to safely and efficiently connect to the interchange.
5. The proposal considers and is consistent with local and regional land use and transportation plans. Prior to final approval, all requests for new or revised access must be consistent with the metropolitan and or statewide transportation plan, as appropriate, the applicable provisions of 23 CFR part 450 and transportation conformity requirements of 40 CFR parts 51 and 93.

This study was initiated at the request of the local government and is included in their longrange planning efforts. This study was coordinated with both TDOT and Cleveland area stakeholders. The proposed interchange is consistent with all local, regional, and statewide land use and transportation plans.
6. In areas where the potential exists for future multiple interchange additions, all requests for new or revised access are supported by a comprehensive Interstate network study with recommendations that address all proposed and desired access within the context of a long-term plan.

The proposed APR-40 interchange has received funding in three earmarks in the most recent SAFETEA-LU highway bill. Currently, there are no long-range plans for an additional interchange along APD-40. There is a companion study underway that is proposing modifications to the existing Exit 20 Interchange on I-75. This is also the starting point for APD40. The two studies have been coordinated with the improvements for each projected blended together as an integrated system (Figure 2.4).
7. The request for a new or revised access generated by new or expanded development demonstrates appropriate coordination between the development and related or otherwise required transportation system improvements.

This study originated at the request of local representatives from the City of Cleveland, Bradley County and the CUAMPO with the support of state and federal officials. This study has been coordinated with these stakeholders through prior planning efforts and this report. The City and County planning efforts have identified the area to the east as potential for development. The addition of this interchange is integral to adequately accommodate existing traffic and operations and for the planning of future development.
8. The request for new or revised access contains information relative to the planning requirements and the status of the environmental processing of the proposal.

This study's recommendation was developed in conjunction and cooperation with TDOT, Cleveland area stakeholders and FHWA. As this study's findings are approved it will then be necessary to begin conducting additional environmental studies as outlined in the NEPA planning process.

3.3 Cost Estimate

The total estimated project cost for the recommended plans is $\$ 12.7$ million. This estimate includes costs to construct a new interchange on APD-40. The estimate includes a portion of the auxiliary lanes connecting existing ramp terminals at I-75 and the South Lee highway Interchanges to the ramps for the proposed interchange. This estimate does not include costs associated with a local commitment for enhanced roadway connections on the north side of the interchange.

Right-of-Way		
Land + Improvements	x	acres (18.953)
Incidentals ($\$ 3,000$)	x	tracts (14)
Relocation (Moving + Housing)	\times	residences (1)
	businesses	
	non-profits	

$\$$	551,000		
$\$$	42,000		37,000
:---			

non-profits

Total Right-of-Way Cost

Utility Relocation

Reimbursable
Non-Reimbursable
Total Utility Cost
$\$ \square$
$\$ \square$
Construction
Clear and Grubbing
Earthwork
Pavement Removal
Drainage
Structures
Railroad Crossing or Separation
Paving
Retaining Walls
Maintenance of Traffic
Topsoil
Seeding
Sodding
Signing
Lighting
Signalization
Fence
Guardrail
Rip Rap or Slope Protection

TOTAL COST
12,718,000

In addition to the new interchange costs, the following costs are provided based on the other improvements discussed in this report:

APD-40/South Lee Highway Interchange
A conceptual cost estimate was also prepared for the identified improvements at the South Lee Highway Interchange. The proposed modifications included ramp work, adding turn lanes, and installation of two traffic signals. The estimate for this work is $\$ 731,000$.

APD-40/I-75 Interchange (Discussed in detail in separate Interchange Modification Study)
The proposed modification to the APD-40 at I-75 interchange (Exit 20) is estimated at \$13.3 million with the proposed slip ramp and $\$ 12.1$ million without the proposed slip ramp.

4.0 SUMMARY AND CONCLUSIONS

The purpose of this study is to investigate the need and viability of a new interchange located on APD-40, approximately 0.6 -mile east of I-75 at Exit 20 and 0.9 -mile west of the South Lee Highway interchange with APD-40 in Cleveland, Tennessee.

This study provides a detailed evaluation of potential interchange locations and configurations in order to better accommodate traffic anticipated with potential development in the immediate area. This study is at the request of the Tennessee Department of Transportation (TDOT) on behalf of the local government in Cleveland, Tennessee.

The recommended plan from this study proposes constructing a new interchange approximately mid-way between the two existing interchanges on APD-40. The proposed interchange configuration is a traditional diamond with a bridge over existing APD-40. Due to the close proximity of the adjoining interchanges, auxiliary lanes should be constructed connecting the adjoining interchanges ramps to this new location.

The recommended concept consists of:

- Construction of a new bridge, approximately 320 linear feet, over APD-40. This bridge would consist of six (6) travel lanes with shoulders for a total width of 96 feet measured out-to-out.
- A minimum of 300 feet access control in each direction from ramp terminals.
o A new intersection with Stone Lake Road to the south.
o To the north, the TDOT controlled section will be stubbed and it will be a local government responsibility to tie future improvements to this location.
- Eastbound Ramp Terminal Intersection:
o Construct a single lane off ramp that develops a dual right-turn and a separate left-turn lane at the intersection.
o Construct two northbound and southbound thru lanes for the mainline.
o Construct a separate northbound right-turn lane.
o Construct two separate southbound left-turn lanes.
o Construct a dual lane on-ramp that tapers to a single lane prior to merging with APD-40 eastbound.
o Install traffic signalization.
- Westbound Ramp Terminal Intersection:
o Construct a single lane off ramp that develops a dual left-turn and a separate right-turn lane at the intersection.
o Construct two northbound and southbound thru lanes for the mainline.
o Construct two separate northbound left-turn lanes.
o Construct a separate southbound right-turn lane.
o Construct a dual lane on-ramp that tapers to a single lane prior to merging with APD-40 westbound.
o Install traffic signalization.
- Relocate Stone Lake Road for the area impacted by the interchange location. Approximately 1800 linear feet will be obliterated and replaced with 2,200 feet on new location.
- Add auxiliary lanes along APD-40 connecting ramp movement to adjoining interchanges
o 2,600 linear feet of westbound auxiliary lane between the new interchange and South Lee Highway.
o 2,400 linear feet of eastbound auxiliary lane between the new interchange and South Lee Highway.
o 1,300 linear feet of eastbound auxiliary lane between the new interchange and I-75 Exit 20.
o 1,300 linear feet of westbound auxiliary lane between the new interchange and I-75 Exit 20 northbound on-ramp (assuming l-75 Exit 20 modifications are completed).

Other recommended improvements for the area include:

APD-40/South Lee Highway Interchange

Construct two northbound left turn lanes at the westbound ramp terminal intersection on the north side of APD-40. Construct a separate northbound right-turn lane and two separate southbound left-turn lanes at the eastbound ramp terminal intersection on the south side of APD-40. Install traffic signalization at both ramp terminal intersections.

Proposed I-75 NB Slip Ramp at Stone Lake Road

Construct a one-lane slip ramp diverging from the I-75 NB to APD-40 exit ramp connecting to Stone Lake Road. At the ramp terminal intersection, Stone Lake Road should consist of a fourlane roadway section and the slip ramp should consist of a separate left-turn lane and right-turn lane. Traffic signalization should be installed at the ramp terminal intersection.

The service life of the proposed interchange will exceed the 2033 planning horizon. This proposed new interchange is needed to meet current passenger and freight transportation needs and to support the future logical pattern of development within the study area. These improvements are estimated to cost $\$ 12.7$ million.

4.1 TDOT Design Division Concurrence

The following page presents a memorandum detailing the TDOT Design Division's concurrence in support of Concept 1.

STATE OF TENNESSEE

DEPARTMENT OF TRANSPORTATION

DESIGN DIVISION
505 DEADERICK STREET
SUITE 1300, JAMES K. POLK BUILDING
NASHVILLE, TENNESSEE 37243-0348

MEMORANDUM

TO: \quad Ron Baker, Roadway Specialist 3
FROM. Project Planning Division
DATE: May 1,2008
SUBJECT: PIN: 107386.00, 06007-1237-14, HPP-NHE-311(26)
SR-311 (US-74, US-64 BP) Interchange between I-75(Exit 20)
and SR-2 (US-11) in Cleveland
Bradley County
PIN: 110079.00, Project No. 99107-7086-04, APD-40 Proposed Interchange between Exit 20 at I-75 and South Lee Highway (SR-2/US-11), Bradley County

Per your request, we have reviewed the meeting summary and the presentation from the meeting held with the FHWA, and TDOT representatives from your office on April 2, 2008.

Exit 20 Interchange

We prefer Concept 1, the Diamond interchange, at exit 20. It should be the most economical intersection to build and is a type of intersection drivers are comfortable using.

The traffic is expected to more than double by $2033,61,000$ vpd to 132000 vpd. Careful attention should be paid to the number of lanes across the bridge and the addition of lanes as traffic develops. Consideration should be given to proposed turning movements, so that potential long term modifications to these turning movements would be easily incorporated as the traffic grows both on I-75 and the ramps.

The length of the proposed bridge should be carefully studied, so that future widening of I-75 could be performed without any additional work on the bridge.

APD Interchange

We prefer Concept 1 for the APD interchange. The other options seem overly complicated and likely to cause driver confusion. One key benefit of Concept 1 is that this concept is located the farthest away from the exit 20 interchange. Proposed designs for the APD interchange should take into account the close proximity of the exit 20 interchange.

If you have any questions, or need additional information, please do not hesitate to call me at (615) 741-0450.
cc: Jeff Jones

APPENDIX A

TRAFFIC DATA

STATE OF TENNESSEE

DEPARTMENT OF TRANSPORTATION
PROJECT PLANNING OFFICE
SUITE 1000, JAMES K. POLK BUILDING
NASHVILLE, TENNESSEE 37243-0344
May 12, 2009

Mr. Steve Bryan
Long Engineering Inc.
5550 Franklin Road
Suite 202
Nashville Tn. 37220
Subject: Traffic Figures for Proposed Interchange on APD-40
between I-75 \& S.R. 2.
Cleveland Tennessee. Bradley County
Dear Steve:
We have reviewed the traffic schematics you submitted on May 12,2009 for the subject project. These traffic schematics have our approval for your use in this study.

Further coordination should be directed to Mr. Bill Hart's office. If I can be of further assistance, please advice.

Cc: Mr. Bill Hart

A-11

I-75 I APD 40 Interchange Analysis - May 4, 2009

Executive Summary

Two technical memorandums were developed to discuss the use of the Cleveland Urban Area Metropolitan Planning Organization (MPO) Transportation Demand Model (TDM) which was used to analyze transportation alternatives along I-75 and APD 40. The first memorandum discussed the parameters in the version of the Cleveland model used to develop the MPO's Long Range Plan (LRP). This included a summary of traffic analysis zone data as well as traffic assignment results. The second memorandum summarized updates to the model after its use on the LRP. The results provided in the technical memorandums will be used as part of an Interchange Modification Study (IMS) for the APD 40 interchange with I-75 at Exit 20 as well as an Interchange Justification Study (IJS) for a proposed interchange along APD 40 between I-75 and US 11.

As noted, the Cleveland MPO TDM was used in this study. The model is a traditional four-step travel demand model developed in TransCAD. The most recent version of the model was approved in 2008. The model does not have a mode split component, and therefore, consists of trip generation, trip distribution, and traffic assignment components. The model includes two geographic files for the transportation network and traffic analysis zones. The study area consists of eight Traffic Analysis Zones (TAZs) located approximately halfway between Cleveland and Chattanooga, Tennessee along I-75. Major roads in the study area are I-75 and APD 40, an east-west route which intersects with I-75 at Exit 20.

A review of the calibration of the base year (Year 2000 model) indicated that the model performs very well on I-75. However, the other links including APD 40 between I-75 and US 11 as well as both US 11 links have a high percent difference. Further investigation into the model indicated that the discrepancies in the study area were due to the following issues:

- The network detail in the study area is fairly light since there aren't many major roads. That forces more vehicles onto the roads that do exist in the model.
- The Cleveland area is very close to Chattanooga and this appears to have an impact on the external trips in the model.

Major land use changes are anticipated in and around the area of the I-75 / APD 40 interchange. This includes a proposed interchange along APD 40 that is located approximately 0.625 miles east of I-75, and growth in the zones in the southeast quadrant of the I-75 /APD 40 interchange. To account for this growth, the targeted traffic analysis zone was split into two zones and the land use data was split. Two network scenarios were tested in the model including one with the proposed interchange and one without.

For purposes of the current IMS, minor adjustments were made to the model in order to reduce some of the calibration discrepancies. Using the calibrated model volumes versus the known traffic volume in the study area, factors were developed for key study area segments. These factors were then applied to the future year (Year 2030) traffic volumes from the model to derive volumes needed for the IMS. Values for the scenario with the proposed interchange along APD are shown in Table ES-1 while values for the scenario without the proposed interchange along APD 40 are shown in Table ES-2.

Once the model scenarios were finalized, the final step involved developing traffic forecasts for a mid-year (Year 2013) and the design year (Year 2033). This was accomplished using an interpolation process for Year 2013 and an extrapolation process for Year 2033.

Table ES-1: Year 2030 Traffic Volumes with Interchange (Factored)

Segment	Segment Description	Factor (rounded)	$\mathbf{2 0 3 0}$ Model (AADT)	2030 Factored (AADT)
1	I-75 South of APD 40	1.00	108,060	108,100
2	I-75 North of APD 40	1.05	85,938	90,200
3 a	APD 40 between I-75 and Int.	0.73	61,741	45,100
$3 b$	APD 40 between Int. and US 11	1.00	39,621	39,600
4	APD 40 East of US 11	1.09	39,936	43,500
5	US 11 North of APD 40	0.77	35,654	27,500
6	US 11 South of APD 40	0.41	51,675	21,200
7	Pleasant Grove Rd West of I-75	1.00	2,537	2,500
8	Link North of APD 40 Interchange	1.00	10,264	10,300
9	Link South of APD 40 Interchange	1.00	11,856	11,900

Table ES-2: Year 2030 Traffic Volumes without Interchange (Factored)

Segment	Segment Description	Factor (rounded)	2030 Model (AADT)	2030 Factored (AADT)
1	I-75 South of APD 40	1.00	108,060	108,100
2	I-75 North of APD 40	1.05	78,718	82,700
3	APD 40 between I-75 and US 11	0.73	54,239	39,600
4	APD 40 East of US 11	1.09	33,627	36,700
5	US 11 North of APD 40	0.77	34,338	26,400
6	US 11 South of APD 40	0.41	63,073	25,900
7	Pleasant Grove Rd West of I-75	1.00	2,255	2,300

I-75 I APD 40 Interchange Analysis

Cleveland MPO Model

May 4, 2009

Task 1 Technical Memorandum: Existing Model Data

The purpose of this memorandum is to summarize the existing model data in the Cleveland Urban Area Metropolitan Planning Organization (MPO) Transportation Demand Model (TDM). This is the first of two memorandums discussing the use of the model to analyze transportation alternatives along I-75 and APD 40. The data presented in this memorandum is as it appeared in the approved Long Range Plan (LRP). The results provided in the technical memorandums will be used as part of an Interchange Modification Study (IMS) for the APD 40 interchange with I-75 at Exit 20 as well as an Interchange Justification Study (IJS) for a proposed interchange along APD 40 between I-75 and US 11.

1. Study Area Description

The study area consists of eight Traffic Analysis Zones (TAZs) located approximately halfway between Cleveland and Chattanooga, Tennessee along I-75. Major roads in the study area are I-75 and APD 40, an east-west route which intersects with I-75 at Exit 20.

The blue shaded area in Figure 1 represents TAZ 70 in the TDM. This TAZ has been identified as an area of proposed growth in the Cleveland area. The transportation alternatives considered in this study are intended to provide better access to this TAZ. Figure 1 displays the study area.

2. Transportation Demand Model Description

The Cleveland MPO TDM is a traditional four-step travel demand model developed in TransCAD. The most recent version of the model was approved in 2008. The model does not have a mode split component, and therefore, consists of trip generation, trip distribution, and traffic assignment components. The model includes two geographic files for the transportation network and traffic analysis zones.

3. Base Model Inputs

Figures 2 and 3 provide the population, household, retail employment, and non-retail employment data for the TAZs in the study area for Year 2000 and Year 2030, respectively. Table 1 provides a summary of this data.

Also, the MPO provided current year land use information for comparison. This can be found in Appendix A. This information was used to validate population and employment numbers for 2000. The MPO's map shows a large percentage of the land use in the study area as residential, commercial, or undeveloped.

Figure 1: Study Area

Figure 2: Year 2000 Traffic Analysis Zone Data

Figure 3: Year 2030 Traffic Analysis Zone Data

Table 1: Traffic Analysis Zone Comparison

TAZ	Population		Households		$\begin{gathered} \text { Popl } \\ \text { HH\% } \\ \text { Change } \end{gathered}$	Retail Employment		\% Change	Non-Retail Employment		
	2000	2030	2000	2030		2000	2030		2000	2030	
33	416	1059	166	423	155\%	36	42	17\%	450	485	8\%
34	1593	4145	783	2037	160\%	180	495	175\%	360	2004	457\%
47	5529	5719	2076	2147	3\%	498	866	74\%	150	1600	967\%
48	1064	2064	381	739	94\%	176	390	122\%	4648	6286	35\%
68	4161	5666	1594	2171	36\%	228	266	17\%	505	725	44\%
69	4023	6166	1521	2331	53\%	80	93	16\%	186	263	41\%
70	1216	4716	512	1986	288\%	80	378	373\%	704	2251	220\%
71	2819	3819	1124	1523	35\%	90	105	17\%	307	394	28\%

4. Traffic Assignments

Figures 4 and 5 provide the traffic volumes for the Year 2000 and Year 2030 base models, respectively. The traffic volumes are shown as directional average daily traffic (ADT) volumes. The " $A B / B A$ " shown in the figures refers to this directional volume output from the model. $A B$ represents the volume in one direction while BA refers to the opposite direction.

Figure 4: Year 2000 Traffic Assignment

Figure 5: Year 2030 Traffic Assignment

Appendix A

Land Use Data

Exit 20 and APD 40 Current Land Use

I-75 / APD 40 Interchange Analysis

Cleveland MPO Model

May 4, 2009
Task 2 Technical Memorandum: Model Update

The purpose of this memorandum is to summarize the updates made to the Cleveland Urban Area Metropolitan Planning Organization (MPO) Transportation Demand Model (TDM). This is the second of two memorandums discussing the use of the model to analyze transportation alternatives along I-75 and APD 40. The first memorandum summarized existing model data as it appeared in the approved Long Range Plan (LRP). This second memorandum focuses on updates to the model after its use for the LRP. The results provided in the technical memorandums will be used as part of an Interchange Modification Study (IMS) for the APD 40 interchange with I-75 at Exit 20 as well as an Interchange Justification Study (IJS) for a proposed interchange along APD 40 between I-75 and US 11.

1. Study Area Description

The study area consists of eight Traffic Analysis Zones (TAZs) located approximately halfway between Cleveland and Chattanooga, Tennessee along I-75. Major roads in the study area are I-75 and APD 40, an east-west route which intersects with I-75 at Exit 20.

The blue shaded area in Figure 1 represents TAZ 70 in the TDM. This TAZ has been identified as an area of proposed growth in the Cleveland area. The transportation alternatives considered in this study are intended to provide better access to this TAZ. Figure 1 displays the study area.

2. Transportation Demand Model Description (Original 2006 TransCAD model)

The Cleveland MPO TDM is a traditional four-step travel demand model developed in TransCAD. The model does not have a mode split component, and therefore, consists of trip generation, trip distribution, and traffic assignment components. The model includes two geographic files for the transportation network and traffic analysis zones. Models were developed for a base year of 2000 as well as Year 2030, the year of the LRP.

Travel demand model calibration typically involves a series of reports and statistics which match the model output against acceptable model standards established by reviewing agencies. This can include overall model statistics as well as categorical statistics (i.e., VMT by functional classification, etc.). While attempts are made to minimize error within the models during calibration, the degree of error varies by volume groups, classification, and other criteria. For instance, lower classified roads such as collectors typically have a larger range of acceptable error when compared to higher classified roads such as interstates. Often, the error on individual links may be higher than the average for the volume group or classification of that particular link. Post-processing of these values is often necessary to account for this error.

Table 1 provides a summary of the model calibration in the study area, specifically along APD 40. As shown, the model performs very well on I-75. However, the other links including APD 40 between I-75 and US 11 as well as both US 11 links have a high percent difference.

Figure 1: Study Area

Table 1: Study Area Calibration Results (Year 2000)

Segment	Segment Description	2000 Model Assignment (AADT)	2004 Model (AADT)	2008 TRIMS (AADT)	\% Diff (2000 vs 2004)	\% Diff (2000 vs 2008)
1	I-75 South of APD 40	57,850	57,850	56,782	0.0%	1.8%
2	I-75 North of APD 40	41,804	41,940	46,648	-0.3%	-11.5%
3	APD 40 between I-75 and US 11	31,529	18,230	17,210	42.2%	78.5%
4	APD 40 East of US 11	19,377	18,580	18,400	4.1%	5.3%
5	US 11 North of APD 40	15,367	11,290	10,425	26.5%	43.8%
6	US 11 South of APD 40	19,253	7,920	7,112	58.9%	153.3%
7	Pleasant Grove Rd West of I-75	1,567	$\mathrm{~N} / \mathrm{A}$	N / A	-	-

Further investigation into the model indicated that the discrepancies in the study area were due to the following issues:

- The network detail in the study area is fairly light since there are few major roads. That forces more vehicles onto the roads that do exist in the model.
- The Cleveland area is very close to Chattanooga and this appears to have an impact on the model. Typically, the ADT on a route in a model decreases as it approaches the edge of the model. This is because the urban area transitions into rural areas where there are fewer vehicles. Therefore, trips in a border TAZ are typically attracted internally toward the center of the gravity in the model (i.e., Central Business District, etc). In the south part of the Cleveland model, this is not the case since Chattanooga is close by. A look at the volumes on US 11 south of the county line indicated another interchange along I-75. The volume on US 11 increases as it gets closer to the interchange to the south. It is believed that the trips in Zone 70 (and other nearby zones such as TAZ 69) are more attracted to the south but the model is not able to reflect this trip interaction.

As future model enhancements are made, additional detail should be paid to the role of external stations and networks at the edges of the model, particularly in the south closer to Chattanooga. For purposes of the current IMS, minor adjustments were made to the model in order to reduce some of the calibration discrepancies. This includes adjustments of the travel speeds along APD 40 to reduce trips from using this interchange as a cut-through to other destinations. Table 2 displays the updated volume comparisons.

Table 2: Study Area Calibration Results (Year 2000) - With Adjustments

Segment	Segment Description	2000 Model Assignment (AADT)	$\mathbf{2 0 0 4}$ Model (AADT)	2008 TRIMS (AADT)	$\mathbf{2}$ Diff (2000 vs 2004)	\% Diff (2000 vs 2008)
1	I-75 South of APD 40	57,850	57,850	56,782	0.0%	1.8%
2	I-75 North of APD 40	39,961	41,940	46,648	-5.0%	-15.9%
3	APD 40 between I-75 and US 11	25,099	18,230	17,210	27.4%	43.3%
4	APD 40 East of US 11	17,106	18,580	18,400	-8.6%	-7.0%
5	US 11 North of APD 40	14,736	11,290	10,425	23.4%	38.2%
6	US 11 South of APD 40	19,196	7,920	7,112	58.7%	152.6%
7	Pleasant Grove Rd West of I-75	1,100	$\mathrm{~N} / \mathrm{A}$	N / A	-	-

As shown, the adjustments made to the model still do not account for the high percent differences between the model assignment and the known traffic volume. Often in model analysis, a factor is created to account for variations between calibrated model volumes and actual traffic volumes. Due to the discrepancies along these key model links, such a factor should be used and will be discussed later in this document.

For reference, Figure 2 displays the 2030 traffic assignment for the model. The traffic volumes are shown as directional average daily traffic (ADT) volumes. The "AB / BA" shown in the figures refers to this directional volume output from the model. $A B$ represents the volume in one direction while BA refers to the opposite direction. Appendix A also provides screenshots of the model output.

3. Model Updates for I-75 Coordination (2008)

The Cleveland MPO TDM was updated in 2008 in order to make the model more consistent with the Chattanooga model. This involved using a more aggressive growth rate on I-75. The result was much higher traffic volumes along I-75 as shown in Figure 3.

4. Base Model Inputs

Table 3 provides the population, household, and employment information for TAZ 70 as provided by the MPO. The values shown in Table 3 are consistent with all versions of the model described to this point in the document, including the original model files used for the LRP as well as the updated model for the I-75 coordination.

Table 3: Zone 70 Attributes

	$\mathbf{2 0 0 0}$	$\mathbf{2 0 3 0}$	Difference
Population	1,216	4,716	3,500
Households	512	1,986	1,474
Retail Employment	80	378	298
Non-Retail Employment	704	2,251	1,547

As shown, all inputs are expected to significantly grow between Year 2000 and Year 2030. The total households in Zone 70 for Year 2030 were originally forecasted as 1,986 households and the total employment for the zone was forecasted at 2,629 employees (retail and non-retail employment).

5. Land Use Changes / Model Input Changes (2009 Model Update)

Major changes are anticipated in the area in and around Zone 70. This includes:

- A proposed interchange along APD 40 located approximately 0.625 miles east of I-75; and
- A high number of retail and non-retail employment including a high concentration of parcels adjacent to either I-75 or APD 40 (i.e., north and west portions of Zone 70).

A decision was made to split Zone 70 to reflect this concentration of development. Figure 4 displays this split.

Figure 2: Year 2030 Traffic Analysis Zone Data (LRP)

Figure 3: Year 2030 Traffic Analysis Zone Data (I-75 Adjustment)

Figure 4: Zone Split

Zonal Attribute Changes

The next step involved reallocating the population, households, and employment to the split zones. In traditional modeling applications, the summation of each category remains the same when splitting. In addition, if changes are made to the totals of the two zones, adjustments are typically made to ensure the modeled area control totals are kept in balance. However, in cases of major changes to the land use in an area, exceptions can apply as in this analysis.

In order to estimate future land use data for the new industrial park TAZ, the Institute of Transportation Engineers (ITE) Trip Generation Manual was consulted and research was performed to identify other studies relating to similar projects. From the ITE manual, two trip generation equations, one for trips per employee and one for trips per acre, were combined to create a new estimate of approximately 19 employees per acre.

As an independent check, a report entitled Employment Density Study written for the Southern California Association of Governments (SCAG) was reviewed. In this report, various land use types were studied in six California counties to develop approximations of median / average employment density for square feet of building space and for acres of land.

Based on discussions with Project Team members, it is expected that this land use in new Zone 79 will most likely serve as a support site for a future planned automobile plant. From the SCAG report, several land use types and their densities were reviewed as those possible for this study's industrial park property. Table 4 summarizes these rates.

Table 4: Trip Rates by Land Use Types

Land use	Average Employee / Acre	Median Employees / Acre
Low-rise Office	43.95	22.91
R\&D/Flex Space	20.53	18.13
Light Manufacturing	17.83	11.63
Warehouse	11.40	10.63
Average	$\mathbf{2 3 . 4 3}$	$\mathbf{1 5 . 8 3}$

As shown, the average employee per acre is 23.43 and the median employee per acre is 15.83 . An average of these two values yields a value of 19.50 employees per acre. However, before applying this rate to the total property area of approximately 516 acres, consideration may need to be given to adjustments which may be needed to account for "other uses" required within the zone, such as parking, utilities, landscaping and possibly staging areas for truck operations.

Multiple development scenarios were tested since it is currently uncertain how much of the acreage will be developed as a result of other land needs such as parking lots, etc. Table 5 summarizes potential employment for the zone.

Table 5: Land Use Scenarios

Acreage for Other Uses	Remaining Acreage (\%)	Remaining Acres	Trip Rate I Acre	Total Employment	Retail Employment	Non-Retail Employment
0.0%	100.0%	516	19.5	10,000	1,000	9,000
10.0%	90.0%	464	19.5	9,000	900	8,100
$20 \% \%$	80.0%	413	19.5	8,000	800	7,200
30.0%	70.0%	361	19.5	7,000	700	6,300
40.0%	60.0%	310	19.5	6,000	600	5,400

Next, adjustments were necessary for the projections of original Zone 70 to account for the zone split. It was assumed that:

1. The original Zone 70 was already identified as a zone of high growth potential, and therefore, the high forecasts for retail and non-retail employment in the zone should not be duplicated with the new land use scenarios.
2. All of the original forecasted population and households would be assigned to Zone 70 .
3. The majority of the employment growth originally assigned to this zone would be transferred to Zone 79.
4. There was a small amount of existing employment in the area of the new zone.
5. A small amount of the employment will be assigned to Zone 70 .

Table 6 presents the land use values used for this analysis.
Table 6: Revised Zone Attributes (Year 2030)

	Before Split	After Split	
	Zone 70	Zone 70	Zone 79
Population	4,716	4,587	0
Households	1,986	1,932	0
Retail Employment	378	100	500
Non-Retail Employment	2,251	400	5,000

The new land use data was used to populate the two TAZs.

Model User Interface Changes

The splitting of the zones also had an impact on the user interface used to run the model. The changes included:

- Adjustment of the *.rsc files to replace any mention of 78 zones to reflect 79 zones, which included the calculation of the skim matrix. As a result, a new user interface (. dbd) file was created which should be used anytime the new zone system is used.
- Expand of the ixxx_imp.mtx file to include the new zone.

External / Internal Trips and Trip Distribution Impacts

Changes to the model External-Internal (E-I) trips were necessary to increase the amount of trips from External Station 185 to Zone 79. This was done by adjusting the impedance matrix
(ixxi_imp.mtx). In the original model, all E-I trip pairs were assigned a value of 1. Changing this value changes the attraction of the specific E-I pair.

An assumption was necessary to determine the distribution of trips to Zone 79. The following distribution was assumed:

- 25% from I-75 to the South (to / from Chattanooga)
- 25% from I-75 to the North (to / from Knoxville)
- 25% from the east along APD 40
- 15% from the west along APD 40
- 10% from the south along US 11 and other internal routes

These assumptions were based on an assessment of the characteristics of the trips attracted to this zone including both freight and employee access to the site.

Therefore, a target of 25% of the total trips to Zone 79 was assumed to originate and terminate at External Station 185. As a result, the value in the impedance matrix was adjusted for each model run to meet this assumption.

6. Traffic Assignment

As noted and shown in Table 5, the amount of acreage available for development is unknown. This is a result of parking, internal roads and other related infrastructure that will be necessary. In addition, the terrain of the site may further limit the amount of construction. For this analysis, it was assumed that 40% of the site will not be developed

Two scenarios were tested in this memorandum:

- Scenario 1 - Year 2030 with APD 40 interchange between I-75 and US 11
- Scenario 2 - Year 2030 without APD 40 interchange between I-75 and US 11

Scenario 1

Scenario 1 considers the split TAZs 70 and 79 along with the network used in the Cleveland MPO LRP which included the APD 40 interchange. This interchange was originally coded in the LRP along with internal network links representing links that would tie into the interchange. Upon further analysis, the original travel speeds (and resulting travel times) on these links were too high and resulted in cut-through traffic. Traffic was using the new interchange to avoid the APD 40 / US 11 intersection. As expected, an adjustment of these speeds resulted in less traffic on these internal network links than scenarios tested earlier in this project.

Figure 5 displays the model output. As shown, approximately 61,700 vehicles per day are expected to use APD 40 between I-75 and the new interchange in Year 2030. Screenshots of the model output is also shown in Appendix A. Using the calibrated model volumes versus the known traffic volume in the study area, factors were developed for key study area segments as shown in Table 7. These values were then applied directly to the model output for these key segments.

Figure 5: Scenario 1 (Existing Geometric Conditions with APD 40 Interchange)

Table 7: Year 2030 Traffic Volumes With Interchange (Factored)

Segment	Segment Description	Factor (rounded)	$\mathbf{2 0 3 0}$ Model (AADT)	2030 Factored (AADT)
1	I-75 South of APD 40	1.00	108,060	108,100
2	I-75 North of APD 40	1.05	85,938	90,200
3a	APD 40 between I-75 and Int.	0.73	61,741	45,100
$3 b$	APD 40 between Int. and US 11	1.00	39,621	39,600
4	APD 40 East of US 11	1.09	39,936	43,500
5	US 11 North of APD 40	0.77	35,654	27,500
6	US 11 South of APD 40	0.41	51,675	21,200
7	Pleasant Grove Rd West of I-75	1.00	2,537	2,500
8	Link North of APD 40 Interchange	1.00	10,264	10,300
9	Link South of APD 40 Interchange	1.00	11,856	11,900

Using a factor of 0.73 which is based on the difference between the base year calibrated volume and the actual base year AADT, 45,100 vehicles per day are expected along APD 40 between I-75 and US 11. It should be noted that Segments 8 and 9 do not exist in the base model, and therefore, do not have a factor that can be derived.

Scenario 2

Scenario 2 considers the split TAZs 70 and 79; however, the APD 40 interchange between I-75 and US 11 is not included in the model network. Figure 6 displays the model output. Screenshots of the model output are also shown in Appendix A. As shown, approximately 54,200 vehicles per day are expected to use APD 40 between I-75 and the new interchange in Year 2030.

Using the same factors used in Table 7, factors were developed for key study area segments as shown in Table 8. These values were then applied directly to the model output for these key segments.

Table 8: Year 2030 Traffic Volumes Without Interchange (Factored)

Segment	Segment Description	Factor (rounded)	$\mathbf{2 0 3 0}$ Model (AADT)	$\mathbf{2 0 3 0}$ Factored (AADT)
1	I-75 South of APD 40	1.00	108,060	108,100
2	I-75 North of APD 40	1.05	78,718	82,700
3	APD 40 between I-75 and US 11	0.73	54,239	39,600
4	APD 40 East of US 11	1.09	33,627	36,700
5	US 11 North of APD 40	0.77	34,338	26,400
6	US 11 South of APD 40	0.41	63,073	25,900
7	Pleasant Grove Rd West of I-75	1.00	2,255	2,300

Figure 6: Scenario 2 (Without APD 40 Interchange)

7. Interpolation / Extrapolation of Traffic Volumes

Once the model scenarios were finalized, the next step involved developing traffic forecasts for a mid-year (Year 2013) and the design year (Year 2033). The mid-year forecasts were derived by interpolating the base year (Year 2000) and future year (Year 2030) traffic volumes. The base year (Year 2000) volumes were based on traffic counts and the future year (Year 2030) volumes were based on the factored volumes derived from the model. Similarly, the design year forecasts were derived by extrapolating the Year 2030 factored volumes using the growth trends based on the Year 2000 and Year 2030 volumes. These values are shown in Appendix B.

8. Summary

This document summarizes the steps undertaken to develop traffic forecasts along I-75 and APD 40 using the Cleveland MPO travel demand model. This included an analysis of how well the model calibrates along these key segments. The model calibrates well as a whole, but as with most models, discrepancies exist on individual links. Based upon a review of the base year model assignments and known traffic counts in the study area, the calibration along I-75 was acceptable. However, there were some discrepancies along APD 40 and US 11. Using this information, adjustments were made to the model which included changes to high travel speeds along key links. Post-processing adjustments were needed to account for calibration discrepancies.

In addition to the model adjustments, Year 2030 scenarios were run. This included making physical adjustments to the traffic analysis zones and changing the inputs into the zones to account for proposed land use changes near the I-75 interchange. Two scenarios were tested including a scenario with a proposed interchange along APD 40 between I-75 and US 11 and a second scenario without the interchange. Once complete, the model volumes were factored for the calibration discrepancies. In addition, the factored volumes were interpolated to get Year 2013 volumes and extrapolated to get Year 2033 volumes.

Appendix A

TransCAD Output from Cleveland MPO TDM

Figure A-1: Year 2000 Model AADT (After Recalibration)

Figure A-2: Year 2030 Model AADT (With Interchange / Non-Factored)

\%

4.
E
Figure A-3: Year 2030 Model AADT (Without Interchange / Non-Factored)

Appendix B

2013 and 2033 Segment Traffic Forecasts

Table B-1: 2013 (Interpolated) and 2033 (Extrapolated) Traffic Volumes

Segment	Segment Description	$\mathbf{2 0 0 0}$ AADT	2030 AADT (Factored) With Interchange	Without Interchange	2013 AADT (Interpolated) Interchange	2033 AADT (Extrapolated) Without Interchange	With Interchange	Without Interchange
	I 75 South of APD 40	57,850	108,100	108,100	79,600	79,600	113,100	113,100
2	I 75 North of APD 40	41,940	90,200	82,700	62,900	59,600	95,000	86,800
3a	APD 40 between I 75 and Interchange	18,230	45,100	39,600	29,900	27,500	47,800	41,700
3b	APD 40 between Interchange and US 11	18,230	39,600	39,600	27,500	27,500	41,700	41,700
4	APD 40 East of US 11	18,580	43,500	36,700	29,400	26,400	46,000	38,500
5	US 11 North of APD 40	11,290	27,500	26,400	18,300	17,800	29,100	27,900
6	US 11 South of APD 40	7,920	21,200	25,900	13,700	15,700	22,500	27,700
7	APD 40 West of US 11	1,100	2,500	2,300	1,700	1,600	2,600	2,400
8	Link North of APD 40 Interchange	-	10,300	-	6,800	-	10,900	-
9	Link South of APD 40 Interchange	-	11,900	-	7,900	-	12,500	-

I-75 I APD 40 Interchange Analysis

Cleveland MPO Model

May 5, 2009
Task 3 Technical Memorandum: Design Traffic Volumes

Two technical memorandums (Task 1 and Task 2) were developed by PB Americas, Inc. to discuss the use of the Cleveland Urban Area Metropolitan Planning Organization (MPO) Transportation Demand Model (TDM). These memorandums, dated May 4, 2009, were described in the Memorandum of Understanding document dated March 27, 2009.

The TDM was updated to analyze two transportation alternatives along I-75 and APD 40, hereafter described as traffic condition scenarios. These traffic condition scenarios included one without the proposed APD-40 interchange and one with the proposed APD-40 interchange. When completed, study link Average Annual Daily Traffic (AADT) volumes were provided to Long Engineering for the horizon years 2013 and 2033. These AADT volumes are shown in Table 1.

Table 1 - 2013 and 2013 Study Link AADT Volumes

Study Links	2013 AADT		2033 AADT	
	Without Proposed Interchange	With Proposed Interchange	Without Proposed Interchange	With Proposed Interchange
I-75 North of APD-40	59,600	62,900	86,800	95,000
I-75 South of APD-40	79,600	79,600	113,100	113,100
Pleasant Grove Road	1,600	1,700	2,400	2,600
APD-40 between I-75 and Proposed Interchange	27,500	29,900	41,700	47,800
APD-40 between Proposed Interchange and US 11		27,500		41,700
APD-40 East of US 11	26,400	29,400	38,500	46,000
Proposed Interchange North of APD-40	-	6,800	-	10,900
Proposed Interchange South of APD-40	-	7,900	-	12,500
US 11 North of APD-40	17,800	18,300	27,900	29,100
US 11 South of APD-40	15,700	13,700	27,700	22,500

After reviewing the traffic volumes in Table 1, it was determined that the study link volumes for Pleasant Grove Road were low especially being adjacent to l-75 and near the perimeter of the TDM. To account for additional growth near the I-75 interchange, the traffic volumes on Pleasant Grove Road were tripled as shown in Table 2.

Table 2 - Pleasant Grove Road AADT Volume Adjustment

Pleasant Grove Road		AADT (From TDM)	AADT (Adjusted)
2013	Without Proposed Interchange	1,600	4,800
	With Proposed Interchange	1,700	5,100
2033	Without Proposed Interchange	2,400	7,200
	With Proposed Interchange	2,600	7,800

From the previously discussed traffic condition scenarios, a slip ramp to Stone Lake Road is being proposed to diverge from the I-75 northbound off-ramp to APD-40. This slip ramp will allow vehicles to directly enter the proposed development in the southeast quadrant of the interchange without traveling on APD-40. The return for these traffic volumes will be the proposed interchange on APD-40 or a new access road extending Stone Lake Road to US 11.

A total of four traffic condition scenarios were subsequently developed using the combinations of with/without the proposed interchange and with/without the proposed slip ramp as described below:

- Existing System (without the Proposed Interchange) without the Slip Ramp
- Existing System with the Slip Ramp
- Proposed System (with the Proposed Interchange) without the Slip Ramp
- Proposed System with the Slip Ramp

The AADT volumes were initially applied to each study link with the assumption of a 50/50 directional split. Using available turning movement count (TMC) percentages, AADT volumes were developed for each traffic condition scenario. The traffic volumes for the AM and PM design hour volumes (DHV) were developed from the AADT volumes based on available TMC percentages for each peak period. In the development of the traffic volumes, lane balancing was used so that the traffic volumes within and between each interchange were equal.

APPENDIX B

FUNCTIONAL PLANS

TWO LANE RAMPS - TANGENT SECTION
basEd on Std. DWG. RDO1-TS-4

APPENDIX C
 OTHER OPTIONS CONSIDERED

APD CONCEPT 1 (RECOMMENDED)
 - Disadvantage:
$\checkmark \quad$ Overhead power lines may prevent the new interchange

layout from being located eastward from its shown location
$\checkmark \quad$ Weave distances between interchanges may be undesirable.

Consideration for additional auxiliary lanes on US 64 BP may
be necessary.
APD CONCEPT 1 (RECOMMENDED)

APD CONCEPT 3

APD CONCEPT 3

APD CONCEPT 4

- New system of separated on-ramps and off-ramps that are
connected via a frontage road system located between the
existing I-75 and South Lee Highway interchanges
- Advantages:
$\left.\begin{array}{ll}\checkmark & \text { Frontage road connections to local roads and Humphrey } \\ & \text { Bridge Road on the north and south sides of US } 64 \text { BP } \\ \checkmark & \text { Least US } 64 \text { BP traffic impacted APD Concept due to no } \\ & \text { EB \& WB traffic weaving conditions created } \\ \checkmark & \text { New overpass bridge structure on US } 64 \text { BP located the } \\ \text { closest to I-75 }\end{array}\right\}$ Disadvantage:

APD CONCEPT 4

APPENDIX D
 COST ESTIMATE WORKSHEETS

ITEM		COST			
Clear \& Grubbing:		\$123,691	=	\$124,000	\$124,000
Earthwork:		\$2,970,431	=	\$2,970,000	\$3,094,000
Pavement Removal:		\$16,500	=	\$17,000	\$3,111,000
Erosion Control:		\$250,000	=	\$250,000	\$3,361,000
Drainage:		\$29,665	=	\$30,000	\$3,391,000
Structures:		\$3,124,800	$=$	\$3,125,000	\$6,516,000
Railroad:		\$0	$=$	\$0	\$6,516,000
Paving:		\$906,385	=	\$906,000	\$7,422,000
Retaining Walls:		\$0	=	\$0	\$7,422,000
Maintenance of Traffic:		\$200,000	=	\$200,000	\$7,622,000
Topsoil:		\$241,226	=	\$241,000	\$7,863,000
Seeding:		\$31,661	$=$	\$32,000	\$7,895,000
Sodding:		\$100,000	=	\$100,000	\$7,995,000
Signing:		\$50,000	=	\$50,000	\$8,045,000
Signalization:		\$300,000	=	\$300,000	\$8,345,000
Fencing:		\$219,470	=	\$219,000	\$8,564,000
Guardrail:		\$68,750	=	\$69,000	\$8,633,000
Rip-Rap:		\$50,000	=	\$50,000	\$8,683,000
Other Construction:		\$550,778	=	\$551,000	\$9,234,000
Sub-Total:		\$9,233,357	=	\$9,233,000	\$9,234,000
10\% Eng. \& Cont.:		\$923,336	$=$	\$923,000	\$923,000
Sub-Total:		\$10,156,692	=	\$10,157,000	\$10,157,000
Total Construction Cost :	$\begin{aligned} & \text { Sub-Total } \\ & \$ 10,157,000 \end{aligned}$	$+$	$\begin{aligned} & \text { Mobil. } \\ & \$ 435,000 \end{aligned}$	$=$	\$10,592,000
	\$10,592,000	10\% Prel. Eng \$923,000		.	\$11,515,000
	Row Total \$630,000	$\begin{aligned} & + \\ & + \end{aligned}$	$\begin{gathered} \text { Utility Total } \\ \$ 573,000 \end{gathered}$	$+$	Constr. Total \$11,515,000
TOTAL SECTION COST :					\$12,718,000
Mobilization Table					
\$0 to \$1,000,000	5\%				\$
\$1,000,000 to \$5,000,000	\$50,000 + 4.5\%	over \$1,000,0			\$
\$5,000,000 to \$10,000,000	\$230,000 + 4\%	over \$5,000,000			\$
\$10,000,000 to \$20,000,000	\$430,000 + 3.5	\% over \$10,000	0,000		\$ 435,000
\$20,000,000 +	\$780,000 + 3\%	over \$20,000,	000		\$

Right of Way Cost

Parcel	Area (sf)	Acres	Cost (\$/Acre)*1.2factor		Improvements (1.2 factor)			Land Cost	Total		
51-28	646	0.015	\$	11,272.80	+		\$	167.18	\$	167.18	
51-26	1,668	0.038	\$	3,505.20		-	\$	134.22	\$	134.22	
51-1	24,752	0.568	\$	13,290.00		83,520.00	\$	7,551.75	\$	91,071.75	
51-34	41,010	0.941	\$	12,817.20	\$	72,000.00	\$	12,066.88	\$	84,066.88	
51-29	20,148	0.463	\$	12,817.20	\$	-	\$	5,928.40	\$	5,928.40	
51-22	134,773	3.094	\$	5,760.00	\$	-	\$	17,821.22	\$	17,821.22	
51-21	120,949	2.777	\$	5,760.00	\$	-	\$	15,993.26	\$	15,993.26	
84-8	71,114	1.633	\$	12,096.00	\$	-	\$	19,747.36	\$	19,747.36	
51-23	16,380	0.376	\$	5,402.40	\$	-	\$	2,031.48	\$	2,031.48	
51-32	502	0.012	\$	8,082.00	\$	-	\$	93.14	\$	93.14	
87-0	66,912	1.536	\$	8,082.00			\$	12,414.66	\$	12,414.66	
N. of U.S. 64	11,948	0.274	\$	32,548.80	\$	-	\$	8,927.76	\$	8,927.76	
	251,158	5.766	\$	5,714.40	+	-	\$	32,948.05	\$	32,948.05	
	49,163	1.129	\$	63,011.20	\$	-	\$	71,116.15	\$	71,116.15	
	14,459	0.332	\$	6,960.00		-	\$	2,310.25	\$	2,310.25	(Rounded)
Sub-Total									\$	365,000	
Total Acres	18.953										
Total Tracts	14										
Contengenices	0.43	x	\$	432,000				=	\$	185,760	
Total Land \& Improvement Costs								=	\$	551,000	(Rounded)
Incidentals	14	x	\$	3,000	Per Tract for Incidr			=	\$	42,000	
Replacement Housin	1	x	\$	12,000	Per Unit			=	\$	12,000	
Moving Expenses	1	X	+	25,000	Per Unit			=	\$	25,000	
TOTAL ROW COSTS								=	\$	630,000	

Length (ft.)	Width (tt.)(Avg.)	Area (sq.ft./ac.)	Acres	Cost (\$/ac.)	Total		
9559	75	716,925	16.458	\$4,000	\$	65,833	So. Side of APD
6821	75	511,575	11.744	\$4,000	\$	46,977	No. Side of APD
1185	100	118,500	2.720	\$4,000	\$	10,882	Cross Road
17565					\$	123,691	

Bradley County

S. Lee Hwy Modification
 Cost Estimate Summary

ITEM	COST				
Clear \& Grubbing:		\$0	=	\$0	\$0
Earthwork:		\$3,975	=	\$4,000	\$4,000
Pavement Removal:		\$583	=	\$1,000	\$5,000
Erosion Control:		\$20,000	=	\$20,000	\$25,000
Drainage:		\$0	=	\$0	\$25,000
Structures:		\$0	=	\$0	\$25,000
Railroad:		\$0	=	\$0	\$25,000
Paving:		\$136,810	=	\$137,000	\$162,000
Retaining Walls:		\$0	=	\$0	\$162,000
Maintenance of Traffic:		\$50,000	=	\$50,000	\$212,000
Topsoil:		\$2,413	=	\$2,000	\$214,000
Seeding:		\$634	=	\$1,000	\$215,000
Sodding:		\$0	=	\$0	\$215,000
Signing:		\$15,000	=	\$15,000	\$230,000
Signalization:		\$300,000	=	\$300,000	\$530,000
Fencing:		\$0	=	\$0	\$530,000
Guardrail:		\$0	=	\$0	\$530,000
Rip-Rap:		\$0	=	\$0	\$530,000
Other Construction:		\$52,942	=	\$53,000	\$583,000
Sub-Total:		\$582,357	=	\$582,000	\$583,000
10\% Eng. \& Cont.:		\$58,236	=	\$58,000	\$58,000
Sub-Total:		\$640,593	=	\$641,000	\$641,000
Total Construction Cost :	Sub-Total \$641,000	$+$	Mobil. $\$ 32,000$	$=$	\$673,000
	$\$ 673,000 \quad+\quad$$10 \%$ Prel. Eng. $\$ 58,000$			=	\$731,000
	Row Total \$0	$+$	Utility Total \$0	$\begin{aligned} & + \\ & + \end{aligned}$	Constr. Total \$731,000
TOTAL SECTION COST :					\$731,000
Mobilization Table					
\$0 to \$1,000,000	5\%				\$ 32,000
\$1,000,000 to \$5,000,000	\$50,000 + 4.5\% over \$1,000,000				\$
\$5,000,000 to \$10,000,000	\$230,000 + 4\% over \$5,000,000				\$
\$10,000,000 to \$20,000,000	\$430,000 + 3.5\% over \$10,000,000				\$
\$20,000,000 +	\$780,000 + 3\% over \$20,000,000				\$

Right of Way Cost

	Lgth (ft)	No. of Poles			Cost (\$/pole)	Cost (\$/tt)		
8" Sewer						\$35.00	\$0	
12" Water						\$130.00	\$0	
Utility Poles		0			\$15,000.00		\$0	
						Total	\$0.00	
203-01 Road and	Exc. (Unc							
Area (sq. ft.)		Avg. Exc. Depth	Factor	C.Y.	Cost/cy		Total	
20444		1.5	27	1136	\$3.50		\$3,975.22	Widening - Ramps $=13,275$ s.f. Widening - Mainline $=7,169$ s.f.
						Total	\$3,975.22	
202-03.01 Pavem	moval							
Area (sf)	1	sf/sy	*	Cost (\$/sy)	Total			
1400	1	9	*	\$3.75	\$583.33			
Pipe Culvert	=	Bedding	+	Pipe	+	Headwalls		
Bedding	=	Length (ft)	*	cy/ft	*	Cost (\$/cy)		
204-07	=	0	*	0.266	*	\$30.00	\$0.00	
Pipe	=	Length (ft)	*	Cost (\$/t)				
607-05.02	$=$	0	*	\$40.00			\$0.00	
Headwall Steel	=	lbs/wall	*	\# H'walls	*	Cost (\$/lb)		
611-07.02	$=$	0	*	0	*	\$1.30	\$0.00	
Headwall Conc.	=	cy/wall	*	\# H'walls	*	Cost (\$/cy)		
611-07.01	=	0	*	0	*	\$480.00	\$0.00	
=						Total	\$0.00	
New Structure over U.S. 64								
Length (ft.)	Width (ft.)	s.f.			Cost/s.f.		Total	
					\$250.00		\$0.00	

APPENDIX E

CRASH DIAGRAMS

CRASH SUMMARY SHEET
APD-40 (SR 311) BETWEEN I-75 AND S. LEE HIGHWAY (US 11, SR 2) BRADLEY COUNTY, TN

DESCRIPTION	YEAR			TOTAL	PCT. OF TOTAL		
	2003	2004	2005				
TYPE							
REAR END		1		1	10.0\%		
LEFT TURN				0	0.0\%		
STRAIGHT (HEAD ON)				0	0.0\%		
RIGHT TURN				0	0.0\%		
RIGHT ANGLE				0	0.0\%		
SIDESWIPE	1	3		4	40.0\%		
PEDESTRIAN/CYCLIST				0	0.0\%		
STRUCK OBJECT/ANIMAL IN ROAD				0	0.0\%		
RUN OFF THE ROAD	4			4	40.0\%		
OVERTURN			1	1	10.0\%		
OTHER				0	0.0\%		
INVOLVEMENT							
PASSENGER VEHICLES	6	9	1	16	100.0\%		
TRUCKS	Note: Vehicle classification information was not provided. All vehicle types were assumed to be passenger vehicles.						
BUSES							
MOTORCYCLES							
OTHER							
ROAD SURFACE							
DRY (No Adverse Conditions)	2	4	1	7	70.0\%		
WET (Rain)	3			3	30.0\%		
DAMAGE							
PROPERTY DAMAGE ONLY	3	3	1	7	70.0\%		
INJURY CRASHES (NO FATALITIES)	2	1		3	30.0\%		
FATALITY CRASHES				0	0.0\%		
NUMBER OF INJURIES	2	2		4			
NUMBER OF FATALITIES				0			
CRASH SUMMARY							
TOTAL CRASHES	5	4	1	10			
PCT. OF TOTAL	50.0\%	40.0\%	10.0\%				

APPENDIX F
 I-75 EXIT 20 INTERCHANGE MODIFICATION FUNCTIONAL PLANS

APPENDIX G

OCOEE REGIONAL GATEWAY: LAND USE REPORT

METROPOLITAN PLANNING ORGINIZATION

Ocoee Regional Gateway:

Land Use Analysis for Proposed APD-40 Intersection or Interchange and Related Improvements to nearby I-75 Exit 20 in Cleveland, Tennessee

INTRODUCTION

Purpose

A new access is being considered to APD-40 in Cleveland, Tennessee. The proposed access would involve the construction of an at-grade intersection or a grade-separated interchange on APD-40 at a point between U.S. 11 and I-75 Exit 20. No access presently exists in this section of APD-40. It is proposed to connect existing (e.g. Pleasant Grove Church Road and Stone Lake Road) and future local streets in the area to the new access via a frontage road system. The proposed project would serve commercial, industrial, and residential access needs and help to direct urban growth into areas readily served by utilities and other urban services.

A separate but related project would entail improvements to I-75 Exit 20 itself. The existing Exit 20 is an old-style diamond interchange that involves a two-lane bridge over I-75. The March 2005 Interchange Modification Study, Exit 20 on Interstate 75, Bradley County, Tennessee, prepared for TDOT by Volkert \& Associates, Inc., recommended widening the bridge and northbound exit ramp and installing signalized intersection control at an estimated cost of under $\$ 1.6$ million. These improvements would address congestion and safety issues. Bradley County, the City of Cleveland, the Cleveland Urban Area MPO (CUAMPO), the Southeast Tennessee RPO, and the Cleveland/Bradley Chamber of Commerce have all acted in support of this project individually or as the western terminus of Corridor K (the Chattanooga-Asheville Highway) that is described in more detail below.

The proposed APD-40 access is included in the Cleveland Urban Area MPO (CUAMPO) Long Range Transportation Plan. CUAMPO has urged the approval of this project by the

Tennessee Department of Transportation, as well as improvements to nearby Exit 20. These projects have received funding in three earmarks in the most recent SAFETEA-LU highway bill. Earmarked funding for Cleveland in the most recent highway bill, "SAFE, ACCOUNTABLE, FLEXIBLE, EFFICIENT, TRANSPORTATION EQUITY ACT: A LEGACY FOR USERS" (SAFET-LU), Public Law 109-59, includes the following:

Project 548 (page 119 STAT 1277 in the plain text version of bill) provides $\$ 1.92$ million for "construction of an intersection/interchange in the City of Cleveland along I-75". This is a High Priority Project (HPP).

Project 4951 (page 119 STAT 1446 in the plain text version of the bill), also an HPP project, provides $\$ 1.25$ million for "construction of an interchange on Highway 64 (APD 40) adjacent to I-75 Exit 20 in the City of Cleveland, TN for increased safety".

Project 387, a Transportation Improvement Project and not an HPP project, (page 119 STAT 1505 in the plain text version of the bill) provides $\$ 2.0$ million for "construction of an interchange on Highway 64 (APD 40) adjacent to I-75 Exit 20 in the City of Cleveland, TN for increased safety".

This study examines the existing and anticipated future land use in the area near the proposed APD-40 access and Exit 20. The land use study will assist TDOT and it consultants in evaluating the transportation benefits of the proposed access on APD-40 and the proposed improvements to Exit 20. Apart from congestion and safety benefits, these two related projects provide other important benefits consistent with the plan goals of the Cleveland Urban Area MPO, TDOT, and the U.S. DOT as these are articulated in SAFETEA-LU. Specifically, the improvements would make possible the more efficient use of existing facilities, APD-40 and I-75 Exit 20; the improvements would enhance the connectivity of the surface transportation system and facilitate intermodal connections with air and rail facilities in Chattanooga and elsewhere; and the projects could enhance transportation system security by facilitating diversion of I-75 traffic during major fog events and similar situations.

Description of the Study Area

The study area is in the City of Cleveland and Bradley County, in southeast Tennessee. The primary study area consists of lands along the APD-40/Pleasant Grove Road corridor between U.S. 11 and just west of I-75 Exit 20. The general location of this primary study area is illustrated in the county map below, and in more detail in other maps that follow. An aerial photograph is also included below which shows the study area (at the top of the aerial is the APD-40/U.S. 11 interchange and I-75 Exit 20 is at the bottom).

References will be made to areas beyond the immediate study area that would logically be served by the proposed access, and those which would generate traffic in the APD-40 corridor thereby affecting the land use pattern and trip origins and destinations in the area immediately served by the proposed APD-40 access and Exit 20.

EXISTING CONDITIONS

Existing land use is shown in the map and table below. Existing commercial uses are located along U.S. 11 and at its intersection with APD-40, and at I-75 Exit 20. Touristoriented developments exist at Exit 20 including an automobile travel center, fireworks stores, and a gas station/convenience store. Region serving facilities at Exit 20 include a multiplex movie theater, a large automobile dealership, and, just west of the study area, the Tri-State Exhibition Center and the Bradley County Landfill. Commercial and industrial uses are not located along the APD-40 corridor near the study area except car dealerships in a short section in the northwest quadrant of the APD-40/U.S. 11 intersection that is served by a frontage road connecting back to U.S. 11.

Other existing land uses along the APD-40 corridor between U.S. 11 and I-75 Exit 20 are generally pasture land and low-density residential. A major Cleveland Utilities electrical substation exists on the south side of APD-40 in the primary study area.

Other existing land uses beyond the primary study area impact traffic along the APD-40 corridor. Industrial uses, including large warehousing and distribution facilities have been developed along APD-40 east of the primary study area near Westland Drive. Other
industrial, commercial, and residential users also access the APD-40 corridor and I-75 Exit 20 from Blue Springs Road, Dalton Pike, Blackburn Road, Spring Place Road, U.S. 64, and Overhead Bridge Road. Dalton Pike has experienced significant growth in residential subdivisions south of APD-40. Nearly 300 new housing units have been added on 250 acres along the Dalton Pike Corridor in the last five years. The Dalton Pike/APD-40 intersection is now the location of a Walmart Supercenter and several other new commercial enterprises. From a regional access standpoint, all of this development would most logically access I-75 from Exit 20 to go south to Chattanooga, where many residents work, or north toward Athens, Knoxville, etc.

Existing Land Uses in the Study Area
Land Use \# of Parcels Area in Acres

Industrial	59	435
Business	174	622
Mass Assembly	2	116
Natural	319	6032
Residential	1289	3836
Institutional	8	89

Existing Roads

The proposed intersection is where APD-40 Pleasant Grove Church and Stone Lake Road meet. APD-40 is a bypass road that runs from Exit 20 of Interstate 75 around the southern part of Cleveland until it meets $25^{\text {th }}$ Street, which leads back to I-75 at Exit 25.

I-75 is the primary regional transportation connection Cleveland for north-south traffic. Chattanooga is 20 minutes to the south and Knoxville is around an hour and a half to the north. Beyond Chattanooga, I-75 continues to Atlanta, GA. Traffic from south Bradley County, east Bradley County, and from Polk County beyond to North Carolina uses the APD-40 corridor for an east-west connection to I-75. Because of the north-south orientation of the mountains, it is often important for regional east-west traffic to be able to get to I-75 in order to connect with the appropriate road.

North of APD-40 is primarily open land but there is a local street network serving mostly residential development. Pleasant Grove Church Road (Pleasant Grove Road) connects this area to U.S. 11 and Pleasant Grove Trail connects to Harrison Pike. Humphrey Bridge Road is the only crossing of APD-40 between U.S 11 and Exit 20. Humphrey Bridge Road intersects Stone Lake Road just south of APD-40. Stone Lake Road runs parallel to APD-40 almost the whole way from Exit 20 to U.S 11 such that it could possibly serve as a frontage road. APD-40 ends at the Exit 20 bridge and Pleasant Grove Road continues west on the other side of I-75 providing access to the interstate-oriented commercial areas as well as Tri-State Exhibition center, the Bradley County Landfill, etc.

The Average Annual Daily Traffic map below was prepared by TDOT for an analysis of a future toll-supported project that would provide a new river crossing (see discussion below). The 2006 AADT on I-75 just north of Exit 27 was 43,202; between Exits 27 and 25 the AADT was 44,325 ; and the AADT south of Exit 20 was 59,120 . The AADT on APD-40 just east of Exit 20 was 19,607. It appears that a large volume of traffic is utilizing the substandard Exit 20 and improvements need to be made.

Existing Utilities

Electric and water are available to the areas south of APD 40 but sewer is not yet. The drainage in the area falls two different directions. The properties immediately adjacent to the CU substation fall to the north. The other areas fall to the south. A gravity sewer line could be constructed to serve the areas adjacent to the substation.

FUTURE CONDITIONS

The existing land use, the projected land use and the available infrastructure are important considerations for any planning in this area. Land Use as shown in the Bradley county future land use plan is expected to change from its current state and become a more commercial area. Most utilities are already provided and sewer, which is not currently available south of APD-40, is planned for that area according to a 1996 Cleveland Utilities plan.

Future Population and Employment

The population in Bradley County in 2000 was 87,965 people. In 2030 the population is projected to be 138,607 , an increase of 61.2%. The Traffic Analysis Zone (TAZ) located south of Exit 20 and east of I-75, TAZ 70, had 1216 people in 2000. In 2030 the population of TAZ 70 is expected to increase to 4716 people. This TAZ is bounded by APD 40 to the north the Bradley/Hamilton county line in the south, Highway 11 to the east and I-75 to the west. TAZ 34 is north of APD-40 had a population of 1593 in 2000,
increasing to 4145 by 2030. TAZ 34 is bounded by I-75 to the west, U.S. 11 to the east, Harrison Pike to the north, and APD-40 to the south. In these two areas on opposite sides of APD-40, 6052 people are expected to be added by 2030. The table below summarizes the project population growth for the primary study area.

Employment growth in these TAZs 34 and 70 along APD 40 is expected to be greater than in most areas in Bradley County (see map below). TAZ 34 is expected to add 1959 jobs while TAZ 70 is expected to add 1849 new jobs, together over 3800 new jobs each. As shown by the table below, the four TAZs nearest the primary study area ($34,47,48$, and 70) are projected to add almost 7500 new jobs, about one-third of the projected job growth for Bradley County. Bradley County is projected to add over 23,000 new jobs by 2030.

2000-2030 POPULATION GROWTH				
	2000 Population	2030 Population	$\begin{array}{\|l\|} \hline \text { Growth } 2000 \\ \text { to } 2030 \end{array}$	$\begin{aligned} & \hline \% \text { Growth } \\ & 2000 \text { to } 2030 \end{aligned}$
Exit 20/APD-40 Area TAZs				
TAZ 34	1593	4145	2552	160.2\%
TAZ 47	5529	5719	190	3.4\%
TAZ 48	1064	2064	1000	93.9\%
TAZ 70	1216	4716	3500	287.8\%
Total Exit 20/APD-40 Area TAZs				
Bradley County			52,642	61.2\%

2000-2030 EMPLOYMENT GROWTH		
	2000 to 2030	\% of County
Exit 20/APD-40 Area TAZs		
TAZ 34	1959	8.48%
TAZ 47	1818	7.87%
TAZ 48	1852	8.02%
TAZ 70	1845	7.99%
Total Exit 20/APD-40 Area TAZs		
Bradley County	23,103	100.00%

Future Land Use

Bradley County’s 1995 Land Use Plan addressed the subject area. An excerpt from the plan's future land use map is shown below for the primary study area (the map has been updated to show the commercially zoned 2004 annexation by the City of Cleveland as
indicated in the light purple). The blue indicates I-75 interchange-oriented development (typically commercial) and the pink indicates other commercial development. The yellow color indicates residential development. The darker green indicates public/semi-public uses, in this case the Bradley County landfill and the Tri-state Exhibition Center. The largest future land use outside the urbanized area is agricultural, woodland, and open space which is shown in light green. Overall, the proposed future land use for the primary study area is one of intensive interstate-oriented and commercial development along the major roadways with more intensive residential development in the areas north and south of APD-40. Access from APD-40 and a connecting frontage road system is necessary to support this future land use plan.

The study area plays a pivotal role in a vision for land use and development that is occurring at a regional level. Exit 20 is envisioned as the primary gateway into the Ocoee Region. Exit 20 and APD-40 lie at the western terminus of the long-awaited Chattanooga-Asheville Highway, Corridor K in the Applachian Regional Commission’s Appalachian Developmental Highway System (ADHS). This vital highway project, planned for nearly 50 years and one of the last remaining pieces in ADHS system designed to bring transportation and prosperity to Appalachian counties, will be the critical east-west link that finally removes the transportation barrier between southeast Tennessee and northern Georgia in the west and North Carolina and the eastern seaboard to the east. CUAMPO has endorsed and urged the completion of this project as has the Southeast Tennessee RPO which ranked Corridor K as its number one priority. Much of the work on the North Carolina side of Corridor K has been completed but on the Tennessee side the critical passage around the Ocoee River gorge along or near U.S. 74 remains to be built in Polk County which is immediately east of Bradley County.

FINDINGS OF WILBUR SMITH ASSOCIATES REGARDING CORRIDOR K FROM: Corridor K Economic Development and Transportation Study Final Report

The Southeast Tennessee Development District hired Wilbur Smith Associates to conduct this economic development and transportation study of the ComidorK Region, in part to answer the question, "Is there an economic development need forthis comidor?" We have concluded from our research that there is a cleareconomic development need for an improved east-west transportation comidor to serve this region. Based upon an analysis of the job attraction potential that could result from an improved east-west highway connection that would improve highway tra vel times, a ieport, rail, and port access, and expanded labor market our report estimates the creation of over 7,000 new jobs in the region within five years. If the average salary for the jobsgained is just $\$ 30,000$ peryearthat would mean an annual influx of $\$ 210$ million in personal income forthe region.

The study conclusions are based on our research and input from regional stakeholders, disc ussions with the Steering Committee and Economic Development Advisory Committee, existing business surveys, interviews, and research.
1.

The Conidor K Region needs transportation improvements that will enhance the economic sustainability of the region. While transportation alone is not a sufficient condition to cause economic development to occur, it is a crucial link to both sustainable existing businesses, to attracting new business opportunities to the Region, and to provide effective access to a largermarket area in the future. For the CoridorK Region to have the competitive edge, it must build the infra structure to susta in existing businesses, support entrepreneurial businesses, and create an environment that is attractive to new business.
2.

The transportation infrastructure must be enhanced to support tourism. To improve the economic viability of tourism in the region the existing Hwy 64/74 must be improved to accommodate the needs of existing tourist related businesses and individuals including the Whitewater and Adventure Tourism Operators, hikers, rafters, and other users. Providing a safer route that will be a destination rather than a thru-road is important to enhancing tourism in the region. Additional tourism infrastructure is also needed to a ppeal to a widervisitor demographic, extend the tourism season, a nd promote more and longer ovemight visits to the region.
3.

Better access to Atlantic coastal ports is important to businesses in the region. Impacts of globalization have been more important to the ComidorK Region than expected, given the
existing transportation limitations. In a recent transportation survey, Fifty-eight percent of responding businesses in the region currently sell to intemational customers and fifty-one percent of businesses utilize components a nd materia ls from intemational suppliers. Businesses want the flexibility to be served by multiple ports because of intemational customer locations and competitiveness requirements.
4.

The transportation needs to support and enhance tourism are very different from the transportation needs of other business sectors in the region. Visitors see the road as a destination; business seesthe road as a safe and efficient means of moving goods and people. Visitors want to drive at a leisurely pace stopping to enjoy view sheds; business users want to reach their destination as quickly and as safely as possible. These two divergent sectors are very important to the Region'seconomic development. Accommodating these two transportation needs may suggest strategies that separate these two users.
5.

Incidents and backups on US $64 / 74$ create problems for the region's employers and communities, Many of the region's employers rely on workers who traveI US 64/74 daily. The relia bility of this workforce is affected by traffic conditions on the existing highway as employees can be delayed by accidents, rock slides, and other chokepoints created by oversize vehic les and tourist traffic. These delays also cut communities off from emergency services, access to schools, and create added costs for businesses.
6. Some businesses in the region will not survive without improved transportation connections. Global competition mandates that businesses continually foc us on driving down their costs and remain responsive to their customers. Transportation costs, effective access to market a reas to rapidly respond to customerneeds, and access to new markets for business growth are critical to the survival and susta inability of many businesses in the region.
7. Many employers in the region are highly reliant on tuck transportation and have higher than average expenditures fortransportation to market areas east or west of the region. Lack of direct east-west connections, existing roadway defic iencies, and safety concems limit economic development opportunities in the region. Businesses face adverse cost and travel time issues as goods must travel to Atlanta or Knoxville to go east, and conversely businesses in westem North Carolina utilize these routes to travel to locations to the west.
8.

Defic iencies identified in pastsafety audits have been addressed to the extent possible however the existing highway may still have safety issues. TDOT and NCDOThave promptly
made improvements to the existing comidor in response to safety a udits but are limited by topography, proximity to the nivers, and environmental concems. Crashes and fatal accidents after these safety improvements have been completed suggest that additional traffic operational a nd safety improvements are still needed.
9. people who live and work in the Region. To enhance to urism and mainta in the quality of life, "Green Highways", eco-tourism, susta inable development, comidor overlays, and context sensitive solutions offer strategies that fit the ecological, economic, and transportation needs of the Region.
10. Improved transportation facilities are needed based upon the impact of the existing transportation system on the economy of the region. Fifty-five percent of the businesses participating in the study said there were bamiersto growing their business in the region and the ba miers most often sited were: transportation costs, lack of east-west connections, workforce availa bility and skills, and timeliness of deliveries.
11. In orderforeconomic growth to occur in the Comidor K Region transportation
improvements are necessary primarily related to east-west connection to Atlantic coast ports. Based upon our economic analysis, the completion of Comidor K could bring 3,700 jobs in targeted industrial and an additional 3,300 jobs in related business sectors a cross the region in a 5-yearperiod. Asintemational trade continues to expand accessto ports and other intermodal facilities will inc rease, 86% of the businesses partic ipating in this study said that transportation would have an increasing important role in their competitiveness in the future.

The global economy offers many new opportunities for businesses in the Region relative to exports and foreign investments. In 2006, over 18,406 companies located in North Carolina, Georgia, and Tennessee exported goods from those states and over 79% of those exporting firms were small and medium-sized businesses. Foreign-controlled companies employed almost half a million people in the three-state region and represent a sizeable percentage of the total manufacturing employment in these states.

The CoridorK Region has exc ellent north-south highway connections and rail lines. These transportation corridors have been important to the region formany years. As business operations within the region continue to change because of intemational trade, new technologies, and otherfactors, existing companies must constantly focus on driving down
their costs and improving their relia bility and responsiveness to customers in order to compete. To reta in and expand jobs in existing industries, the regional transportation system must meet the needs of businesses. A manufacturer of lightweight high-value products may tend to rely more on air transportation, while a manufacturer of heavy equipment will rely more on rail or port transportation. Many businesses rely on a combination of transportation modes and, except for those businesses located adjacent to an airport, ocean port, or rail facility, they rely on the highway as their primary link between businesses and these other modes of transport.

In today's global marketplace the nature of competition haschanged and will continue to evolve. For businesses in the ComidorK Region to effectively compete in the future, competitive advantages must be constantly monitored and assessed; improvements must be planned and implemented. Economic development in this global environment becomesthe business of the entire community, the entire region. The economic development challenges we face today are more complex. Innovative solutions require a collaborative process that validates and expands on the important links between economic development, transportation, education and tra ining, environmental stewardship and other factors in order to support an economic future we will be proud of.

Adequate or CompleteSeptember 30, 2002

To be Completed Interstate System

Cleveland has long been the headquarters of the U.S. Forest Service for the Cherokee National Forest. The Cherokee National Forest is accessed from I-75 via Exit 20 and APD-40/U.S. 74. With the coming expiration of the U.S. Forest Service's lease on its North Ocoee Street headquarters in Cleveland, it has been proposed that a new facility be built at the Exit 20 Ocoee Regional Gateway to serve as a headquarters for the Cherokee National Forests as well as a visitor welcome center for the thousands of visitors who access the forest via Exit 20 each year for the many recreational opportunities offered there.

The Ocoee Regional Gateway at Exit 20 and APD-40 is very important also in terms of tourism. Enhancing the quality of this gateway by improving Exit 20 and creating the new intersection/interchange access on APD-40 will be very important to the continued growth and development of tourism in Bradley County and the larger Ocoee Region. Melissa Alley Woody, Vice-President of the Cleveland-Bradley Chamber of Commerce Convention and Visitor's Bureau, noted the following local attractions for which this gateway would provide the most logical access from I-75:

- Tri-State Exhibition Center
- KOA Campground
- Cleveland Speedway
- Apple Valley Orchard (receives periodic tour buses)
- Red Clay State Historical Park (receives periodic tour buses)
- Historic Downtown Cleveland
- Museum Center at 5ive Points
- Village Green Playhouse
- Singing Echoes Museum and Festival Venue
- Cherokee National Forest
- Ocoee River
- Ocoee Whitewater Center
- All Whitewater Outfitters
- Tanasi Mountain Biking Trail System
- Hiwassee Scenic River (first scenic river in Tenn.)
- River Maze (seasonal corn maze)
- Scenic Railroad leaving from Gee Creek Camp area
- Several Forest Service Campgrounds
- Several restaurants, shops and lodging properties

The Ocoee Regional Gateway at Exit 20 promises to provide an important access to our national heritage, specifically to important sites in the Trail of Tears National Trail. Over one-third of the approximately 16,000 Cherokee persons who were removed from the region in 1838, a result of the Indian Removal Act passed by Congress in 1830, were assembled for removal in Bradley County. Several historic sites related to this dark chapter of our history and the trail head for the Trail of Tears National Trail are in Bradley County.

CHEROKEE REMOVAL ROUTES

One important of the Trail of Tears that is especially relevant to the Exit 20 Ocoee Regional Gateway is the "Bell Route", shown in green on the map above, which left from Charleston in Bradley County and followed approximately the current route of U.S. 11, crossing present-day APD-40 about a mile from Exit 20. Red Clay State Park, most readily accessed from Exit 20 and APD-40, was the site of the Red Clay Council Ground that was the primary location of tribal government in the years immediately preceding the removal.

The south side of APD-40 is an ideal location for an industrial park if the proposed intersection is completed. The proximity of I-75 and APD-40 allows for easy access for shipping and employees without causing unnecessary traffic on local roads. There is a lot of undeveloped land currently available in this area and the future land use plan indicates it will become more commercial. Creating an industrial park here will provide job growth in the community. Water and electricity are already available to this location. Sewer is the only utility not available but plans have been made to make it available.

The area around Exit 20 is also the natural gateway to the Ocoee River rafting and recreation area. Of the three exits in Cleveland, Exit 20 provides the easiest access to Highway 64 and Polk County. In addition to an Industrial Park additional commercial and regional attractions around Exit 20 would be appropriate. Senator Lamar Alexander has proposed a future U.S. Forest Service site that could be located at this site. Moving the Cherokee National Forest Headquarters to this location along APD-40 near I-75 Exit 20, coupled with a Visitors Center would draw attention to the area by promoting the regional opportunities. A large outdoor recreation retailer, such as Bass Pro Shop, near this location complement the region's many outdoor activities in Polk County and elsewhere. This area around Exit 20 is the ideal location for an Ocoee Regional Gateway.

Proposed Future Land Use

Enterprise South is a mega industrial site 11 miles south of I-75 Exit 20. It has recently been considered by Kia and Toyota as a location for their new auto plants. In a February 28, 2007 Chattanooga Times Free Press article entitled "Auto plant still in future?" Toyota's site selection leader said he "expects to see a future auto assembly plant at Chattanooga’s Enterprise South industrial park." If an auto plant does locate at Enterprise South, then an industrial park near Exit 20 in Cleveland would be in a good location for automobile industry-related businesses. After Toyota put a plant in Georgetown, Kentucky, the number of auto parts manufacturers grew from 55 to 175 in 2004 (February 25, 2007 Chattanooga Times Free Press article "Kentucky town offers glimpse at car plant bounty"). To capitalize on that kind of growth potential preparing this location in advance is key.

Future Land Use - Bradley County

Future Roads

New traffic lights are planned for the on and off ramps at Exit 20. These will facilitate safer movement of traffic, especially left turn movements, as motorists and truckers
navigate the junction of I-75 and APD 40. The traffic lights, while an improvement, are not a substitute for the sorely needed improvements to the substandard Exit 20. The nearby interchange or intersection on APD-40 would connect to a future frontage road system that would serve commercial and industrial areas near the APD-40 corridor. Residential development north and south of the corridor would connect to APD-40 and Exit 20 via existing and future local roads.

Corridor K was discussed above and it is the major national and regional facility of the future that runs along APD-40 and finds its western terminus at Exit 20. Also under consideration is a future toll-based facility that involves a new bridge crossing of the Tennessee River north of SR 153 in Hamilton County (see TDOT study area map below). This facility would involve an extension of SR 312 to Exit 20 and would connect through to SR 111 near Soddy Daisy. Such a connection would make a new major east-west route in the region, greatly facilitating travel and commerce. The importance or Corridor K and the future toll-based route, in terms of overall highway connectivity and the removal of east-west travel barriers, should not be overlooked.

STUDY AREA

Future Utilities

Most of the land in the study area is not affected by severe slopes. Cleveland Utilities prepared plans in 1996 to serve these areas but the lines were not constructed. The County has recently received a CDBG grant to construct sewers to serve the Tonia Drive area which would be part of the line extension to serve south side of APD 40. Future development areas north of APD-40, those areas which could be expected to develop more rapidly as a result of the major road improvements discussed in this report, would be served by connections to the main sewer lines already in place or those which are planned.

Aerial and sewer map

Conclusion

The land in the study area is a logical location for future urban development including commercial, industrial, and residential uses. These future land uses are supported by the plans of the Cleveland Urban Area MPO, Bradley County, and the City of Cleveland. The natural characteristics of the land, existing and proposed utilities, and existing and proposed roads would support such a development pattern. The proposed improvements to I-75 Exit 20 and the nearby APD-40 interchange or intersection are needed to meet current passenger and freight transportation needs, to mitigate safety and congestion concerns, and to support the aforementioned future logical pattern of development within the study area. The proposed improvements are also justified in terms of their connection to regional economic development in nearby Chattanooga, in terms of tourism and the public's access to the Cherokee National Forest and the historical and cultural resources associated with the Trail of Tears, and in terms of the future regional and national
transportation systems that must make efficient use of existing facilities, provide intermodal connections, and enhance transportation security. The primary transportation improvements contemplated in this study, the improvements to I-75 Exit 20 and the nearby APD-40 interchange or intersection, are needed to support current needs of the area as well as the envisioned future land use and economic development.

APPENDIX H

COORDINATION MEETING SUMMARIES

November 6, 2007
Mr. Ron Baker
Short Range Planning \& Data Office
Suite 1000, James K. Polk Building
505 Deaderick Street
Nashville, Tennessee 37243-0334

RE: E1125, Work Order 10 \& 13, Data Needs Meeting with Cleveland Representatives US-64 IJS and the Exit 20 IDS.

The following summarizes the meeting with City of Cleveland personnel on October 17, 2007.

Attendees

Greg Thomas	$423-479-1913$	gthomas@cityofclevelandtn.com
Anthony Casteel	$423-479-1913$	acasteel@ cityofclevelandtn.com
James Long	$423-559-3330$	jlong@cityofclevelandtn.com
Tom Grant	$423-472-2851$	tgrant@cityofclevelandtn.com
Brad Winkler	$615-221-1131$	bwinkler@longeng.com
Steve Bryan	$615-221-1131$	sbryan@longeng.com

On October 17-18 Long Engineering performed reconnaissance activities associated with the IJS and IMS of the US-64 corridor and I-75 in Bradley County, Tennessee.

In advance of this trip, we forwarded a "shopping list" for data requests. Upon meeting with the representatives identified above, Mr. Castel provided CDs with much of the information we requested. This included GIS shape files, the Transcad Files for the Cleveland transportation model, and current land use planning activities associated with the corridor.

Mr. Grant indicated that the GIS was Bentley based and the files were also available in dgn format and MRs were available for the study area. The City prepared CDs with this information and we picked up from the Engineering Department on the $18^{\text {th }}$.

Sincerely,

LONG ENGINEERING, INC

Brad Winker, P.E.
Project Manager
bwinkler@longeng.com
cc: Michael Updike, TDOT
Project File

November 6, 2007
Mr. Ron Baker
Short Range Planning \& Data Office
Suite 1000, James K. Polk Building
505 Deaderick Street
Nashville, Tennessee 37243-0334

RE: E1125, Work Order 10 \& 13, US-64 IJS and the Exit 20 IMS. Additional Considerations for Studies

The following summarizes the project working meeting with TDOT personnel on October 29, 2007.

Attendees

Bill Hart	$741-3688$	bill.hart@tdot.state.tn.us
Terry Gladden	$253-2433$	terry.gladden@tdot.state.tn.us
Ron Baker	$741-6743$	ron.baker@state.tn.us
Mike Updike	$253-4007$	mike.updike@state.tn.us
Brad Winkler	$221-1131$	bwinkler@longeng.com
Steve Bryan	$221-1131$	sbryan@longeng.com
Bob Baird	$221-1131$	bbaird@longeng.com

Long Engineering personnel met with TDOT personnel to discuss items specific to the above referenced projects. Many of these items were funding issues and deemed not necessary for Long Engineering's activities at this time.

The Team reviewed the base mapping compiled to date and discussed the known issues that have been brought to the table. These items are chiefly:

- Providing access to the area of land adjacent to US 64 that is slated for development by the City of Cleveland
- Improving the operation of the Exit 20 Interchange
- Consider access to a potential Forest Service Welcome Center
- As this location is the staring point for the ARC's Corridor K, there is interested in creating a gateway corridor.

Long Engineering will factor these items into the concept planning process and commence concept work which will consist of single line sketches and will target the week of 11/19 for an update meeting with TDOT personnel.

A stakeholders meeting is tentatively set for December 12. Long Engineering will coordinate this meeting with Janice Casteel (423) 593-3339 cell. TDOT will confirm this meeting date with Steve Allen prior to Long Engineering proceeding with meeting arrangements.

[^0]Sincerely,

LONG ENGINEERING, INC

Brad Winkler, P.E.
Project Manager
bwinkler@longeng.com
cc: $\quad \begin{aligned} & \text { Michael Updike, TDOT } \\ & \text { Project File }\end{aligned}$

November 27, 2007
Mr. Ron Baker
Short Range Planning \& Data Office
Suite 1000, James K. Polk Building
505 Deaderick Street
Nashville, Tennessee 37243-0334

RE: E1125, Work Order 10 \& 13, US-64 IJS and the Exit 20 IMS. Progress Meeting/Initial Concepts

The following summarizes the working meeting with TDOT personnel on November 21, 2007.

Attendees

Steve Allen	$741-2208$	steve.allen@tdot.state.tn.us
Terry Gladden	$253-2433$	terry.gladden@tdot.state.tn.us
Ron Baker	$741-6743$	ron.baker@tdot.state.tn.us
Mike Updike	$253-4007$	mike.updike@tdot.state.tn.us
Tony Armstrong	$741-6741$	tony.armstrong@tdot.state.tn.us
Brad Winkler	$221-1131$	bwinkler@longeng.com
Steve Bryan	$221-1131$	sbryan@longeng.com
Bob Baird	$221-1131$	bbaird@longeng.com

Long Engineering (LONG) personnel met with TDOT personnel to discuss the initial concepts for the above referenced projects. The following highlights general discussion items:

- Do not show slip ramps to any entrance ramps. Slip ramps off of exit ramps may be OK depending on circumstances.
- Show ROW constraints for loop ramp concepts at Exit 20.
- The structure over I-75 will be a minimum of five lanes. In all likelihood, there will be more than five lanes.
- No fly-over or signal options in lieu of new interchange. Signal concept is removed form further consideration.
- Area is classified as urban.
- Stay away from lake in all options except the SE quadrant loop ramp scenario.
- Show frontage roads, or other non-TDOT responsible infrastructure, as dashed. TDOT will be responsible to provide only the minimum route needed for connectivity to local roads.
- Other than the options listed below, the remaining concepts are removed from further consideration.

Action Items

- Revise concepts based on the following criteria:
o Exit 20 Concepts

1. Option 1 is Improved Traditional Diamond (no loops)
2. Option 2 is Loop in NW Quadrant only
3. Option 3 is Loop in both NW and SE Quadrants
4. Option 4 is SPUI
o APD Concepts
5. Option 1 is original concept 6
6. Option 2 is original concept 4 (with an adjusted entrance road)
7. Option 3 is original concept 5A
8. Option 4 is original concept 7

- LONG will prepare four (4) new drawings that pair the concepts above such that all eight options are depicted. Options from Exit 20 and APD Concepts may be interchangeable.
- Get TDOT concurrence on revised concepts by TDOT by 12/3.
- Prepare high-level cost estimates for approved single line option drawings.
- TDOT will supply traffic.
- Prepare stakeholder meeting materials.
- A stakeholders meeting is to be set upon confirmation with Steve Allen's schedule (MidDecember).
- Ron Baker is to call Janice Cassel to give her a status report.
- LONG will work with Ron and Janice to finalize meeting arrangements.

If you have any questions or comments let us know.
Sincerely,
LONG ENGINEERING, INC

Brad Winkle
Project Manager
bwinkler@longeng.com

cc: Steve Allen
Terry Gladden
Michael Updike
Tony Armstrong
Project File

January 22, 2008
Mr. Ron Baker
Short Range Planning Office
Suite 1000, James K. Polk Building
505 Deaderick Street
Nashville, Tennessee 37243-0334

RE: E1125, Work Order 10 \& 13, US-64 IJS and the Exit 20 IMS. Project Stakeholder Meeting on December 20, 2007 in Cleveland, TN

The following summarizes the stakeholder meeting with TDOT, the City of Cleveland personnel and other stakeholders on December 20, 2007.

The meeting started at 1:00 PM in the auditorium at the Cleveland Chamber of Commerce. Prior to the meeting, attendees had the opportunity to review the available concepts displayed throughout the room. After the presentation concluded, attendees again had the opportunity to review the various concepts with TDOT and Long Engineering staff available for assistance. The concepts presented included four for Exit 20 and four for the APD interchange.

Cleveland Mayor Tom Rowland offered opening remarks and turned the presentation over to Steve Allen. Steve presented the concepts and discussed pros and cons for each scenario. After the Exit 20 concepts he entertained questions then presented the APD interchange concepts before again opening the presentation to questions and answers.

Questions and Discussion

The following summarizes the questions received and subsequent discussion for each location.

Exit 20 Concepts Discussion

- Ron Braam inquired as to how many lanes could I-75 accommodate. Steve Allen indicated that the highway was constructed such that additional lanes could be added to the inside without significantly impacting ramps. If more lanes were needed then those would need to be added to the outside.
- Gary Farlow asked Steve Allen which concept he preferred based on future projected traffic. Steve indicated that traffic analysis had not yet been done as the future volumes were just recently prepared. But, based on the potential ROW impacts and as long as the traffic analysis indicates that the concepts are feasible, his preference is for Concepts 1 or 4.
- John Brewer indicated his preference for a straight diamond improvement to minimize impact to adjacent properties.
- Megan Wilson indicated that there is a proposed signal to the west of the interchange and is concerned about its functionality and all the driveway cuts in the area. She indicated additional concern if the ramp terminal is signalized and shifted to the west.
- Tom Grant commented that the interchange serves the entire south end of Bradley County. The future model should cover this.
- This is the gateway to Corridor K and there is a federal earmark to fund the study of a new interchange on APD 40. Steve Allen indicated that TDOT's Chief Engineer, Paul Degges, indicated that some of the earmark possibly could be allocated to improvements at Exit 20 (this is being investigated).
- A question was asked if this would be designated the Sequoia Nuclear Plant Evacuation Route. Steve Allen responded that he wasn't sure but that any evacuation route would move traffic quickly away from the area.
- A question was asked regarding ROW and control at the ramps. Steve Allen responded that TDOT usually extends control access fencing 100 feet beyond the ends of the ramps and stops.
- Several locals indicated a preference to light the Exit 20 interchange. Steve Allen indicated this was not typically included in an Interchange Modification Study (IMS) but could be evaluated.

APD Concept Discussion

- The APD earmark is believed to be $\$ 5.17$ million.
- It was noted that on Concept 1, the ROW needed to be adjusted on the south side of APD 40 at proposed relocations of the frontage road.
- It was noted that Concept 3 would limit the amount of developable land. Several locals indicated that this was not acceptable.
- Steve Allen stated that based on the current layout of Concept 4, the limited access ROW would prevent direct local access along the northern frontage road. ${ }^{1}$
- Steve Allen was asked which concept he preferred based on future projected traffic. Steve indicated that traffic analysis for the APD section had not yet been done as the future volumes were just recently prepared. But, based on the significant ROW impacts shown for Concepts $2 \& 3$, and as long as the traffic analysis indicates that the concepts are feasible, his preference is for Concepts 1 or 4.

[^1]
Exhibits

At the close of the meeting:

- The 100' scale mounted displays were given to Scott Medlin for use at TDOT Region 2.
- One set of roll plots was given to the Cleveland Public Works Department for their use.
- The second set was given to State Representative Kevin Brooks.

Action Items

- Perform traffic analysis for each of the scenarios and discuss with TDOT before modifying or removing concepts from additional consideration.
- Coordinate with FHWA before public meeting
- A public meeting will be scheduled once the Exit 20 IMS and APD IJS are approved by TDOT and coordinated with the Federal Highway Administration (FHWA).

If you have any questions or comments let me know.
Sincerely,

LONG ENGINEERING, INC

Bral Sinklu
Brad Winkler
Project Manager
bwinkler@longeng.com

cc: \quad| Steve Allen |
| :--- |
| Terry Gladden |
| Michael Updike |
| Project File |

Attachment - \quad| List of Attendees |
| :--- |
| Meeting Presentation |

List of Attendees

Name	Organization	Telephone	e-mail
Steve Allen	TDOT	615-741-2208	steve.allen@tdot.state.tn.us
Nermine Nashed	TDOT	615-741-0229	
Brad Winkler	Long Engineering	615-221-1131	bwinkler@longeng.com
Steve Bryan	Long Engineering	615-221-1131	sbryan@longeng.com
Bob Baird	Long Engineering	615-221-1131	bbaird@longeng.com
Gary Farlow	Chamber of Commerce	423-728-0804	gfarlow@clevelandchamber.com
Scott Medlin	TDOT	423-510-1118	scott.medlin@state.tn.us
Brian Beck	City of Cleveland	423-559-3330	bbeck@cityofclevelandtn.com
Mickey Torbett	United Community Bank	423-339-5460	mickey_torbett@ucbi.com
Mike Keith	City of Cleveland		
Bruce Jacobsen	Peyton SE	423-614-1063	bruce.jacobsen@kroger.com
Megan Wilson	City of Cleveland	423-593-2735	mwilson@cityofclevelandtn.com
Tom Rowland	City of Cleveland	423-476-8931	trowland@cityofclevelandtn.com
David Dumm	Fireworks Supermarket	423-478-3634	fireworksoveramerica14@earthlink.net
Daniel MacKey	Fireworks Supermarket	423-478-3634	fireworksoveramerica14@earthlink.net
James Rogers	Rogers \& Rogers Inc.	423-238-4229	
Stephen A. Rogers	Rogers \& Rogers Inc.	423-238-4229	
Patti Petitt	City of Cleveland	423-479-4129	
Wes Snyder	Cleveland Police Dept.	423-559-3311	
Bill Estes	City of Cleveland	423-595-0062	bestes@cityofclevelandtn.com
Jerry Bohannon	Chamber of Commerce	423-472-6587	jbohannon@clevelandchamber.com
Greg Thomas	City of Cleveland MPO	423-479-1913	gthomas@cityofclevelandtn.com
Tom Grant	City of Cleveland	423-472-2851	tgrant@cityofclevelandtn.com
Ron Braam	Mfg Demo Corp	423-476-6518	rbraam@synallloy.com
Kim Harpe	Southeast TN RPO	423-424-4268	kharpe@sedev.org
Randall Higgins	Times Free Press	423-479-7105	
Sandy Epperson	Horizon Travel Plaza	423-339-8820	store1017@horizontp.com
John H. Brewer	Brewer's Exxon	423-479-2653	
Jonathan Jobe	City of Cleveland	423-593-3821	jonathanjobe@cityofclevelandtn.com
Ben Atchley	Cleveland Fire Dept.	423-476-6753	batchley@cityofclevelandtn.com
Terry Pierce	U.S. Forest Service	423-476-9700	terrypierce@fs.fed.us
Leigh McClure	U.S. Rep. Wamp	423-756-2342	
Kelly Fisher	U.S. Sen. Alexander		
David Davis	Banner	423-472-5041	
Kevin Brooks	State Representative	615-741-1350	rep.kevin.brooks@legislature.state.tn.us
Larry Arman		423-899-5182	acre4fun@comcast.net
Nelson Bowers		423-510-8440	nebco@aol.com
Chuck Atchley			
M. Schench		423-476-9163	

January 29, 2008
Mr. Ron Baker
Short Range Planning Office
Suite 1000, James K. Polk Building
505 Deaderick Street
Nashville, Tennessee 37243-0334

RE: E1125, Work Order 10 \& 13, US-64 BP (APD-40) IJS and the Exit 20 IMS. Traffic Analysis Review

The following summarizes the project meeting with TDOT personnel on January 14, 2008.

Attendees

Ron Baker	$741-6743$	ron.baker@state.tn.us
Mike Updike	$253-4007$	mike.updike@state.tn.us
Brad Winkler	$221-1131$	bwinkler@longeng.com
Steve Bryan	$221-1131$	sbryan@longeng.com
Steve Allen	$741-2208$	steve.allen@state.tn.us
Terry Gladden	$253-2433$	terry.gladden@state.tn.us

Long Engineering personnel met with TDOT personnel to review the traffic analysis for APD interchange and Exit 20 Interchange studies.

Exit 20 Traffic Analysis

- Traffic analysis was completed for each of the four concepts presented at the December 20, 2007 stakeholder meeting in Cleveland, TN.
- For Concept 1, the critical movement is the westbound to southbound AM peak hour movement. A double left will be needed for this movement until 2028 at which time a triple left may be needed. It is important to note that future traffic projections are highly speculative due to the nature of the model and the potential for development in the area. As a result, a double westbound to southbound left movement for Concept 1 will initially be implemented since it is sufficient at this time, however the bridge structure will be designed to stripe out a third left turn lane in the future if it becomes necessary.
- A loop ramp as presented in Concepts 2 and 3 works best for this location. However, the ROW impacts and local preference may deem this as unacceptable.
- In order to better accommodate the westbound then south heavy volumes, consideration was given for a flyover. However, after sketching the flyover and reviewing the length of structure necessary, it was determined that such a structure would be cost prohibitive and not necessarily merited if future traffic does not meet projections. This concept could be revisited in the long-term.
- For Concept 4, a double left-tuning movement will be needed with the potential for a triple being required by 2028. Because the opposing left turn movements are such disproportionate, the application of a SPUI is out of context.
- Concept 1 will be presented to FHWA and discussed further.

APD Interchange Analysis

- Traffic analysis was completed for each of the four concepts presented at the December 20, 2007 stakeholder meeting in Cleveland, TN. Based on public input at the meeting, Concepts 2 and 3 should be removed from further consideration as they do not satisfy the needs of the community and will disrupt much of the land that the stakeholders are looking to develop.
- Concept 1 is conventional in design and shown to function at an acceptable level by the year 2033. There may be a need for the addition of auxiliary lanes along APD 40 between the on-ramps and the off-ramps.
- Concept 4 removes the weave situation, but is unconventional in design and may not be preferred over Concept 1.
- Both Concepts 1 and 4 will be presented to FHWA and discussed further.

Action Item

- Setup meeting with FHWA to present concept sketches.
o Exit 20: Concept 1
o APD: Concepts 1 and 4

Sincerely,

LONG ENGINEERING, INC

Bral \&inklu-
Brad Winkler, P.E.
Project Manager
bwinkler@longeng.com

cc: \quad| Steve Allen, TDOT |
| :--- |
| Michael Updike, TDOT |
| Terry Gladden, TDOT |
| Project File |

Attachments: Traffic Data Tables and Exhibits

April 2, 2008
Mr. Ron Baker
Short Range Planning Office
Suite 1000, James K. Polk Building
505 Deaderick Street
Nashville, Tennessee 37243-0334
RE: US-64 BP (APD-40) IJS and the Exit 20 IMS.
FHWA Meeting on 04-2-08
E1125, Work Order \#10 - Project No. 06007-1237-14, PIN: 107386.00
E1125, Work Order \#13 - Project No. 99107-7086-04, PIN: 110079.00

The following summarizes the project meeting with FHWA on April 2, 2008.

Attendees

Ron Baker	TDOT	$741-6743$	ron.baker@state.tn.us
Brad Winkler	LEI	$221-1131$	bwinkler@longeng.com
Steve Bryan	LEI	$221-1131$	sbryan@longeng.com
Brian Fouch	FWHA	$781-5765$	brian.fouch@fhwa.dot.gov
Rich Casalone	FHWA	$781-5791$	richard.casalone@ fhwa.dot.gov
Michael Smart	FHWA	$781-5775$	michael.smart@fhwa.dot.gov

General Discussion

TDOT and Long Engineering met with FHWA personnel to discuss the concepts that emerged from the December 20, 2007 stakeholder meeting and subsequent traffic operations analysis. This informational meeting preludes the submittal of required interchange studies.

FHWA was provided information packages highlighting the concepts presented at the stakeholder meeting and a summary of progress to date (attached). FHWA was also provided with 100 scale concept drawings for Concept 1 \& Concept 4 for both the Exit 20 modification and proposed APD interchange.

FHWA confirmed that a Modification Study (IMS) is required for Exit 20 and a Justification Study (IJS) is required for the new APD interchange. As both projects are interrelated by proximity and functionality, both studies will reference each other and share common components.

Key points to consider:

- FHWA will need to know the level of commitment from local government officials for the APD interchange as a local connection to the proposed interchange.
- Be sure to document all removed concepts and show the process that was in place for advancing recommendations.
- FHWA requests that the proposed concepts be discussed with TDOT Design Division prior to IJS and IMS submittals.

Exit 20 Interchange

FHWA is in agreement that Concept 1 is preferred to Concept 4. The major concern for Concept 4 is the cost for the single-point structure being much greater than Concept 1. Additionally, since there is not a balance of opposing left-turns, a condition where the single-point functions best, then this option does not offer an improvement to Concept 1.

APD Interchange

FHWA is in agreement that Concept 1 is preferred to Concept 4. The major concern for Concept 4 is meeting driver expectations with the non-traditional ramp locations and the challenge to effectively sign and provide positive guidance for the configuration.

Action Item

- FHWA agreed that the preferred concepts for each case are Concept 1.
- TDOT Planning to review concept plans with TDOT Design Division.
- TDOT to determine level of commitment needed from local stakeholder regarding financial commitment (or commitment on build connecting roadways).
- Drafts of IMS and IJS to TDOT by April 30, 2008.

The above is from the notes and memory of the correspondent and is assumed to be a true and accurate account of this meeting. Please forward any comments, corrections, or clarifications to bwinkler@longeng.com.

Sincerely,

LONG ENGINEERING, INC

Brad Winkler, P.E.
Project Manager
bwinkler@longeng.com
cc: Meeting Attendees
Michael Updike, TDOT
Steve Allen, TDOT
Project File
Attachments: Meeting Handout

APPENDIX I

HIGHWAY CAPACITY ANALYSIS OUTPUT FILES

Mainline Segments

Highway Capacity Software Computer Printouts

Application	Input	Output
Operational (LOS)	FFS, $\mathrm{N}, \mathrm{v}_{\mathrm{p}}$	LOS, S, D
Design (N)		$\mathrm{N}, \mathrm{S}, \mathrm{D}$
Design (v_{p})	FFS, LOS, N	v_{p}, S, D
Planning (LOS)	FFS, N, AR DT	LOS, S, D
Planning (t)	FFS, LOS, AADT	$\mathrm{N}, \mathrm{S}, \mathrm{D}$
Planning (y_{p})	FFS, LOS, N	$V_{p r} S$

Calculate Flow Adjustments

Application	Input	Output
Operational (LOS)	FFS, $\mathrm{N}, \mathrm{v}_{\mathrm{p}}$	LOS, S, D
Design (N)		$\mathrm{N}, \mathrm{S}, \mathrm{D}$
Design (v_{p})	FFS, LOS, N	v_{p}, S, D
Planning (LOS)	FFS, N, AR DT	LOS, S, D
Planning (t)	FFS, LOS, AADT	$\mathrm{N}, \mathrm{S}, \mathrm{D}$
Planning (y_{p})	FFS, LOS, N	$V_{p r} S$

Calculate Flow Adjustments

Application	Input	Output
Operational (LOS)	FFS, $\mathrm{N}, \mathrm{v}_{\mathrm{p}}$	LOS, S, D
Design (N)		$\mathrm{N}, \mathrm{S}, \mathrm{D}$
Design (v_{p})	FFS, LOS, N	v_{p}, S, 0
Planning (LOS)	FFS, N, AR DT	LOS, S, D
Planning (t)	FFS, LOS, AADT	$\mathrm{N}, \mathrm{S}, \mathrm{D}$
Planning (y_{p})	FFS, LOS, N	$V_{p r} S$

General Information		Site Information	
Analyst	SKB	Highway/Direction of Travel	APD40 EB
Agency or Company	TDOT / Long Engineering	From/To	I-75 to Prop Intx
Date Performed	05/04/2009	Jurisdiction	Cleveland, TN
Analysis Time Period	AM Peak Period	Analysis Year	2033
Project Description Existing System With Slip Lane			
F Oper.(LOS)		Γ Des.(N)	「 Planning Data
Flow Inputs			
Volume, V	$1930 \mathrm{veh} / \mathrm{h}$	Peak-Hour Factor, PHF	0.90
AADT	veh/day	\%Trucks and Buses, P_{T}	15
Peak-Hr Prop. of AADT, K		\%RVs, P_{R}	0
Peak-Hr Direction Prop, D		General Terrain:	Level
DDHV = AADT $\times \mathrm{K} \times \mathrm{D}$ Driver type adjustment	$1.00 \mathrm{veh} / \mathrm{h}$	Grade $\quad \begin{gathered}\text { \% Length } \\ \text { Up/Down } \%\end{gathered}$	mi

Calculate Flow Adjustments

Application	Input	Output
Operational (LOS)	FFS, $\mathrm{N}, \mathrm{v}_{\mathrm{p}}$	LOS, S, D
Design (N)		$\mathrm{N}, \mathrm{S}, \mathrm{D}$
Design (v_{p})	FFS, LOS, N	v_{p}, S, 0
Planning (LOS)	FFS, N, AR DT	LOS, S, D
Planning (t)	FFS, LOS, AADT	$\mathrm{N}, \mathrm{S}, \mathrm{D}$
Planning (y_{p})	FFS, LOS, N	$V_{p r} S$

General Information		Site Information	
Analyst	SKB	Highway/Direction of Travel	APD40 EB
Agency or Company	TDOT / Long Engineering	From/To	I-75 to Prop Intx
Date Performed	05/04/2009	Jurisdiction	Cleveland, TN
Analysis Time Period	PM Peak Period	Analysis Year	2033
Project Description Existing System With Slip Ramp			
F Oper.(LOS)		Γ Des.(N)	「 Planning Data
Flow Inputs			
Volume, V	2371 veh/h	Peak-Hour Factor, PHF	0.90
AADT	veh/day	\%Trucks and Buses, P_{T}	15
Peak-Hr Prop. of AADT, K		\%RVs, P_{R}	0
Peak-Hr Direction Prop, D		General Terrain:	Level
$\mathrm{DDHV}=\mathrm{AADT} \times \mathrm{K} \times \mathrm{D}$ Driver type adjustment	$1.00 \mathrm{veh} / \mathrm{h}$	Grade \% Length	mi

Calculate Flow Adjustments

Merge Ramps

Highway Capacity Software Computer Printouts

RAMPS AND RAMP JUNCTIONS WORKSHEET

Conversion to pc/h Under Base Conditions

Capacity Checks
Capacity Checks

	Actual	Capacity		LOS F?		Actual	Capac	acity	LOS F?
V_{FO}	4055	Exhibit 25-7		No	V_{F}		Exhibit 25-14		
					$\mathrm{V}_{\mathrm{FO}}=\mathrm{V}_{\mathrm{F}}-\mathrm{V}_{\mathrm{R}}$		Exhibit 25-14		
					V_{R}		Exhibit 25-3		
Flow Entering Merge Influence Area					Flow Entering Diverge Influence Area				
	Actual	Max Desirable		Violation?		ctual	Max Desirable		Violation?
$\mathrm{V}_{\mathrm{R} 12}$	4055	Exhibit 25-7	4600:All	No	V_{12}		nibit 25-14		
Level of Service Determination (if not F)					Level of Service Determination (if not F)				
$D_{R}=5.475+0.00734 \mathrm{~V}_{R}+0.0078 \mathrm{~V}_{12}-0.00627 \mathrm{~L}_{\mathrm{A}}$					$\begin{array}{ll} & D_{R}=4.252+0.0086 \mathrm{~V}_{12}-0.009 \mathrm{~L} \\ \mathrm{D}_{\mathrm{R}}= & (\mathrm{pc} / \mathrm{mi} / \mathrm{ln}) \\ \mathrm{LOS}= & (\text { Exhibit } 25-4) \\ \hline \end{array}$				
Speed Determination					Speed Determination				
$\begin{array}{ll} M_{S}= & 0.50 \\ S_{R}= & 56.0 \\ S_{0}= & \mathrm{N} / \mathrm{A} \end{array}$	$5-19)$ ibit $25-19$ bit $25-19)$				$\begin{array}{ll} D_{\mathrm{S}}= & \text { (Exhibit 25-19) } \\ \mathrm{S}_{\mathrm{R}}= & \text { mph (Exhibit 25-19) } \end{array}$		I-149		

$S=56.0 \mathrm{mph}$ (Exhibit 25-14) $\mathrm{S}=\mathrm{mph}$ (Exhibit 25-15)

Diverge Ramps

Highway Capacity Software Computer Printouts

Conversion to pc/h Under Base Conditions

(pc/h)	$\begin{gathered} \hline \mathrm{V} \\ (\mathrm{Veh} / \mathrm{hr}) \end{gathered}$	PHF	Terrain	\%Truck	\%Rv	f_{HV}	f_{p}	$v=$ V/PHF $\times f_{\text {HV }} \times \mathrm{f}_{\mathrm{p}}$
Freeway	1565	0.90	Level	15	0	0.930	1.00	1869
Ramp	241	0.90	Level	15	0	0.930	1.00	288
UpStream	1428	0.90	Level	15	0	0.930	1.00	1706
DownStream								
Merge Areas					Diverge Areas			
Estimation of v_{12}					Estimation of \mathbf{v}_{12}			
					$\mathrm{V}_{12}=\mathrm{V}_{\mathrm{R}}+\left(\mathrm{V}_{\mathrm{F}}-\mathrm{V}_{\mathrm{R}}\right) \mathrm{P}_{\mathrm{FD}}$ $\mathrm{L}_{\mathrm{EQ}}=$ (Equation 25-8 or 25-9) $\mathrm{P}_{\mathrm{FD}}=$ 1.000 using Equation (Exhibit 25-12) $\mathrm{V}_{12}=$ $1869 \mathrm{pc} / \mathrm{h}$ V_{3} or $\mathrm{V}_{\text {av34 }}$ $0 \mathrm{pc} / \mathrm{h}$ (Equation 25-15 or 25-16) Is V_{3} or $\mathrm{V}_{\text {av34 }}>2,700 \mathrm{pc} / \mathrm{h}$? Г Yes $\sqrt{V} \mathrm{No}$ Is V_{3} or $\mathrm{V}_{\text {av34 }}>1.5 * \mathrm{~V}_{12} / 2$ Г Yes $/ \mathrm{V}$ No If Yes, $\mathrm{V}_{12 \mathrm{a}}=$ pc/h (Equation 25-18)			

Capacity Checks
Capacity Checks

	Actual		Capacity	LOS F?		Actual	Cap	acity	LOS F?
V_{FO}		Exhibit 25-7			V_{F}	1869	Exhibit 25-14	4500	No
					$\mathrm{V}_{\mathrm{FO}}=\mathrm{V}_{\mathrm{F}}-\mathrm{V}_{\mathrm{R}}$	1581	Exhibit 25-14	4500	No
					V_{R}	288	Exhibit 25-3	2000	No
Flow Entering Merge Influence Area					Flow Entering Diverge Influence Area				
	Actual	Max Desirable		Violation?		Actual	Max Desirable		Violation?
$\mathrm{V}_{\mathrm{R} 12}$		Exhibit 25-7			V_{12}	1869	Exhibit 25-14	4400:All	No
Level of Service Determination (if not F)					Level of Service Determination (if not F)				
$$	34 v_{R}	$0078 \mathrm{~V}_{12}-$	0.00627		$\begin{array}{rr} & D_{R} \\ D_{R}= & 17.2(\mathrm{p} \\ \text { LOS }= & B(\text { Exh } \end{array}$	$=4.252+0$ /mi/ln) ibit 25-4)	$0086 V_{12}-0.00$	L_{D}	
Speed Determination					Speed Determination				
$\begin{array}{ll} \mathrm{M}_{\mathrm{S}}= & (\mathrm{Ex} \\ \mathrm{S}_{\mathrm{R}}= & \mathrm{mph} \\ \mathrm{~S}_{0}= & \mathrm{mph} \\ \mathrm{~S}= & \mathrm{mph} \end{array}$	5-19)				$\begin{array}{ll}\mathrm{D}_{\mathrm{S}}= & 0.454 \\ \mathrm{~S}_{\mathrm{R}}= & 49.1 \mathrm{mp} \\ \mathrm{S}_{0}= & \mathrm{N} / \mathrm{Amp} \\ \mathrm{S}= & 49.1 \mathrm{mph}\end{array}$	Exhibit 25-19) (Exhibit 25 (Exhibit 25 (Exhibit 25	-19)		

Conversion to pc/h Under Base Conditions

(pc/h)	$\begin{gathered} \hline \mathrm{V} \\ (\mathrm{Veh} / \mathrm{hr}) \end{gathered}$	PHF	Terrain	\%Truck	\%Rv	f_{HV}	f_{p}	$v=$ V/PHF $\times f_{\text {HV }} \times f_{p}$
Freeway	1930	0.90	Level	15	0	0.930	1.00	2305
Ramp	561	0.90	Level	15	0	0.930	1.00	670
UpStream	1370	0.90	Level	15	0	0.930	1.00	1636
DownStream								
Merge Areas					Diverge Areas			
Estimation of v_{12}					Estimation of \mathbf{v}_{12}			
 $L_{E Q}=$ $V_{12}=V_{F}\left(P_{F M}\right)$ $P_{F M}=$ (Equation 25-2 or 25-3) $V_{12}=$ using Equation (Exhibit 25-5) V_{3} or $V_{\text {av34 }}$ pc / h Is V_{3} or $V_{\text {av34 }}>2,700 \mathrm{pc} / \mathrm{h}$? (Equation 25-4 or 25-5) Y Yes Г No Is V_{3} or $V_{\text {av34 }}>1.5 * V_{12} / 2$ Г Yes Г No If Yes,$V_{12 a}=$ pc/h (Equation 25-8)					$\mathrm{V}_{12}=\mathrm{V}_{\mathrm{R}}+\left(\mathrm{V}_{\mathrm{F}}-\mathrm{V}_{\mathrm{R}}\right) \mathrm{P}_{\mathrm{FD}}$ $\mathrm{L}_{\mathrm{EQ}}=$ (Equation 25-8 or 25-9) $\mathrm{P}_{\mathrm{FD}}=$ 1.000 using Equation (Exhibit 25-12) $\mathrm{V}_{12}=$ $2305 \mathrm{pc} / \mathrm{h}$ V_{3} or $\mathrm{V}_{\text {av34 }}$ $0 \mathrm{pc} / \mathrm{h}$ (Equation 25-15 or 25-16) Is V_{3} or $\mathrm{V}_{\text {av34 }}>2,700 \mathrm{pc} / \mathrm{h}$? Г Yes $\sqrt{V} \mathrm{No}$ Is V_{3} or $\mathrm{V}_{\text {av34 }}>1.5 * \mathrm{~V}_{12} / 2$ Г Yes $/ \mathrm{V}$ No If Yes, $\mathrm{V}_{12 \mathrm{a}}=$ pc/h (Equation 25-18)			

Capacity Checks
Capacity Checks

	Actual		Capacity	LOS F?		Actual	Cap	acity	LOS F?
V_{FO}		Exhibit 25-7			V_{F}	2305	Exhibit 25-14	4500	No
					$\mathrm{V}_{\mathrm{FO}}=\mathrm{V}_{\mathrm{F}}-\mathrm{V}_{\mathrm{R}}$	1635	Exhibit 25-14	4500	No
					V_{R}	670	Exhibit 25-3	2000	No
Flow Entering Merge Influence Area					Flow Entering Diverge Influence Area				
	Actual	Max Desirable		Violation?		Actual	Max Desirable		Violation?
$\mathrm{V}_{\mathrm{R} 12}$		Exhibit 25-7			V_{12}	2305	Exhibit 25-14	4400:All	No
Level of Service Determination (if not F)					Level of Service Determination (if not F)				
$$	34 v_{R}	$0078 \mathrm{~V}_{12}-$	0.00627		$\begin{array}{lr} & D_{R} \\ D_{R}= & 20.9(p \\ \text { LOS }= & C(E x h \end{array}$	$\begin{aligned} & =4.252+ \\ & \text { /mi/ln) } \\ & \text { ibit } 25-4) \end{aligned}$	$0086 V_{12}-0.00$	L_{D}	
Speed Determination					Speed Determination				
$\begin{cases}\mathrm{M}_{\mathrm{S}}= & \text { (Ex } \\ \mathrm{S}_{\mathrm{R}}= & \mathrm{mph} \\ \mathrm{~S}_{0}= & \mathrm{mph} \\ \mathrm{~S}= & \mathrm{mph}\end{cases}$	5-19)				$\begin{array}{ll}\mathrm{D}_{\mathrm{S}}= & 0.488(\\ \mathrm{S}_{\mathrm{R}}= & 48.7 \mathrm{mp} \\ \mathrm{S}_{0}= & \mathrm{N} / \mathrm{Amp} \\ \mathrm{S}= & 48.7 \mathrm{mph}\end{array}$	xhibit 25-1 (Exhibit 25 (Exhibit 25 (Exhibit 25	-19)		

Conversion to pc/h Under Base Conditions

(pc/h)	$\begin{gathered} \hline \mathrm{V} \\ (\mathrm{Veh} / \mathrm{hr}) \end{gathered}$	PHF	Terrain	\%Truck	\%Rv	f_{HV}	f_{p}	$v=$ V/PHF $\times f_{\text {HV }} \times \mathrm{f}_{\mathrm{p}}$
Freeway	2371	0.90	Level	15	0	0.930	1.00	2832
Ramp	396	0.90	Level	15	0	0.930	1.00	473
UpStream	2168	0.90	Level	15	0	0.930	1.00	2590
DownStream								
Merge Areas					Diverge Areas			
Estimation of v_{12}					Estimation of \mathbf{v}_{12}			
 $L_{E Q}=$ $V_{12}=V_{F}\left(P_{F M}\right)$ $P_{F M}=$ (Equation 25-2 or 25-3) $V_{12}=$ using Equation (Exhibit 25-5) V_{3} or $V_{\text {av34 }}$ pc / h Is V_{3} or $V_{\text {av34 }}>2,700 \mathrm{pc} / \mathrm{h}$? (Equation 25-4 or 25-5) Y Yes Г No Is V_{3} or $V_{\text {av34 }}>1.5 * V_{12} / 2$ Г Yes Г No If Yes,$V_{12 a}=$ pc/h (Equation 25-8)					$\mathrm{V}_{12}=\mathrm{V}_{\mathrm{R}}+\left(\mathrm{V}_{\mathrm{F}}-\mathrm{V}_{\mathrm{R}}\right) \mathrm{P}_{\mathrm{FD}}$ $\mathrm{L}_{\mathrm{EQ}}=$ (Equation 25-8 or 25-9) $\mathrm{P}_{\mathrm{FD}}=$ 1.000 using Equation (Exhibit 25-12) $\mathrm{V}_{12}=$ $2832 \mathrm{pc} / \mathrm{h}$ V_{3} or $\mathrm{V}_{\text {av34 }}$ $0 \mathrm{pc} / \mathrm{h}$ (Equation 25-15 or 25-16) Is V_{3} or $\mathrm{V}_{\text {av34 }}>2,700 \mathrm{pc} / \mathrm{h}$? Г Yes $\sqrt{V} \mathrm{No}$ Is V_{3} or $\mathrm{V}_{\text {av34 }}>1.5 * \mathrm{~V}_{12} / 2$ Г Yes $/ \mathrm{V}$ No If Yes, $\mathrm{V}_{12 \mathrm{a}}=$ pc/h (Equation 25-18)			

Capacity Checks
Capacity Checks

	Actual		Capacity	LOS F?		Actual	Cap	acity	LOS F?
V_{FO}		Exhibit 25-7			V_{F}	2832	Exhibit 25-14	4500	No
					$\mathrm{V}_{\mathrm{FO}}=\mathrm{V}_{\mathrm{F}}-\mathrm{V}_{\mathrm{R}}$	2359	Exhibit 25-14	4500	No
					V_{R}	473	Exhibit 25-3	2000	No
Flow Entering Merge Influence Area					Flow Entering Diverge Influence Area				
	Actual	Max Desirable		Violation?		Actual	Max Desirable		Violation?
$\mathrm{V}_{\mathrm{R} 12}$		Exhibit 25-7			V_{12}	2832	Exhibit 25-14	4400:All	No
Level of Service Determination (if not F)					Level of Service Determination (if not F)				
$$	34 v_{R}	$0078 \mathrm{~V}_{12}-$	0.00627		$\begin{array}{rr} & D_{R} \\ D_{R}= & 25.5(\mathrm{p} \\ \text { LOS }= & C(\text { Exh } \end{array}$	$\begin{aligned} & =4.252+ \\ & \text { /mi/ln) } \\ & \text { ibit } 25-4) \end{aligned}$	$0086 V_{12}-0.00$	L_{D}	
Speed Determination					Speed Determination				
$\begin{cases}\mathrm{M}_{\mathrm{S}}= & \text { (Ex } \\ \mathrm{S}_{\mathrm{R}}= & \mathrm{mph} \\ \mathrm{~S}_{0}= & \mathrm{mph} \\ \mathrm{~S}= & \mathrm{mph}\end{cases}$	5-19)				$\begin{array}{ll}\mathrm{D}_{\mathrm{S}}= & 0.471 \\ \mathrm{~S}_{\mathrm{R}}= & 48.9 \mathrm{mp} \\ \mathrm{S}_{0}= & \mathrm{N} / \mathrm{Amp} \\ \mathrm{S}= & 48.9 \mathrm{mph}\end{array}$	xhibit 25-1 (Exhibit 25 (Exhibit 25 (Exhibit 25	-19)		

Conversion to pc/h Under Base Conditions

(pc/h)	$\begin{gathered} \hline \mathrm{V} \\ (\mathrm{Veh} / \mathrm{hr}) \end{gathered}$	PHF	Terrain	\%Truck	\%Rv	f_{HV}	f_{p}	$v=$ V/PHF $\times f_{\text {HV }} \times \mathrm{f}_{\mathrm{p}}$
Freeway	1565	0.90	Level	15	0	0.930	1.00	1869
Ramp	241	0.90	Level	15	0	0.930	1.00	288
UpStream	1428	0.90	Level	15	0	0.930	1.00	1706
DownStream								
Merge Areas					Diverge Areas			
Estimation of v_{12}					Estimation of \mathbf{v}_{12}			
					$\mathrm{V}_{12}=\mathrm{V}_{\mathrm{R}}+\left(\mathrm{V}_{\mathrm{F}}-\mathrm{V}_{\mathrm{R}}\right) \mathrm{P}_{\mathrm{FD}}$ $\mathrm{L}_{\mathrm{EQ}}=$ (Equation 25-8 or 25-9) $\mathrm{P}_{\mathrm{FD}}=$ 1.000 using Equation (Exhibit 25-12) $\mathrm{V}_{12}=$ $1869 \mathrm{pc} / \mathrm{h}$ V_{3} or $\mathrm{V}_{\text {av34 }}$ $0 \mathrm{pc} / \mathrm{h}$ (Equation 25-15 or 25-16) Is V_{3} or $\mathrm{V}_{\text {av34 }}>2,700 \mathrm{pc} / \mathrm{h}$? Г Yes $\sqrt{V} \mathrm{No}$ Is V_{3} or $\mathrm{V}_{\text {av34 }}>1.5 * \mathrm{~V}_{12} / 2$ Г Yes $/ \mathrm{V}$ No If Yes, $\mathrm{V}_{12 \mathrm{a}}=$ pc/h (Equation 25-18)			

Capacity Checks
Capacity Checks

	Actual		Capacity	LOS F?		Actual	Cap	acity	LOS F?
V_{FO}		Exhibit 25-7			V_{F}	1869	Exhibit 25-14	4500	No
					$\mathrm{V}_{\mathrm{FO}}=\mathrm{V}_{\mathrm{F}}-\mathrm{V}_{\mathrm{R}}$	1581	Exhibit 25-14	4500	No
					V_{R}	288	Exhibit 25-3	2000	No
Flow Entering Merge Influence Area					Flow Entering Diverge Influence Area				
	Actual	Max Desirable		Violation?		Actual	Max Desirable		Violation?
$\mathrm{V}_{\mathrm{R} 12}$		Exhibit 25-7			V_{12}	1869	Exhibit 25-14	4400:All	No
Level of Service Determination (if not F)					Level of Service Determination (if not F)				
$$	34 v_{R}	$0078 \mathrm{~V}_{12}-$	0.00627		$\begin{array}{rr} & D_{R} \\ D_{R}= & 17.2(\mathrm{p} \\ \text { LOS }= & B(\text { Exh } \end{array}$	$=4.252+0$ /mi/ln) ibit 25-4)	$0086 V_{12}-0.00$	L_{D}	
Speed Determination					Speed Determination				
$\begin{array}{ll} \mathrm{M}_{\mathrm{S}}= & (\mathrm{Ex} \\ \mathrm{S}_{\mathrm{R}}= & \mathrm{mph} \\ \mathrm{~S}_{0}= & \mathrm{mph} \\ \mathrm{~S}= & \mathrm{mph} \end{array}$	5-19)				$\begin{array}{ll}\mathrm{D}_{\mathrm{S}}= & 0.454 \\ \mathrm{~S}_{\mathrm{R}}= & 49.1 \mathrm{mp} \\ \mathrm{S}_{0}= & \mathrm{N} / \mathrm{Amp} \\ \mathrm{S}= & 49.1 \mathrm{mph}\end{array}$	Exhibit 25-19) (Exhibit 25 (Exhibit 25 (Exhibit 25	-19)		

Conversion to pc/h Under Base Conditions

(pc/h)	$\begin{gathered} \hline \mathrm{V} \\ (\mathrm{Veh} / \mathrm{hr}) \end{gathered}$	PHF	Terrain	\%Truck	\%Rv	f_{HV}	f_{p}	$v=$ V/PHF $\times f_{\text {HV }} \times f_{p}$
Freeway	1930	0.90	Level	15	0	0.930	1.00	2305
Ramp	561	0.90	Level	15	0	0.930	1.00	670
UpStream	1370	0.90	Level	15	0	0.930	1.00	1636
DownStream								
Merge Areas					Diverge Areas			
Estimation of v_{12}					Estimation of \mathbf{v}_{12}			
 $L_{E Q}=$ $V_{12}=V_{F}\left(P_{F M}\right)$ $P_{F M}=$ (Equation 25-2 or 25-3) $V_{12}=$ using Equation (Exhibit 25-5) V_{3} or $V_{\text {av34 }}$ pc / h Is V_{3} or $V_{\text {av34 }}>2,700 \mathrm{pc} / \mathrm{h}$? (Equation 25-4 or 25-5) Y Yes Г No Is V_{3} or $V_{\text {av34 }}>1.5 * V_{12} / 2$ Г Yes Г No If Yes,$V_{12 a}=$ pc/h (Equation 25-8)					$\mathrm{V}_{12}=\mathrm{V}_{\mathrm{R}}+\left(\mathrm{V}_{\mathrm{F}}-\mathrm{V}_{\mathrm{R}}\right) \mathrm{P}_{\mathrm{FD}}$ $\mathrm{L}_{\mathrm{EQ}}=$ (Equation 25-8 or 25-9) $\mathrm{P}_{\mathrm{FD}}=$ 1.000 using Equation (Exhibit 25-12) $\mathrm{V}_{12}=$ $2305 \mathrm{pc} / \mathrm{h}$ V_{3} or $\mathrm{V}_{\text {av34 }}$ $0 \mathrm{pc} / \mathrm{h}$ (Equation 25-15 or 25-16) Is V_{3} or $\mathrm{V}_{\text {av34 }}>2,700 \mathrm{pc} / \mathrm{h}$? Г Yes $\sqrt{V} \mathrm{No}$ Is V_{3} or $\mathrm{V}_{\text {av34 }}>1.5 * \mathrm{~V}_{12} / 2$ Г Yes $/ \mathrm{V}$ No If Yes, $\mathrm{V}_{12 \mathrm{a}}=$ pc/h (Equation 25-18)			

Capacity Checks
Capacity Checks

	Actual		Capacity	LOS F?		Actual	Cap	acity	LOS F?
V_{FO}		Exhibit 25-7			V_{F}	2305	Exhibit 25-14	4500	No
					$\mathrm{V}_{\mathrm{FO}}=\mathrm{V}_{\mathrm{F}}-\mathrm{V}_{\mathrm{R}}$	1635	Exhibit 25-14	4500	No
					V_{R}	670	Exhibit 25-3	2000	No
Flow Entering Merge Influence Area					Flow Entering Diverge Influence Area				
	Actual	Max Desirable		Violation?		Actual	Max Desirable		Violation?
$\mathrm{V}_{\mathrm{R} 12}$		Exhibit 25-7			V_{12}	2305	Exhibit 25-14	4400:All	No
Level of Service Determination (if not F)					Level of Service Determination (if not F)				
$$	34 v_{R}	$0078 \mathrm{~V}_{12}-$	0.00627		$\begin{array}{lr} & D_{R} \\ D_{R}= & 20.9(p \\ \text { LOS }= & C(E x h \end{array}$	$\begin{aligned} & =4.252+ \\ & \text { /mi/ln) } \\ & \text { ibit } 25-4) \end{aligned}$	$0086 V_{12}-0.00$	L_{D}	
Speed Determination					Speed Determination				
$\begin{cases}\mathrm{M}_{\mathrm{S}}= & \text { (Ex } \\ \mathrm{S}_{\mathrm{R}}= & \mathrm{mph} \\ \mathrm{~S}_{0}= & \mathrm{mph} \\ \mathrm{~S}= & \mathrm{mph}\end{cases}$	5-19)				$\begin{array}{ll}\mathrm{D}_{\mathrm{S}}= & 0.488(\\ \mathrm{S}_{\mathrm{R}}= & 48.7 \mathrm{mp} \\ \mathrm{S}_{0}= & \mathrm{N} / \mathrm{Amp} \\ \mathrm{S}= & 48.7 \mathrm{mph}\end{array}$	xhibit 25-1 (Exhibit 25 (Exhibit 25 (Exhibit 25	-19)		

Conversion to pc/h Under Base Conditions

(pc/h)	$\begin{gathered} \hline \mathrm{V} \\ (\mathrm{Veh} / \mathrm{hr}) \end{gathered}$	PHF	Terrain	\%Truck	\%Rv	f_{HV}	f_{p}	$v=$ V/PHF $\times f_{\text {HV }} \times \mathrm{f}_{\mathrm{p}}$
Freeway	2371	0.90	Level	15	0	0.930	1.00	2832
Ramp	396	0.90	Level	15	0	0.930	1.00	473
UpStream	2168	0.90	Level	15	0	0.930	1.00	2590
DownStream								
Merge Areas					Diverge Areas			
Estimation of v_{12}					Estimation of \mathbf{v}_{12}			
 $L_{E Q}=$ $V_{12}=V_{F}\left(P_{F M}\right)$ $P_{F M}=$ (Equation 25-2 or 25-3) $V_{12}=$ using Equation (Exhibit 25-5) V_{3} or $V_{\text {av34 }}$ pc / h Is V_{3} or $V_{\text {av34 }}>2,700 \mathrm{pc} / \mathrm{h}$? (Equation 25-4 or 25-5) Y Yes Г No Is V_{3} or $V_{\text {av34 }}>1.5 * V_{12} / 2$ Г Yes Г No If Yes,$V_{12 a}=$ pc/h (Equation 25-8)					$\mathrm{V}_{12}=\mathrm{V}_{\mathrm{R}}+\left(\mathrm{V}_{\mathrm{F}}-\mathrm{V}_{\mathrm{R}}\right) \mathrm{P}_{\mathrm{FD}}$ $\mathrm{L}_{\mathrm{EQ}}=$ (Equation 25-8 or 25-9) $\mathrm{P}_{\mathrm{FD}}=$ 1.000 using Equation (Exhibit 25-12) $\mathrm{V}_{12}=$ $2832 \mathrm{pc} / \mathrm{h}$ V_{3} or $\mathrm{V}_{\text {av34 }}$ $0 \mathrm{pc} / \mathrm{h}$ (Equation 25-15 or 25-16) Is V_{3} or $\mathrm{V}_{\text {av34 }}>2,700 \mathrm{pc} / \mathrm{h}$? Г Yes $\sqrt{V} \mathrm{No}$ Is V_{3} or $\mathrm{V}_{\text {av34 }}>1.5 * \mathrm{~V}_{12} / 2$ Г Yes $/ \mathrm{V}$ No If Yes, $\mathrm{V}_{12 \mathrm{a}}=$ pc/h (Equation 25-18)			

Capacity Checks
Capacity Checks

	Actual		Capacity	LOS F?		Actual	Cap	acity	LOS F?
V_{FO}		Exhibit 25-7			V_{F}	2832	Exhibit 25-14	4500	No
					$\mathrm{V}_{\mathrm{FO}}=\mathrm{V}_{\mathrm{F}}-\mathrm{V}_{\mathrm{R}}$	2359	Exhibit 25-14	4500	No
					V_{R}	473	Exhibit 25-3	2000	No
Flow Entering Merge Influence Area					Flow Entering Diverge Influence Area				
	Actual	Max Desirable		Violation?		Actual	Max Desirable		Violation?
$\mathrm{V}_{\mathrm{R} 12}$		Exhibit 25-7			V_{12}	2832	Exhibit 25-14	4400:All	No
Level of Service Determination (if not F)					Level of Service Determination (if not F)				
$$	34 v_{R}	$0078 \mathrm{~V}_{12}-$	0.00627		$\begin{array}{rr} & D_{R} \\ D_{R}= & 25.5(\mathrm{p} \\ \text { LOS }= & C(\text { Exh } \end{array}$	$\begin{aligned} & =4.252+ \\ & \text { /mi/ln) } \\ & \text { ibit } 25-4) \end{aligned}$	$0086 V_{12}-0.00$	L_{D}	
Speed Determination					Speed Determination				
$\begin{cases}\mathrm{M}_{\mathrm{S}}= & \text { (Ex } \\ \mathrm{S}_{\mathrm{R}}= & \mathrm{mph} \\ \mathrm{~S}_{0}= & \mathrm{mph} \\ \mathrm{~S}= & \mathrm{mph}\end{cases}$	5-19)				$\begin{array}{ll}\mathrm{D}_{\mathrm{S}}= & 0.471 \\ \mathrm{~S}_{\mathrm{R}}= & 48.9 \mathrm{mp} \\ \mathrm{S}_{0}= & \mathrm{N} / \mathrm{Amp} \\ \mathrm{S}= & 48.9 \mathrm{mph}\end{array}$	xhibit 25-1 (Exhibit 25 (Exhibit 25 (Exhibit 25	-19)		

Conversion to pc/h Under Base Conditions

(pc/h)	$\begin{gathered} \mathrm{V} \\ (\mathrm{Veh} / \mathrm{hr}) \end{gathered}$	PHF	Terrain	\%Truck	\%Rv	f_{HV}	f_{p}	$\mathrm{v}=\mathrm{V} /$ PHF $\times \mathrm{f}_{\mathrm{HV}} \times \mathrm{f}_{\mathrm{p}}$
Freeway	1129	0.90	Level	15	0	0.930	1.00	1349
Ramp	167	0.90	Level	15	0	0.930	1.00	199
UpStream								
DownStream								
Merge Areas					Diverge Areas			
Estimation of \mathbf{v}_{12}					Estimation of \mathbf{v}_{12}			
$\begin{aligned} & L_{E Q}= \\ & P_{\mathrm{FM}}= \\ & \mathrm{P}_{12}= \\ & \mathrm{V}_{3} \text { or } V_{\text {av34 }} \\ & \text { Is } V_{3} \text { or } V_{\text {av34 }}>2,700 \mathrm{~F} \\ & \text { Is } V_{3} \text { or } V_{\text {av34 }}>1.5 * V \\ & \text { If Yes }, V_{12 a}= \\ & \hline \end{aligned}$	```\(V_{12}=V_{F}\left(P_{F M}\right)\) (Equation 25-2 or 25-3) using Equation (Exhibit 25-5) \(\mathrm{pc} / \mathrm{h}\) pc/h (Equation 25-4 or 25-5) Г Yes Г No 「Yes Г No \(\mathrm{pc} / \mathrm{h}\) (Equation 25-8)```							

Capacity Checks
Capacity Checks

Conversion to pc/h Under Base Conditions

(pc/h)	$\begin{gathered} \mathrm{V} \\ (\mathrm{Veh} / \mathrm{hr}) \end{gathered}$	PHF	Terrain	\%Truck	\%Rv	f_{HV}	f_{p}	$\mathrm{v}=\mathrm{V} /$ PHF $\times \mathrm{f}_{\mathrm{HV}} \times \mathrm{f}_{\mathrm{p}}$
Freeway	1630	0.90	Level	15	0	0.930	1.00	1947
Ramp	123	0.90	Level	15	0	0.930	1.00	147
UpStream								
DownStream								
Merge Areas					Diverge Areas			
Estimation of \mathbf{v}_{12}					Estimation of \mathbf{v}_{12}			
$\begin{aligned} & L_{E Q}= \\ & P_{\mathrm{FM}}= \\ & \mathrm{P}_{12}= \\ & \mathrm{V}_{3} \text { or } V_{\text {av34 }} \\ & \text { Is } V_{3} \text { or } V_{\text {av34 }}>2,700 \mathrm{~F} \\ & \text { Is } V_{3} \text { or } V_{\text {av34 }}>1.5 * V \\ & \text { If Yes }, V_{12 a}= \\ & \hline \end{aligned}$	```\(V_{12}=V_{F}\left(P_{F M}\right)\) (Equation 25-2 or 25-3) using Equation (Exhibit 25-5) \(\mathrm{pc} / \mathrm{h}\) pc/h (Equation 25-4 or 25-5) Г Yes Г No 「Yes Г No \(\mathrm{pc} / \mathrm{h}\) (Equation 25-8)```							

Capacity Checks
Capacity Checks

	Actual		Capacity	LOS F?		Actual	Cap	acity	LOS F?
V_{FO}		Exhibit 25-7			V_{F}	1947	Exhibit 25-14	4500	No
					$\mathrm{V}_{\mathrm{FO}}=\mathrm{V}_{\mathrm{F}}-\mathrm{V}_{\mathrm{R}}$	1800	Exhibit 25-14	4500	No
					V_{R}	147	Exhibit 25-3	2000	No
Flow Entering Merge Influence Area					Flow Entering Diverge Influence Area				
	Actual	Max Desirable		Violation?		Actual	Max Desirable		Violation?
$\mathrm{V}_{\mathrm{R} 12}$		Exhibit 25-7			V_{12}	1947	Exhibit 25-14	4400:All	No
Level of Service Determination (if not F)					Level of Service Determination (if not F)				
$$	434 v_{R}	. $0078 \mathrm{~V}_{12}$ -	0.00627		$\begin{array}{lr} & D_{R} \\ D_{R}= & 16.5(\mathrm{pc} \\ \text { LOS }= & B(\text { Exhi } \end{array}$	$=4.252+0 .$ /mi/ln) ibit 25-4)	$0086 V_{12}-0.00$	$L_{\text {D }}$	
Speed Determination					Speed Determination				
$\begin{aligned} & \mathrm{M}_{\mathrm{S}}= \\ & \mathrm{S}_{\mathrm{R}}= \\ & \mathrm{S}_{0}= \\ & \mathrm{S}= \end{aligned}$	5-19)				$\begin{array}{ll}\mathrm{D}_{\mathrm{S}}= & 0.441 \\ \mathrm{~S}_{\mathrm{R}}= & 49.3 \mathrm{mp} \\ \mathrm{S}_{0}= & \mathrm{N} / \mathrm{Amph} \\ \mathrm{S}= & 49.3 \mathrm{mph}\end{array}$	Exhibit 25-19) (Exhibit 25 (Exhibit 25 (Exhibit 25	(19)		

Conversion to pc/h Under Base Conditions

(pc/h)	$\begin{gathered} \mathrm{V} \\ (\mathrm{Veh} / \mathrm{hr}) \end{gathered}$	PHF	Terrain	\%Truck	\%Rv	f_{HV}	f_{p}	$v=$ V/PHF $\times f_{\mathrm{HV}} \times \mathrm{f}_{\mathrm{p}}$
Freeway	1700	0.90	Level	15	0	0.930	1.00	2031
Ramp	252	0.90	Level	15	0	0.930	1.00	301
UpStream								
DownStream								
Merge Areas					Diverge Areas			
Estimation of \mathbf{v}_{12}					Estimation of \mathbf{v}_{12}			
$\begin{aligned} & L_{E Q}= \\ & P_{\mathrm{FM}}= \\ & \mathrm{P}_{12}= \\ & \mathrm{V}_{3} \text { or } V_{\text {av34 }} \\ & \text { Is } V_{3} \text { or } V_{\text {av34 }}>2,700 \mathrm{~F} \\ & \text { Is } V_{3} \text { or } V_{\text {av34 }}>1.5 * V \\ & \text { If Yes }, V_{12 a}= \\ & \hline \end{aligned}$	```\(V_{12}=V_{F}\left(P_{F M}\right)\) (Equation 25-2 or 25-3) using Equation (Exhibit 25-5) \(\mathrm{pc} / \mathrm{h}\) \(\mathrm{pc} / \mathrm{h}\) (Equation 25-4 or 25-5) Г Yes Г No 「Yes Г No \(\mathrm{pc} / \mathrm{h}\) (Equation 25-8)```							

Capacity Checks
Capacity Checks

	Actual		Capacity	LOS F?		Actual	Cap	acity	LOS F?
V_{FO}		Exhibit 25-7			V_{F}	2031	Exhibit 25-14	4500	No
					$\mathrm{V}_{\mathrm{FO}}=\mathrm{V}_{\mathrm{F}}-\mathrm{V}_{\mathrm{R}}$	1730	Exhibit 25-14	4500	No
					V_{R}	301	Exhibit 25-3	2000	No
Flow Entering Merge Influence Area					Flow Entering Diverge Influence Area				
	Actual	Max Desirable		Violation?		Actual	Max Desirable		Violation?
$\mathrm{V}_{\mathrm{R} 12}$		Exhibit 25-7			V_{12}	2031	Exhibit 25-14	4400:All	No
Level of Service Determination (if not F)					Level of Service Determination (if not F)				
$$	434 v_{R}	. $0078 \mathrm{~V}_{12}$ -	0.00627		$\begin{array}{lr} & \mathrm{D}_{\mathrm{R}} \\ \mathrm{D}_{\mathrm{R}}= & 17.2(\mathrm{pc} \\ \text { LOS }= & \mathrm{B}(\text { Exhi } \end{array}$	$=4.252+0 .$ /mi/ln) ibit 25-4)	$0086 V_{12}-0.00$	$L_{\text {D }}$	
Speed Determination					Speed Determination				
$\begin{aligned} & \mathrm{M}_{\mathrm{S}}= \\ & \mathrm{S}_{\mathrm{R}}= \\ & \mathrm{S}_{0}= \\ & \mathrm{S}= \end{aligned}$	5-19)				$\begin{array}{ll}\mathrm{D}_{\mathrm{S}}= & 0.455 \\ \mathrm{~S}_{\mathrm{R}}= & 49.1 \mathrm{mp} \\ \mathrm{S}_{0}= & \mathrm{N} / \mathrm{Amph} \\ \mathrm{S}= & 49.1 \mathrm{mph}\end{array}$	Exhibit 25-19) (Exhibit 25 (Exhibit 25 (Exhibit 25	(19)		

Conversion to pc/h Under Base Conditions

(pc/h)	$\begin{gathered} \mathrm{V} \\ (\mathrm{Veh} / \mathrm{hr}) \end{gathered}$	PHF	Terrain	\%Truck	\%Rv	f_{HV}	f_{p}	$\mathrm{v}=\mathrm{V} /$ PHF $\times \mathrm{f}_{\mathrm{HV}} \times \mathrm{f}_{\mathrm{p}}$
Freeway	2479	0.90	Level	15	0	0.930	1.00	2961
Ramp	188	0.90	Level	15	0	0.930	1.00	225
UpStream								
DownStream								
Merge Areas					Diverge Areas			
Estimation of \mathbf{v}_{12}					Estimation of \mathbf{v}_{12}			
$\begin{aligned} & L_{E Q}= \\ & P_{\mathrm{FM}}= \\ & \mathrm{P}_{12}= \\ & \mathrm{V}_{3} \text { or } V_{\text {av34 }} \\ & \text { Is } V_{3} \text { or } V_{\text {av34 }}>2,700 \mathrm{~F} \\ & \text { Is } V_{3} \text { or } V_{\text {av34 }}>1.5 * V \\ & \text { If Yes }, V_{12 a}= \\ & \hline \end{aligned}$	```\(V_{12}=V_{F}\left(P_{F M}\right)\) (Equation 25-2 or 25-3) using Equation (Exhibit 25-5) \(\mathrm{pc} / \mathrm{h}\) \(\mathrm{pc} / \mathrm{h}\) (Equation 25-4 or 25-5) Г Yes Г No 「Yes Г No \(\mathrm{pc} / \mathrm{h}\) (Equation 25-8)```							

Capacity Checks
Capacity Checks

	Actual		Capacity	LOS F?		Actual	Cap	acity	LOS F?
V_{FO}		Exhibit 25-7			V_{F}	2961	Exhibit 25-14	4500	No
					$\mathrm{V}_{\mathrm{FO}}=\mathrm{V}_{\mathrm{F}}-\mathrm{V}_{\mathrm{R}}$	2736	Exhibit 25-14	4500	No
					V_{R}	225	Exhibit 25-3	2000	No
Flow Entering Merge Influence Area					Flow Entering Diverge Influence Area				
	Actual	Max Desirable		Violation?		Actual	Max Desirable		Violation?
$\mathrm{V}_{\mathrm{R} 12}$		Exhibit 25-7			V_{12}	2961	Exhibit 25-14	4400:All	No
Level of Service Determination (if not F)					Level of Service Determination (if not F)				
$$	$73 v_{R}$ 4)	$0078 \mathrm{~V}_{12}$ -	0.00627		$\begin{array}{lr} \\ D_{R}= & D_{R} \\ \text { LOS }= & 25.2(p \\ C(E x h\end{array}$	$=4.252+$ /mi/ln) bit 25-4)	$0086 V_{12}-0.00$	L_{D}	
Speed Determination					Speed Determination				
$\begin{array}{ll} \hline \mathrm{M}_{\mathrm{S}}= & (\mathrm{Ex} \\ \mathrm{S}_{\mathrm{R}}= & \mathrm{mph} \\ \mathrm{~S}_{0}= & \mathrm{mph} \\ \mathrm{~S}= & \mathrm{mph} \end{array}$	5-19)				$\begin{array}{ll}\mathrm{D}_{\mathrm{S}}= & 0.448(\\ \mathrm{S}_{\mathrm{R}}= & 49.2 \mathrm{mph} \\ \mathrm{S}_{0}= & \mathrm{N} / \mathrm{Amp} \\ \mathrm{S}= & 49.2 \mathrm{mph}\end{array}$	(Exhibit 25-1 (Exhibit 25 (Exhibit 25 (Exhibit 25	-19)		

Conversion to pc/h Under Base Conditions

(pc/h)	$\begin{gathered} \mathrm{V} \\ (\mathrm{Veh} / \mathrm{hr}) \end{gathered}$	PHF	Terrain	\%Truck	\%Rv	f_{HV}	f_{p}	$v=$ V/PHF $\times f_{\mathrm{HV}} \times \mathrm{f}_{\mathrm{p}}$
Freeway	1101	0.90	Level	15	0	0.930	1.00	1315
Ramp	254	0.90	Level	15	0	0.930	1.00	303
UpStream	140	0.90	Level	15	0	0.930	1.00	167
DownStream								
Merge Areas					Diverge Areas			
Estimation of \mathbf{v}_{12}					Estimation of v_{12}			
$\left\{\begin{array}{l} \mathrm{L}_{\mathrm{EQ}}= \\ \mathrm{P}_{\mathrm{FM}}= \\ \mathrm{V}_{12}= \\ \mathrm{V}_{3} \text { or } \mathrm{V}_{\text {av34 }} \\ \text { Is } V_{3} \text { or } V_{\text {av34 }}>2,700 \\ \text { Is } V_{3} \text { or } V_{\text {av34 }}>1.5 * V \\ \text { If } Y e s, V_{12 \mathrm{a}}= \\ \hline \end{array}\right.$	```V12}=\mp@subsup{V}{F}{}(\mp@subsup{P}{FM}{} (Equation 25-2 or 25-3) using Equation (Exhibit 25-5) pc/h pc/h (Equation 25-4 or 25-5) \GammaYes ГNo \GammaYes Г No pc/h (Equation 25-8)```				$\mathrm{V}_{12}=\mathrm{V}_{\mathrm{R}}+\left(\mathrm{V}_{\mathrm{F}}-\mathrm{V}_{\mathrm{R}}\right) \mathrm{P}_{\mathrm{FD}}$ $\mathrm{L}_{\mathrm{EQ}}=$ (Equation 25-8 or 25-9) $\mathrm{P}_{\mathrm{FD}}=$ 1.000 using Equation (Exhibit 25-12) $\mathrm{V}_{12}=$ $1315 \mathrm{pc} / \mathrm{h}$ V_{3} or $\mathrm{V}_{\text {av34 }}$ $0 \mathrm{pc} / \mathrm{h}$ (Equation 25-15 or 25-16) Is V_{3} or $\mathrm{V}_{\text {av34 }}>2,700 \mathrm{pc} / \mathrm{h}$? Г Yes V No Is V_{3} or $\mathrm{V}_{\text {av34 }}>1.5 * \mathrm{~V}_{12} / 2$ Г Yes V No If Yes, $\mathrm{V}_{12 \mathrm{a}}=$ pc/h (Equation 25-18)			

Capacity Checks
Capacity Checks

	Actual		Capacity	LOS F?		Actual	Cap	acity	LOS F?
V_{FO}		Exhibit 25-7			V_{F}	1315	Exhibit 25-14	4500	No
					$\mathrm{V}_{\mathrm{FO}}=\mathrm{V}_{\mathrm{F}}-\mathrm{V}_{\mathrm{R}}$	1012	Exhibit 25-14	4500	No
					V_{R}	303	Exhibit 25-3	2000	No
Flow Entering Merge Influence Area					Flow Entering Diverge Influence Area				
	Actual	Max Desirable		Violation?		Actual	Max Desirable		Violation?
$\mathrm{V}_{\mathrm{R} 12}$		Exhibit 25-7			V_{12}	1315	Exhibit 25-14	4400:All	No
Level of Service Determination (if not F)					Level of Service Determination (if not F)				
$$	34 v_{R}	$0078 \mathrm{~V}_{12}-$	0.00627		$\begin{array}{lr} & D_{R} \\ D_{R}= & 12.4(\mathrm{p} \\ \text { LOS }= & B(\text { Exh } \end{array}$	$\begin{aligned} & =4.252+(\\ & \text { /mi/ln }) \\ & \text { ibit } 25-4) \end{aligned}$	$0086 V_{12}-0.00$	L_{D}	
Speed Determination					Speed Determination				
$\begin{cases}\mathrm{M}_{\mathrm{S}}= & \text { (Ex } \\ \mathrm{S}_{\mathrm{R}}= & \mathrm{mph} \\ \mathrm{~S}_{0}= & \mathrm{mph} \\ \mathrm{~S}= & \mathrm{mph}\end{cases}$	5-19)				$\begin{array}{ll}\mathrm{D}_{\mathrm{S}}= & 0.455 \\ \mathrm{~S}_{\mathrm{R}}= & 49.1 \mathrm{mp} \\ \mathrm{S}_{0}= & \mathrm{N} / \mathrm{Amp} \\ \mathrm{S}= & 49.1 \mathrm{mph}\end{array}$	xhibit 25-1 (Exhibit 25 (Exhibit 25 (Exhibit 25	-19)		

Conversion to pc/h Under Base Conditions

(pc/h)	$\begin{gathered} \mathrm{V} \\ (\mathrm{Veh} / \mathrm{hr}) \end{gathered}$	PHF	Terrain	\%Truck	\%Rv	f_{HV}	f_{p}	$\mathrm{v}=\mathrm{V} /$ PHF $\times \mathrm{f}_{\mathrm{HV}} \times \mathrm{f}_{\mathrm{p}}$
Freeway	1698	0.90	Level	15	0	0.930	1.00	2028
Ramp	389	0.90	Level	15	0	0.930	1.00	465
UpStream	219	0.90	Level	15	0	0.930	1.00	262
DownStream								
Merge Areas					Diverge Areas			
Estimation of \mathbf{v}_{12}					Estimation of v_{12}			
$\left\{\begin{array}{l} \mathrm{L}_{\mathrm{EQ}}= \\ \mathrm{P}_{\mathrm{FM}}= \\ \mathrm{V}_{12}= \\ \mathrm{V}_{3} \text { or } \mathrm{V}_{\text {av34 }} \\ \text { Is } V_{3} \text { or } V_{\text {av34 }}>2,700 \\ \text { Is } V_{3} \text { or } V_{\text {av34 }}>1.5 * V \\ \text { If } Y e s, V_{12 \mathrm{a}}= \\ \hline \end{array}\right.$	```V12}=\mp@subsup{V}{F}{}(\mp@subsup{P}{FM}{} (Equation 25-2 or 25-3) using Equation (Exhibit 25-5) pc/h pc/h (Equation 25-4 or 25-5) \GammaYes ГNo \GammaYes Г No pc/h (Equation 25-8)```				$\mathrm{V}_{12}=\mathrm{V}_{\mathrm{R}}+\left(\mathrm{V}_{\mathrm{F}}-\mathrm{V}_{\mathrm{R}}\right) \mathrm{P}_{\mathrm{FD}}$ $\mathrm{L}_{\mathrm{EQ}}=$ (Equation 25-8 or 25-9) $\mathrm{P}_{\mathrm{FD}}=$ 1.000 using Equation (Exhibit 25-12) $\mathrm{V}_{12}=$ $2028 \mathrm{pc} / \mathrm{h}$ V_{3} or $\mathrm{V}_{\text {av34 }}$ $0 \mathrm{pc} / \mathrm{h}$ (Equation 25-15 or 25-16) Is V_{3} or $\mathrm{V}_{\text {av34 }}>2,700 \mathrm{pc} / \mathrm{h}$? Г Yes V No Is V_{3} or $\mathrm{V}_{\text {av34 }}>1.5 * \mathrm{~V}_{12} / 2$ Г Yes V No If Yes, $\mathrm{V}_{12 \mathrm{a}}=$ pc/h (Equation 25-18)			

Capacity Checks
Capacity Checks

	Actual		Capacity	LOS F?		Actual	Cap	acity	LOS F?
V_{FO}		Exhibit 25-7			V_{F}	2028	Exhibit 25-14	4500	No
					$\mathrm{V}_{\mathrm{FO}}=\mathrm{V}_{\mathrm{F}}-\mathrm{V}_{\mathrm{R}}$	1563	Exhibit 25-14	4500	No
					V_{R}	465	Exhibit 25-3	2000	No
Flow Entering Merge Influence Area					Flow Entering Diverge Influence Area				
	Actual	Max Desirable		Violation?		Actual	Max Desirable		Violation?
$\mathrm{V}_{\mathrm{R} 12}$		Exhibit 25-7			V_{12}	2028	Exhibit 25-14	4400:All	No
Level of Service Determination (if not F)					Level of Service Determination (if not F)				
$$	34 v_{R}	$0078 \mathrm{~V}_{12}-$	0.00627		$\begin{array}{rr} & D_{R} \\ D_{R}= & 18.5(\mathrm{p} \\ \text { LOS }= & B(\text { Exh } \end{array}$	$\begin{aligned} & =4.252+(\\ & \text { /mi/ln }) \\ & \text { ibit } 25-4) \end{aligned}$	$0086 V_{12}-0.00$	L_{D}	
Speed Determination					Speed Determination				
$\begin{cases}\mathrm{M}_{\mathrm{S}}= & \text { (Ex } \\ \mathrm{S}_{\mathrm{R}}= & \mathrm{mph} \\ \mathrm{~S}_{0}= & \mathrm{mph} \\ \mathrm{~S}= & \mathrm{mph}\end{cases}$	5-19)				$\begin{array}{ll}\mathrm{D}_{\mathrm{S}}= & 0.470 \\ \mathrm{~S}_{\mathrm{R}}= & 48.9 \mathrm{mp} \\ \mathrm{S}_{0}= & \mathrm{N} / \mathrm{Amp} \\ \mathrm{S}= & 48.9 \mathrm{mph}\end{array}$	xhibit 25-1 (Exhibit 25 (Exhibit 25 (Exhibit 25	-19)		

Conversion to pc/h Under Base Conditions

(pc/h)	$\begin{gathered} \mathrm{V} / \mathrm{V} / \mathrm{hr}) \\ (\mathrm{Ven} \end{gathered}$	PHF	Terrain	\%Truck	\%Rv	f_{HV}	f_{p}	$\mathrm{V}=\mathrm{V} / \mathrm{PHF} \times \mathrm{f}_{\mathrm{HV}} \times \mathrm{f}_{\mathrm{p}}$
Freeway	2645	0.90	Level	15	0	0.930	1.00	3159
Ramp	467	0.90	Level	15	0	0.930	1.00	558
UpStream	365	0.90	Level	15	0	0.930	1.00	436
DownStream								
Merge Areas					Diverge Areas			
Estimation of \mathbf{v}_{12}					Estimation of v_{12}			
$V_{12}=V_{F}\left(P_{F M}\right)$ $L_{E Q}=$ (Equation 25-2 or 25-3) $P_{F M}=$ using Equation (Exhibit 25-5) $V_{12}=$ pc / h V_{3} or $V_{\text {av34 }}$ pc / h (Equation 25-4 or 25-5) Is V_{3} or $V_{\text {av34 }}>2,700 \mathrm{pc} / \mathrm{h}$? Г Yes Г No Is V_{3} or $V_{\text {av34 }}>1.5 * V_{12} / 2$ Г Yes Г No If Yes,$V_{12 a}=$ pc/h (Equation 25-8)					$\mathrm{L}_{\mathrm{EQ}}=$ (Equation 25-8 or 25-9) $\mathrm{P}_{\mathrm{FD}}=$ 1.000 using Equation (Exhibit 25-12) $\mathrm{V}_{12}=$ $3159 \mathrm{pc} / \mathrm{h}$ V_{3} or $\mathrm{V}_{\text {av34 }}$ $0 \mathrm{pc} / \mathrm{h}$ (Equation 25-15 or 25-16) Is V_{3} or $\mathrm{V}_{\text {av34 }}>2,700 \mathrm{pc} / \mathrm{h}$? Г Yes $\nabla \mathrm{No}$ Is V_{3} or $\mathrm{V}_{\text {av34 }}>1.5 * \mathrm{~V}_{12} / 2$ V Yes $\nabla \mathrm{No}$ If Yes, $\mathrm{V}_{12 \mathrm{a}}=$ pc/h (Equation 25-18)			

Capacity Checks
Capacity Checks

	Actual		Capacity	LOS F?		Actual	Cap	acity	LOS F?
V_{FO}		Exhibit 25-7			V_{F}	3159	Exhibit 25-14	4500	No
					$\mathrm{V}_{\mathrm{FO}}=\mathrm{V}_{\mathrm{F}}-\mathrm{V}_{\mathrm{R}}$	2601	Exhibit 25-14	4500	No
					V_{R}	558	Exhibit 25-3	2000	No
Flow Entering Merge Influence Area					Flow Entering Diverge Influence Area				
	Actual	Max Desirable		Violation?		Actual	Max Desirable		Violation?
$\mathrm{V}_{\mathrm{R} 12}$		Exhibit 25-7			V_{12}	3159	Exhibit 25-14	4400:All	No
Level of Service Determination (if not F)					Level of Service Determination (if not F)				
$$	34 v_{R}	$0078 \mathrm{~V}_{12}-$	0.00627		$\begin{array}{lr} & D_{R} \\ D_{R}= & 28.3(\mathrm{p} \\ \text { LOS }= & D(\text { Exh } \end{array}$	$=4.252+0$ /mi/ln) ibit 25-4)	$0086 V_{12}-0.00$	L_{D}	
Speed Determination					Speed Determination				
$\begin{cases}\mathrm{M}_{\mathrm{S}}= & \text { (Ex } \\ \mathrm{S}_{\mathrm{R}}= & \mathrm{mph} \\ \mathrm{~S}_{0}= & \mathrm{mph} \\ \mathrm{~S}= & \mathrm{mph}\end{cases}$	5-19)				$\begin{array}{ll}\mathrm{D}_{\mathrm{S}}= & 0.478(\\ \mathrm{S}_{\mathrm{R}}= & 48.8 \mathrm{mp} \\ \mathrm{S}_{0}= & \mathrm{N} / \mathrm{Amp} \\ \mathrm{S}= & 48.8 \mathrm{mph}\end{array}$	Exhibit 25-19) (Exhibit 25 (Exhibit 25 (Exhibit 25	-19)		

Conversion to pc/h Under Base Conditions

(pc/h)	$\begin{gathered} \hline \mathrm{V} \\ (\mathrm{Veh} / \mathrm{hr}) \end{gathered}$	PHF	Terrain	\%Truck	\%Rv	f_{HV}	f_{p}	$v=$ V/PHF $\times f_{\text {HV }} \times f_{p}$
Freeway	1746	0.90	Level	15	0	0.930	1.00	2085
Ramp	264	0.90	Level	15	0	0.930	1.00	315
UpStream	1409	0.90	Level	15	0	0.930	1.00	1683
DownStream								
Merge Areas					Diverge Areas			
Estimation of \mathbf{v}_{12}					Estimation of v_{12}			
 $L_{E Q}=$ $V_{12}=V_{F}\left(P_{F M}\right)$ $P_{F M}=$ (Equation 25-2 or 25-3) $V_{12}=$ using Equation (Exhibit 25-5) V_{3} or $V_{\text {av34 }}$ pc / h Is V_{3} or $V_{\text {av34 }}>2,700 \mathrm{pc} / \mathrm{h}$? (Equation 25-4 or 25-5) Y Yes Г No Is V_{3} or $V_{\text {av34 }}>1.5 * V_{12} / 2$ Г Yes Г No If Yes,$V_{12 a}=$ pc/h (Equation 25-8)								

Capacity Checks
Capacity Checks

	Actual		Capacity	LOS F?		Actual	Cap	acity	LOS F?
V_{FO}		Exhibit 25-7			V_{F}	2085	Exhibit 25-14	6750	No
					$\mathrm{V}_{\mathrm{FO}}=\mathrm{V}_{\mathrm{F}}-\mathrm{V}_{\mathrm{R}}$	1770	Exhibit 25-14	6750	No
					V_{R}	315	Exhibit 25-3	2000	No
Flow Entering Merge Influence Area					Flow Entering Diverge Influence Area				
	Actual	Max Desirable		Violation?		Actual	Max Desirable		Violation?
$\mathrm{V}_{\mathrm{R} 12}$		Exhibit 25-7			V_{12}	2085	Exhibit 25-14	4400:All	No
Level of Service Determination (if not F)					Level of Service Determination (if not F)				
$$	$734 v_{R}$ 4)	$.0078 \mathrm{~V}_{12}-$	$0.00627 \mathrm{~L}_{\mathrm{A}}$		$\begin{array}{lr} & D_{R} \\ D_{R}= & 19.0(p \\ \text { LOS }= & B(E x h \end{array}$	$=4.252+0$ /mi/ln) ibit 25-4)	$0086 V_{12}-0.00$	L_{D}	
Speed Determination					Speed Determination				
$\begin{array}{ll} \mathrm{M}_{\mathrm{S}}= & (\mathrm{Ex} \\ \mathrm{S}_{\mathrm{R}}= & \mathrm{mph} \\ \mathrm{~S}_{0}= & \mathrm{mph} \\ \mathrm{~S}= & \mathrm{mph} \end{array}$	5-19)				$\begin{array}{ll} \mathrm{D}_{\mathrm{S}}= & 0.456(\\ \mathrm{S}_{\mathrm{R}}= & 49.1 \mathrm{mr} \\ \mathrm{~S}_{0}= & 60.3 \mathrm{mr} \\ \mathrm{~S}= & 49.1 \mathrm{mr} \end{array}$	Exhibit 25-19) h (Exhibit 25 h (Exhibit 25 (Exhibit 25	-19)		

Conversion to pc/h Under Base Conditions

Capacity Checks
Capacity Checks

	Actual		Capacity	LOS F?		Actual	Cap	acity	LOS F?
V_{FO}		Exhibit 25-7			V_{F}	2791	Exhibit 25-14	6750	No
					$\mathrm{V}_{\mathrm{FO}}=\mathrm{V}_{\mathrm{F}}-\mathrm{V}_{\mathrm{R}}$	1766	Exhibit 25-14	6750	No
					V_{R}	1025	Exhibit 25-3	2000	No
Flow Entering Merge Influence Area					Flow Entering Diverge Influence Area				
	Actual	Max Desirable		Violation?		Actual	Max Desirable		Violation?
$\mathrm{V}_{\mathrm{R} 12}$		Exhibit 25-7			V_{12}	2791	Exhibit 25-14	4400:All	No
Level of Service Determination (if not F)					Level of Service Determination (if not F)				
$$	34 v_{R}	$0078 \mathrm{~V}_{12}-$	0.00627		$\begin{array}{lr} & D_{R} \\ D_{R}= & 25.1(\mathrm{p} \\ \text { LOS }= & C(\text { Exh } \end{array}$	$\begin{aligned} & =4.252+ \\ & \text { /mi/ln) } \\ & \text { ibit } 25-4) \end{aligned}$	$0086 V_{12}-0.00$	$9 L_{D}$	
Speed Determination					Speed Determination				
$\begin{array}{ll} \mathrm{M}_{\mathrm{S}}= & (\mathrm{Ex} \\ \mathrm{S}_{\mathrm{R}}= & \mathrm{mph} \\ \mathrm{~S}_{0}= & \mathrm{mph} \\ \mathrm{~S}= & \mathrm{mph} \end{array}$	5-19)				$\begin{array}{ll}\mathrm{D}_{\mathrm{S}}= & 0.520 \\ \mathrm{~S}_{\mathrm{R}}= & 48.2 \mathrm{mp} \\ \mathrm{S}_{0}= & 60.3 \mathrm{mp} \\ \mathrm{S}= & 48.2 \mathrm{mp}\end{array}$		-19)		

Conversion to pc/h Under Base Conditions

(pc/h)	$\begin{gathered} \mathrm{V} \\ (\mathrm{Veh} / \mathrm{hr}) \end{gathered}$	PHF	Terrain	\%Truck	\%Rv	f_{HV}	f_{p}	$\mathrm{v}=\mathrm{V} / \mathrm{PHF} \times \mathrm{f}_{\mathrm{HV}} \times \mathrm{f}_{\mathrm{p}}$
Freeway	2692	0.90	Level	15	0	0.930	1.00	3215
Ramp	412	0.90	Level	15	0	0.930	1.00	492
UpStream	2182	0.90	Level	15	0	0.930	1.00	2606
DownStream								
Merge Areas					Diverge Areas			
Estimation of \mathbf{v}_{12}					Estimation of v_{12}			
					$\mathrm{V}_{12}=\mathrm{V}_{\mathrm{R}}+\left(\mathrm{V}_{\mathrm{F}}-\mathrm{V}_{\mathrm{R}}\right) \mathrm{P}_{\mathrm{FD}}$ $\mathrm{L}_{\mathrm{EQ}}=$ 24229.91 (Equation 25-8 or 25-9) $\mathrm{P}_{\mathrm{FD}}=$ 1.000 using Equation (Exhibit 25-12) $\mathrm{V}_{12}=$ $3215 \mathrm{pc} / \mathrm{h}$ V_{3} or $\mathrm{V}_{\text {av34 }}$ $0 \mathrm{pc} / \mathrm{h}$ (Equation 25-15 or 25-16) Is V_{3} or $\mathrm{V}_{\text {av34 }}>2,700 \mathrm{pc} / \mathrm{h}$? Г Yes V No Is V_{3} or $\mathrm{V}_{\text {av34 }}>1.5 * \mathrm{~V}_{12} / 2$ Г Yes V No If Yes, $\mathrm{V}_{12 \mathrm{a}}=$ pc/h (Equation 25-18)			

Capacity Checks
Capacity Checks

	Actual		Capacity	LOS F?		Actual	Cap	acity	LOS F?
V_{FO}		Exhibit 25-7			V_{F}	3215	Exhibit 25-14	6750	No
					$\mathrm{V}_{\mathrm{FO}}=\mathrm{V}_{\mathrm{F}}-\mathrm{V}_{\mathrm{R}}$	2723	Exhibit 25-14	6750	No
					V_{R}	492	Exhibit 25-3	2000	No
Flow Entering Merge Influence Area					Flow Entering Diverge Influence Area				
	Actual	Max Desirable		Violation?		Actual	Max Desirable		Violation?
$\mathrm{V}_{\mathrm{R} 12}$		Exhibit 25-7			V_{12}	3215	Exhibit 25-14	4400:All	No
Level of Service Determination (if not F)					Level of Service Determination (if not F)				
$$	34 v_{R}	$0078 \mathrm{~V}_{12}-$	0.00627		$\begin{array}{lr} & D_{R} \\ D_{R}= & 28.8(\mathrm{p} \\ \text { LOS }= & D(\text { Exh } \end{array}$	$\begin{aligned} & =4.252+ \\ & \text { /mi/ln) } \\ & \text { ibit } 25-4) \end{aligned}$	$0086 V_{12}-0.00$	L_{D}	
Speed Determination					Speed Determination				
$\begin{array}{ll} \mathrm{M}_{\mathrm{S}}= & (\mathrm{Ex} \\ \mathrm{S}_{\mathrm{R}}= & \mathrm{mph} \\ \mathrm{~S}_{0}= & \mathrm{mph} \\ \mathrm{~S}= & \mathrm{mph} \end{array}$	5-19)				$\begin{array}{ll}\mathrm{D}_{\mathrm{S}}= & 0.472(\\ \mathrm{S}_{\mathrm{R}}= & 48.9 \mathrm{mp} \\ \mathrm{S}_{0}= & 60.3 \mathrm{mp} \\ \mathrm{S}= & 48.9 \mathrm{mp}\end{array}$		-19)		

Conversion to pc/h Under Base Conditions

(pc/h)	$\begin{gathered} \mathrm{V} \\ (\mathrm{Veh} / \mathrm{hr}) \end{gathered}$	PHF	Terrain	\%Truck	\%Rv	f_{HV}	f_{p}	$v=$ V/PHF $\times f_{\text {HV }} \times f_{p}$
Freeway	1101	0.90	Level	15	0	0.930	1.00	1315
Ramp	254	0.90	Level	15	0	0.930	1.00	303
UpStream	140	0.90	Level	15	0	0.930	1.00	167
DownStream								
Merge Areas					Diverge Areas			
Estimation of v_{12}					Estimation of v_{12}			
$\begin{aligned} & \mathrm{L}_{\mathrm{EQ}}= \\ & \mathrm{P}_{\mathrm{FM}}= \\ & \mathrm{V}_{12}= \\ & \mathrm{V}_{3} \text { or } V_{\text {av34 }} \\ & \text { Is } V_{3} \text { or } V_{\text {av34 }}>2,700 \mathrm{p} \\ & \text { Is } V_{3} \text { or } V_{\text {av34 }}>1.5 * V \\ & \text { If } Y \text { Yes }, V_{12 \mathrm{a}}= \\ & \hline \end{aligned}$	```\(\mathrm{V}_{12}=\mathrm{V}_{\mathrm{F}}\left(\mathrm{P}_{\mathrm{FM}}\right)\) (Equation 25-2 or 25-3) using Equation (Exhibit 25-5) pc/h \(\mathrm{pc} / \mathrm{h}\) (Equation 25-4 or 25-5) \(\Gamma\) Yes Г No 「Yes Г No pc/h (Equation 25-8)```				$\mathrm{V}_{12}=\mathrm{V}_{\mathrm{R}}+\left(\mathrm{V}_{\mathrm{F}}-\mathrm{V}_{\mathrm{R}}\right) \mathrm{P}_{\mathrm{FD}}$ $\mathrm{L}_{\mathrm{EQ}}=$ 2135.09 (Equation 25-8 or 25-9) $\mathrm{P}_{\mathrm{FD}}=$ 0.717 using Equation (Exhibit 25-12) $\mathrm{V}_{12}=$ $1028 \mathrm{pc} / \mathrm{h}$ V_{3} or $\mathrm{V}_{\text {av34 }}$ $287 \mathrm{pc} / \mathrm{h}$ (Equation 25-15 or 25-16) Is V_{3} or $\mathrm{V}_{\text {av34 }}>2,700 \mathrm{pc} / \mathrm{h}$? Г Yes $/ V$ No I V_{3} or $\mathrm{V}_{\text {av34 }}>1.5 * \mathrm{~V}_{12} / 2$ Г Yes $\nabla \mathrm{V}$ No If Yes, $\mathrm{V}_{\text {12a }}=$ pc/h (Equation 25-18)			

Capacity Checks
Capacity Checks

	Actual		Capacity	LOS F?		Actual	Cap	acity	LOS F?
V_{FO}		Exhibit 25-7			V_{F}	1315	Exhibit 25-14	6750	No
					$\mathrm{V}_{\mathrm{FO}}=\mathrm{V}_{\mathrm{F}}-\mathrm{V}_{\mathrm{R}}$	1012	Exhibit 25-14	6750	No
					V_{R}	303	Exhibit 25-3	2000	No
Flow Entering Merge Influence Area					Flow Entering Diverge Influence Area				
	Actual	Max Desirable		Violation?		Actual	Max Desirable		Violation?
$\mathrm{V}_{\mathrm{R} 12}$		Exhibit 25-7			V_{12}	1028	Exhibit 25-14	4400:All	No
Level of Service Determination (if not F)					Level of Service Determination (if not F)				
$$	$34 \mathrm{v}_{R}$ 4)	$.0078 V_{12}-$	$0.00627 \mathrm{~L}_{\mathrm{A}}$			$=4.252+0$ mi/ln) bit 25-4)	$0086 V_{12}-0.00$	L_{D}	
Speed Determination					Speed Determination				
$\begin{array}{ll} \mathrm{M}_{\mathrm{S}}= & (\mathrm{Ex} \\ \mathrm{S}_{\mathrm{R}}= & \mathrm{mph} \\ \mathrm{~S}_{0}= & \mathrm{mph} \\ \mathrm{~S}= & \mathrm{mph} \end{array}$	5-19)				$\begin{array}{ll} \mathrm{D}_{\mathrm{S}}= & 0.455(\\ \mathrm{S}_{\mathrm{R}}= & 49.1 \mathrm{mr} \\ \mathrm{~S}_{0}= & 60.3 \mathrm{mr} \\ \mathrm{~S}= & 51.2 \mathrm{mr} \end{array}$	Exhibit 25-1 (Exhibit 25 (Exhibit 25 (Exhibit 2	-19)		

Conversion to pc/h Under Base Conditions

(pc/h)	$\begin{gathered} \mathrm{V} \\ (\mathrm{Veh} / \mathrm{hr}) \end{gathered}$	PHF	Terrain	\%Truck	\%Rv	f_{HV}	f_{p}	$v=$ V/PHF $\times f_{\mathrm{HV}} \times \mathrm{f}_{\mathrm{p}}$
Freeway	1715	0.90	Level	15	0	0.930	1.00	2048
Ramp	310	0.90	Level	15	0	0.930	1.00	370
UpStream	223	0.90	Level	15	0	0.930	1.00	266
DownStream								
Merge Areas					Diverge Areas			
Estimation of \mathbf{v}_{12}					Estimation of v_{12}			
$\left\{\begin{array}{l} \mathrm{L}_{\mathrm{EQ}}= \\ \mathrm{P}_{\mathrm{FM}}= \\ \mathrm{V}_{12}= \\ \mathrm{V}_{3} \text { or } \mathrm{V}_{\text {av34 }} \\ \text { Is } V_{3} \text { or } V_{\text {av34 }}>2,700 \\ \text { Is } V_{3} \text { or } V_{\text {av34 }}>1.5 * V \\ \text { If } Y e s, V_{12 \mathrm{a}}= \\ \hline \end{array}\right.$	```V12}=\mp@subsup{V}{F}{}(\mp@subsup{P}{FM}{} (Equation 25-2 or 25-3) using Equation (Exhibit 25-5) pc/h pc/h (Equation 25-4 or 25-5) \GammaYes ГNo \GammaYes Г No pc/h (Equation 25-8)```							

Capacity Checks
Capacity Checks

	Actual		Capacity	LOS F?		Actual	Cap	acity	LOS F?
V_{FO}		Exhibit 25-7			V_{F}	2048	Exhibit 25-14	6750	No
					$\mathrm{V}_{\mathrm{FO}}=\mathrm{V}_{\mathrm{F}}-\mathrm{V}_{\mathrm{R}}$	1678	Exhibit 25-14	6750	No
					V_{R}	370	Exhibit 25-3	2000	No
Flow Entering Merge Influence Area					Flow Entering Diverge Influence Area				
	Actual	Max Desirable		Violation?		Actual	Max Desirable		Violation?
$\mathrm{V}_{\mathrm{R} 12}$		Exhibit 25-7			V_{12}	1576	Exhibit 25-14	4400:All	No
Level of Service Determination (if not F)					Level of Service Determination (if not F)				
$$	$34 \mathrm{v}_{R}$ 4)	$.0078 V_{12}-$	$0.00627 \mathrm{~L}_{\mathrm{A}}$		Ler ${ }^{\text {D }}$ D $\mathrm{D}_{\mathrm{R}}=14.7(\mathrm{p}$	$=4.252+0$ /mi/ln) ibit 25-4)	$0086 V_{12}-0.00$	L_{D}	
Speed Determination					Speed Determination				
$\begin{array}{ll} \mathrm{M}_{\mathrm{S}}= & (\mathrm{Ex} \\ \mathrm{S}_{\mathrm{R}}= & \mathrm{mph} \\ \mathrm{~S}_{0}= & \mathrm{mph} \\ \mathrm{~S}= & \mathrm{mph} \end{array}$	5-19)				$\begin{array}{ll} \mathrm{D}_{\mathrm{S}}= & 0.461(\\ \mathrm{S}_{\mathrm{R}}= & 49.0 \mathrm{mr} \\ \mathrm{~S}_{0}= & 60.3 \mathrm{mr} \\ \mathrm{~S}= & 51.2 \mathrm{mr} \end{array}$	Exhibit 25-19) (Exhibit 25 h (Exhibit 25 (Exhibit 25	-19)		

Conversion to pc/h Under Base Conditions

(pc/h)	$\begin{gathered} \mathrm{V} \\ (\mathrm{Veh} / \mathrm{hr}) \end{gathered}$	PHF	Terrain	\%Truck	\%Rv	f_{HV}	f_{p}	$\mathrm{v}=\mathrm{V} / \mathrm{PHF} \times \mathrm{f}_{\mathrm{HV}} \times \mathrm{f}_{\mathrm{p}}$
Freeway	1698	0.90	Level	15	0	0.930	1.00	2028
Ramp	389	0.90	Level	15	0	0.930	1.00	465
UpStream	219	0.90	Level	15	0	0.930	1.00	262
DownStream								
Merge Areas					Diverge Areas			
Estimation of v_{12}					Estimation of v_{12}			
$\mathrm{V}_{12}=\mathrm{V}_{\mathrm{F}}\left(\mathrm{P}_{\mathrm{FM}}\right)$ $\mathrm{L}_{\mathrm{EQ}}=$ (Equation 25-2 or 25-3) $\mathrm{P}_{\mathrm{FM}}=$ using Equation (Exhibit 25-5) $\mathrm{V}_{12}=$ pc / h V_{3} or $\mathrm{V}_{\text {av34 }}$ pc / h (Equation 25-4 or 25-5) Is V_{3} or $V_{\text {av34 }}>2,700 \mathrm{pc} / \mathrm{h}$? Г Yes Г No Is V_{3} or $V_{\text {av34 }}>1.5 * \mathrm{~V}_{12} / 2$ Г Yes Г No If Yes, $\mathrm{V}_{12 \mathrm{a}}=$ pc/h (Equation 25-8)								

Capacity Checks
Capacity Checks

	Actual		Capacity	LOS F?		Actual	Cap	acity	LOS F?
V_{FO}		Exhibit 25-7			V_{F}	2028	Exhibit 25-14	6750	No
					$\mathrm{V}_{\mathrm{FO}}=\mathrm{V}_{\mathrm{F}}-\mathrm{V}_{\mathrm{R}}$	1563	Exhibit 25-14	6750	No
					V_{R}	465	Exhibit 25-3	2000	No
Flow Entering Merge Influence Area					Flow Entering Diverge Influence Area				
	Actual	Max Desirable		Violation?		Actual	Max Desirable		Violation?
$\mathrm{V}_{\mathrm{R} 12}$		Exhibit 25-7			V_{12}	1587	Exhibit 25-14	4400:All	No
Level of Service Determination (if not F)					Level of Service Determination (if not F)				
$$	34 v_{R}	$0078 \mathrm{~V}_{12}-$	0.00627		$\begin{array}{lr} \\ D_{R}= & D_{R} \\ \text { LOS }= & 14.8(p) \\ \text { B (Exh }\end{array}$	$=4.252+0$ /mi/ln) ibit 25-4)	$0086 V_{12}-0.00$	L_{D}	
Speed Determination					Speed Determination				
$\begin{cases}\mathrm{M}_{\mathrm{S}}= & \text { (Ex } \\ \mathrm{S}_{\mathrm{R}}= & \mathrm{mph} \\ \mathrm{~S}_{0}= & \mathrm{mph} \\ \mathrm{~S}= & \mathrm{mph}\end{cases}$	5-19)				$\begin{array}{ll}\mathrm{D}_{\mathrm{S}}= & 0.470 \\ \mathrm{~S}_{\mathrm{R}}= & 48.9 \mathrm{mp} \\ \mathrm{S}_{0}= & 60.3 \mathrm{mp} \\ \mathrm{S}= & 51.0 \mathrm{mp}\end{array}$	Exhibit 25-19) (Exhibit 25 (Exhibit 25 (Exhibit 25	-19)		

Conversion to pc/h Under Base Conditions

(pc/h)	$\begin{gathered} \mathrm{V} \\ (\mathrm{Veh} / \mathrm{hr}) \end{gathered}$	PHF	Terrain	\%Truck	\%Rv	f_{HV}	f_{p}	$\mathrm{v}=\mathrm{V} /$ PHF $\times \mathrm{f}_{\mathrm{HV}} \times \mathrm{f}_{\mathrm{p}}$
Freeway	1776	0.90	Level	15	0	0.930	1.00	2121
Ramp	233	0.90	Level	15	0	0.930	1.00	278
UpStream	218	0.90	Level	15	0	0.930	1.00	260
DownStream								
Merge Areas					Diverge Areas			
Estimation of \mathbf{v}_{12}					Estimation of v_{12}			
					$\mathrm{V}_{12}=\mathrm{V}_{\mathrm{R}}+\left(\mathrm{V}_{\mathrm{F}}-\mathrm{V}_{\mathrm{R}}\right) \mathrm{P}_{\mathrm{FD}}$ $\mathrm{L}_{\mathrm{EQ}}=$ 2635.45 (Equation 25-8 or 25-9) $\mathrm{P}_{\mathrm{FD}}=$ 0.714 using Equation (Exhibit 25-12) $\mathrm{V}_{12}=$ $1594 \mathrm{pc} / \mathrm{h}$ V_{3} or $\mathrm{V}_{\text {av34 }}$ $527 \mathrm{pc} / \mathrm{h}$ (Equation 25-15 or 25-16) Is V_{3} or $\mathrm{V}_{\text {av34 }}>2,700 \mathrm{pc} / \mathrm{h} ?$ Г Yes $\nabla \mathrm{No}$ Is V_{3} or $\mathrm{V}_{\text {av34 }}>1.5 * \mathrm{~V}_{12} / 2$ Г Yes $\nabla \mathrm{No}$ If Yes, $\mathrm{V}_{12 \mathrm{a}}=$ pc/h (Equation 25-18)			

Capacity Checks
Capacity Checks

	Actual		Capacity	LOS F?		Actual		acity	LOS F?
V_{FO}		Exhibit 25-7			V_{F}	2121	Exhibit 25-14	6750	No
					$\mathrm{V}_{\mathrm{FO}}=\mathrm{V}_{\mathrm{F}}-\mathrm{V}_{\mathrm{R}}$	1843	Exhibit 25-14	6750	No
					V_{R}	278	Exhibit 25-3	2000	No
Flow Entering Merge Influence Area					Flow Entering Diverge Influence Area				
	Actual	Max Desirable		Violation?		Actual	Max Desirable		Violation?
$\mathrm{V}_{\mathrm{R} 12}$		Exhibit 25-7			V_{12}	1594	Exhibit 25-14	4400:All	No
Level of Service Determination (if not F)					Level of Service Determination (if not F)				
$$	$34 v_{R}$	$0078 \mathrm{~V}_{12}$ -	0.00627			$\begin{aligned} & =4.252+ \\ & \text { //mi/ln) } \\ & \text { ibit } 25-4 \text {) } \end{aligned}$	$0086 V_{12}-0.00$	L_{D}	
Speed Determination					Speed Determination				
$\begin{array}{ll} \mathrm{M}_{\mathrm{S}}= & (\mathrm{Ex} \\ \mathrm{S}_{\mathrm{R}}= & \mathrm{mph} \\ \mathrm{~S}_{0}= & \mathrm{mph} \\ \mathrm{~S}= & \mathrm{mph} \end{array}$	5-19)				$\begin{array}{ll}\text { S } \\ \mathrm{D}_{\mathrm{S}}= & 0.453 \\ \mathrm{~S}_{\mathrm{R}}= & 49.1 \mathrm{mph} \\ \mathrm{S}_{0}= & 60.3 \mathrm{mph} \\ \mathrm{S}= & 51.5 \mathrm{mph}\end{array}$	(Exhibit 25-1 ${ }^{\text {(Exhibit } 25}$ (Exhibit 25	-19)		

Conversion to pc/h Under Base Conditions

(pc/h)	$\begin{gathered} \mathrm{V} \\ (\mathrm{Veh} / \mathrm{hr}) \end{gathered}$	PHF	Terrain	\%Truck	\%Rv	f_{HV}	f_{p}	$\mathrm{v}=\mathrm{V} / \mathrm{PHF} \times \mathrm{f}_{\mathrm{HV}} \times \mathrm{f}_{\mathrm{p}}$
Freeway	1203	0.90	Level	15	0	0.930	1.00	1437
Ramp	78	0.90	Level	15	0	0.930	1.00	93
UpStream	398	0.90	Level	15	0	0.930	1.00	475
DownStream								
Merge Areas					Diverge Areas			
Estimation of \mathbf{v}_{12}					Estimation of v_{12}			
$\left\{\begin{array}{l} \mathrm{L}_{\mathrm{EQ}}= \\ \mathrm{P}_{\mathrm{FM}}= \\ \mathrm{V}_{12}= \\ \mathrm{V}_{3} \text { or } \mathrm{V}_{\text {av3 } 34} \\ \text { Is } V_{3} \text { or } V_{\mathrm{av} 34}>2,700 \\ \text { Is } V_{3} \text { or } V_{\text {av34 }}>1.5 * V \\ \text { If } \mathrm{Yes}, \mathrm{~V}_{12 \mathrm{a}}= \\ \hline \end{array}\right.$	```\(V_{12}=V_{F}\left(P_{F M}\right)\) (Equation 25-2 or 25-3) using Equation (Exhibit 25-5) \(\mathrm{pc} / \mathrm{h}\) \(\mathrm{pc} / \mathrm{h}\) (Equation 25-4 or 25-5) ГYes ГNo Г Yes Г No pc/h (Equation 25-8)```				$\left\lvert\, \begin{aligned} & \mathrm{L}_{\mathrm{EQ}}= \\ & \mathrm{P}_{\mathrm{FD}}= \\ & \mathrm{V}_{12}= \\ & \mathrm{V}_{3} \text { or } \mathrm{V}_{\mathrm{av} 34} \\ & \text { Is } V_{3} \text { or } V_{\mathrm{al}} \\ & \text { Is } V_{3} \text { or } V_{\mathrm{al}} \\ & \text { If } \mathrm{Yes}, V_{12 a} \end{aligned}\right.$	700 pc $5 * V_{12}$	$+\left(V_{F}\right.$ (Equa using /h h (Eq V V) P_{FD} 25-8 or 25-9) tion (Exhibit 25-12) 25-15 or 25-16) -18)

Capacity Checks
Capacity Checks

	Actual		Capacity	LOS F?		Actual		acity	LOS F?
V_{FO}		Exhibit 25-7			V_{F}	1437	Exhibit 25-14	6750	No
					$\mathrm{V}_{\mathrm{FO}}=\mathrm{V}_{\mathrm{F}}-\mathrm{V}_{\mathrm{R}}$	1344	Exhibit 25-14	6750	No
					V_{R}	93	Exhibit 25-3	2000	No
Flow Entering Merge Influence Area					Flow Entering Diverge Influence Area				
	Actual	Max Desirable		Violation?		Actual	Max Desirable		Violation?
$\mathrm{V}_{\mathrm{R} 12}$		Exhibit 25-7			V_{12}	1177	Exhibit 25-14	4400:All	No
Level of Service Determination (if not F)					Level of Service Determination (if not F)				
$$	$34 v_{R}$	$0078 \mathrm{~V}_{12}$ -	0.00627			$\begin{aligned} & =4.252+ \\ & \text { //mi/ln) } \\ & \text { ibit } 25-4 \text {) } \end{aligned}$	$0086 V_{12}-0.00$	L_{D}	
Speed Determination					Speed Determination				
$\begin{array}{ll} \mathrm{M}_{\mathrm{S}}= & (\mathrm{Ex} \\ \mathrm{S}_{\mathrm{R}}= & \mathrm{mph} \\ \mathrm{~S}_{0}= & \mathrm{mph} \\ \mathrm{~S}= & \mathrm{mph} \end{array}$	5-19)				$\begin{array}{ll}\text { S } \\ \mathrm{D}_{\mathrm{S}}= & 0.436(\\ \mathrm{S}_{\mathrm{R}}= & 49.3 \mathrm{mph} \\ \mathrm{S}_{0}= & 60.3 \mathrm{mph} \\ \mathrm{S}= & 51.0 \mathrm{mph}\end{array}$	(Exhibit 25-1 ${ }^{\text {(Exhibit } 25}$ (Exhibit 25	-19)		

Conversion to pc/h Under Base Conditions

(pc/h)	$\begin{gathered} \mathrm{V} \\ (\mathrm{Veh} / \mathrm{hr}) \end{gathered}$	PHF	Terrain	\%Truck	\%Rv	f_{HV}	f_{p}	$v=$ V/PHF $\times f_{\mathrm{HV}} \times \mathrm{f}_{\mathrm{p}}$
Freeway	2731	0.90	Level	15	0	0.930	1.00	3262
Ramp	356	0.90	Level	15	0	0.930	1.00	425
UpStream	318	0.90	Level	15	0	0.930	1.00	380
DownStream								
Merge Areas					Diverge Areas			
Estimation of v_{12}					Estimation of v_{12}			
$\begin{aligned} & \mathrm{L}_{\mathrm{EQ}}= \\ & \mathrm{P}_{\mathrm{FM}}= \\ & \mathrm{V}_{12}= \\ & \mathrm{V}_{3} \text { or } V_{\text {av34 }} \\ & \text { Is } V_{3} \text { or } V_{\text {av34 }}>2,700 \mathrm{p} \\ & \text { Is } V_{3} \text { or } V_{\text {av34 }}>1.5 * V \\ & \text { If } Y \text { Yes }, V_{12 \mathrm{a}}= \\ & \hline \end{aligned}$	```\(V_{12}=V_{F}\left(P_{F M}\right)\) (Equation 25-2 or 25-3) using Equation (Exhibit 25-5) \(\mathrm{pc} / \mathrm{h}\) pc/h (Equation 25-4 or 25-5) ГYes Г No 「Yes Г No pc/h (Equation 25-8)```				$\begin{aligned} & \mathrm{L}_{\mathrm{EQ}}= \\ & \mathrm{P}_{\mathrm{FD}}= \\ & \mathrm{V}_{12}= \\ & \mathrm{V}_{3} \text { or } \mathrm{V}_{\mathrm{av} 34} \\ & \text { Is } \mathrm{V}_{3} \text { or } V_{\mathrm{av}} \\ & \text { Is } V_{3} \text { or } V_{\mathrm{av}} \\ & \text { If } \mathrm{Yes}, \mathrm{~V}_{12 \mathrm{a}} \text { : } \end{aligned}$	00 pc $5 * V_{12}$	$+\left(V^{\prime}\right.$ (Equ sing h (Eq 「 V quati) P_{FD} 25-8 or 25-9) tion (Exhibit 25-12) 25-15 or 25-16) -18)

Capacity Checks
Capacity Checks

	Actual		Capacity	LOS F?		Actual	Cap	acity	LOS F?
V_{FO}		Exhibit 25-7			V_{F}	3262	Exhibit 25-14	6750	No
					$\mathrm{V}_{\mathrm{FO}}=\mathrm{V}_{\mathrm{F}}-\mathrm{V}_{\mathrm{R}}$	2837	Exhibit 25-14	6750	No
					V_{R}	425	Exhibit 25-3	2000	No
Flow Entering Merge Influence Area					Flow Entering Diverge Influence Area				
	Actual	Max Desirable		Violation?		Actual	Max Desirable		Violation?
$\mathrm{V}_{\mathrm{R} 12}$		Exhibit 25-7			V_{12}	2428	Exhibit 25-14	4400:All	No
Level of Service Determination (if not F)					Level of Service Determination (if not F)				
$$	34 v_{R}	$0078 \mathrm{~V}_{12}-$	0.00627		$\begin{array}{lr} & D_{R} \\ D_{R}= & 22.0(\mathrm{p} \\ \text { LOS }= & C(\text { Exh } \end{array}$	$\begin{aligned} & =4.252+ \\ & \text { /mi/ln) } \\ & \text { ibit } 25-4) \end{aligned}$	$0086 V_{12}-0.00$	L_{D}	
Speed Determination					Speed Determination				
$\begin{array}{ll} \mathrm{M}_{\mathrm{S}}= & (\mathrm{Ex} \\ \mathrm{S}_{\mathrm{R}}= & \mathrm{mph} \\ \mathrm{~S}_{0}= & \mathrm{mph} \\ \mathrm{~S}= & \mathrm{mph} \end{array}$	5-19)				$\begin{array}{ll}\mathrm{D}_{\mathrm{S}}= & 0.466(\\ \mathrm{S}_{\mathrm{R}}= & 48.9 \mathrm{mp} \\ \mathrm{S}_{0}= & 60.3 \mathrm{mp} \\ \mathrm{S}= & 51.4 \mathrm{mp}\end{array}$		-19)		

Conversion to pc/h Under Base Conditions

Capacity Checks
Capacity Checks

	Actual		Capacity	LOS F?		Actual	Cap	acity	LOS F?
V_{FO}		Exhibit 25-7			V_{F}	2100	Exhibit 25-14	6750	No
					$\mathrm{V}_{\mathrm{FO}}=\mathrm{V}_{\mathrm{F}}-\mathrm{V}_{\mathrm{R}}$	1457	Exhibit 25-14	6750	No
					V_{R}	643	Exhibit 25-3	2000	No
Flow Entering Merge Influence Area					Flow Entering Diverge Influence Area				
	Actual	Max Desirable		Violation?		Actual	Max Desirable		Violation?
$\mathrm{V}_{\mathrm{R} 12}$		Exhibit 25-7			V_{12}	1687	Exhibit 25-14	4400:All	No
Level of Service Determination (if not F)					Level of Service Determination (if not F)				
$$	$34 \mathrm{v}_{\mathrm{R}}$	$.0078 \mathrm{~V}_{12}-$	$0.00627 \mathrm{~L}_{\mathrm{A}}$		$\begin{array}{lr} & D_{R} \\ \mathrm{D}_{\mathrm{R}}= & 15.6(\mathrm{p} \\ \mathrm{LOS}= & \mathrm{B}(\mathrm{Exh} \end{array}$	$=4.252+$ /mi/ln) bit 25-4)	$0086 V_{12}-0.00$	L_{D}	
Speed Determination					Speed Determination				
$\begin{array}{ll} \hline M_{S}= & \text { (Exibit 25-19) } \\ S_{R}= & \text { mph (Exhibit 25-19) } \\ S_{0}= & \text { mph (Exhibit 25-19) } \\ S_{=}= & \text {mph (Exhibit 25-14) } \end{array}$					$\begin{array}{ll}\mathrm{D}_{\mathrm{S}}= & 0.486(\mathrm{Ex} \\ \mathrm{S}_{\mathrm{R}}= & 48.7 \mathrm{mp} \\ \mathrm{S}_{0}= & 60.3 \mathrm{mp} \\ \mathrm{S}= & 50.6 \mathrm{mp}\end{array}$	exhibit 25-1 (Exhibit 2 (Exhibit 25 (Exhibit 2	-19)		

Conversion to pc/h Under Base Conditions

Capacity Checks
Capacity Checks

	Actual		Capacity	LOS F?		Actual	Cap	acity	LOS F?
V_{FO}		Exhibit 25-7			V_{F}	2117	Exhibit 25-14	6750	No
					$\mathrm{V}_{\mathrm{FO}}=\mathrm{V}_{\mathrm{F}}-\mathrm{V}_{\mathrm{R}}$	1474	Exhibit 25-14	6750	No
					V_{R}	643	Exhibit 25-3	2000	No
Flow Entering Merge Influence Area					Flow Entering Diverge Influence Area				
	Actual	Max Desirable		Violation?		Actual	Max Desirable		Violation?
$\mathrm{V}_{\mathrm{R} 12}$		Exhibit 25-7			V_{12}	1699	Exhibit 25-14	4400:All	No
Level of Service Determination (if not F)					Level of Service Determination (if not F)				
$$	$34 \mathrm{v}_{\mathrm{R}}$	$.0078 \mathrm{~V}_{12}-$	$0.00627 \mathrm{~L}_{\mathrm{A}}$		$\begin{array}{lr} & D_{R} \\ \mathrm{D}_{\mathrm{R}}= & 15.7(\mathrm{p} \\ \mathrm{LOS}= & \mathrm{B}(\mathrm{Exh} \end{array}$	$=4.252+$ /mi/ln) bit 25-4)	$0086 V_{12}-0.00$	L_{D}	
Speed Determination					Speed Determination				
$\begin{array}{ll} \hline M_{S}= & \text { (Exibit 25-19) } \\ S_{R}= & \text { mph (Exhibit 25-19) } \\ S_{0}= & \text { mph (Exhibit 25-19) } \\ S_{=}= & \text {mph (Exhibit 25-14) } \end{array}$					$\begin{array}{ll}\mathrm{D}_{\mathrm{S}}= & 0.486(\mathrm{Ex} \\ \mathrm{S}_{\mathrm{R}}= & 48.7 \mathrm{mp} \\ \mathrm{S}_{0}= & 60.3 \mathrm{mp} \\ \mathrm{S}= & 50.6 \mathrm{mp}\end{array}$	exhibit 25-1 (Exhibit 2 (Exhibit 25 (Exhibit 2	-19)		

Conversion to pc/h Under Base Conditions

(pc/h)	$\begin{gathered} \mathrm{V} \\ (\mathrm{Veh} / \mathrm{hr}) \end{gathered}$	PHF	Terrain	\%Truck	\%Rv	f_{HV}	f_{p}	$v=$ V/PHF $\times f_{\text {HV }} \times f_{p}$
Freeway	2718	0.90	Level	15	0	0.930	1.00	3246
Ramp	891	0.90	Level	15	0	0.930	1.00	1064
UpStream	343	0.90	Level	15	0	0.930	1.00	410
DownStream								
Merge Areas					Diverge Areas			
Estimation of v_{12}					Estimation of v_{12}			
$\begin{aligned} & \mathrm{L}_{\mathrm{EQ}}= \\ & \mathrm{P}_{\mathrm{FM}}= \\ & \mathrm{V}_{12}= \\ & \mathrm{V}_{3} \text { or } V_{\text {av34 }} \\ & \text { Is } V_{3} \text { or } V_{\text {av34 }}>2,700 \mathrm{p} \\ & \text { Is } V_{3} \text { or } V_{\text {av34 }}>1.5 * V \\ & \text { If } Y \text { Yes }, V_{12 \mathrm{a}}= \\ & \hline \end{aligned}$	```\(V_{12}=V_{F}\left(P_{F M}\right)\) (Equation 25-2 or 25-3) using Equation (Exhibit 25-5) \(\mathrm{pc} / \mathrm{h}\) pc/h (Equation 25-4 or 25-5) ГYes Г No 「Yes Г No pc/h (Equation 25-8)```				$\begin{aligned} & \mathrm{L}_{\mathrm{EQ}}= \\ & \mathrm{P}_{\mathrm{FD}}= \\ & \mathrm{V}_{12}= \\ & \mathrm{V}_{3} \text { or } \mathrm{V}_{\mathrm{av} 34} \\ & \text { Is } \mathrm{V}_{3} \text { or } V_{\mathrm{av}} \\ & \text { Is } V_{3} \text { or } V_{\mathrm{av}} \\ & \text { If } \mathrm{Yes}, \mathrm{~V}_{12 \mathrm{a}} \text { : } \end{aligned}$	00 pc $5 * V_{12}$	$+\left(V_{F}\right.$ (Equ sing h (Eq 「 V quati) P_{FD} 25-8 or 25-9) tion (Exhibit 25-12) 25-15 or 25-16) -18)

Capacity Checks
Capacity Checks

	Actual		Capacity	LOS F?		Actual		city	LOS F?
V_{FO}		Exhibit 25-7			V_{F}	3246	Exhibit 25-14	6750	No
					$\mathrm{V}_{\mathrm{FO}}=\mathrm{V}_{\mathrm{F}}-\mathrm{V}_{\mathrm{R}}$	2182	Exhibit 25-14	6750	No
					V_{R}	1064	Exhibit 25-3	2000	No
Flow Entering Merge Influence Area					Flow Entering Diverge Influence Area				
	Actual	Max Desirable		Violation?		Actual	Max Desirable		Violation?
$\mathrm{V}_{\mathrm{R} 12}$		Exhibit 25-7			V_{12}	2637	Exhibit 25-14	4400:All	No
Level of Service Determination (if not F)					Level of Service Determination (if not F)				
$$	(pc/mi/ln) (Exhibit 25-4)	$.0078 \mathrm{~V}_{12}-$	$0.00627 \mathrm{~L}$		$\begin{array}{ll} & \quad D_{R}=4.252+0.0086 \mathrm{~V}_{12}-0.009 \mathrm{~L}_{\mathrm{D}} \\ \mathrm{D}_{\mathrm{R}}= & 23.8(\mathrm{pc} / \mathrm{mi} / \mathrm{ln}) \\ \mathrm{LOS}= & C \text { (Exhibit 25-4) } \end{array}$				
Speed Determination					Speed Determination				
$\begin{array}{ll} \hline \mathrm{M}_{\mathrm{S}}= & \text { (Exibit 25-19) } \\ \mathrm{S}_{\mathrm{R}}= & \text { mph (Exhibit 25-19) } \\ \mathrm{S}_{0}= & \text { mph (Exhibit 25-19) } \\ \mathrm{S}= & \text { mph (Exhibit 25-14) } \end{array}$	(Exibit 25-19) mph (Exhibit 25-19) mph (Exhibit 25-19) mph (Exhibit 25-14)				$\begin{array}{ll} \hline \mathrm{D}_{\mathrm{S}}= & 0.524(\text { Exhibit 25-19) } \\ \mathrm{S}_{\mathrm{R}}= & 48.2 \mathrm{mph}(\text { Exhibit 25-19) } \\ \mathrm{S}_{0}= & 60.3 \mathrm{mph} \text { (Exhibit 25-19) } \\ \mathrm{S}= & 50.1 \mathrm{mph} \text { (Exhibit 25-15) } \end{array}$				

Conversion to pc/h Under Base Conditions

(pc/h)	$\begin{gathered} \mathrm{V} \\ (\mathrm{Veh} / \mathrm{hr}) \end{gathered}$	PHF	Terrain	\%Truck	\%Rv	f_{HV}	f_{p}	$v=$ V/PHF $\times f_{\text {HV }} \times f_{p}$
Freeway	2736	0.90	Level	15	0	0.930	1.00	3268
Ramp	1224	0.90	Level	15	0	0.930	1.00	1462
UpStream	1033	0.90	Level	15	0	0.930	1.00	1234
DownStream								
Merge Areas					Diverge Areas			
Estimation of v_{12}					Estimation of v_{12}			
					V_{3} or $\mathrm{V}_{\text {av34 }}$ Is V_{3} or V_{a} Is V_{3} or V_{a} If $\mathrm{Yes}, \mathrm{V}_{12 \mathrm{a}}$	00 pc * V_{12}	$+\left(V^{\prime}\right.$ (Eq sing /h (Equ 「 V quati) P_{FD} 25-8 or 25-9) tion (Exhibit 25-12) $25-15$ or 25-16) -18)

Capacity Checks
Capacity Checks

	Actual		Capacity	LOS F?		Actual		acity	LOS F?
V_{FO}		Exhibit 25-7			V_{F}	3268	Exhibit 25-14	6750	No
					$\mathrm{V}_{\mathrm{FO}}=\mathrm{V}_{\mathrm{F}}-\mathrm{V}_{\mathrm{R}}$	1806	Exhibit 25-14	6750	No
					V_{R}	1462	Exhibit 25-3	2000	No
Flow Entering Merge Influence Area					Flow Entering Diverge Influence Area				
	Actual	Max Desirable		Violation?		Actual	Max Desirable		Violation?
$\mathrm{V}_{\mathrm{R} 12}$		Exhibit 25-7			V_{12}	3235	Exhibit 25-14	4400:All	No
Level of Service Determination (if not F)					Level of Service Determination (if not F)				
$$	$34 v_{R}$	$0078 \mathrm{~V}_{12}$ -	0.00627		$\begin{array}{lr} \\ D_{R}= & D_{R} \\ \text { LOS }= & 28.9(p \\ D(E x h\end{array}$	$\begin{aligned} & =4.252+ \\ & \text { /mi/ln) } \\ & \text { ibit } 25-4 \text {) } \end{aligned}$	$0086 V_{12}-0.00$	$L_{\text {D }}$	
Speed Determination					Speed Determination				
$\begin{array}{ll} \mathrm{M}_{\mathrm{S}}= & (\mathrm{Ex} \\ \mathrm{S}_{\mathrm{R}}= & \mathrm{mph} \\ \mathrm{~S}_{0}= & \mathrm{mph} \\ \mathrm{~S}= & \mathrm{mph} \end{array}$	5-19)				$\begin{array}{ll}\mathrm{S}_{\mathrm{S}}= & 0.560 \\ \mathrm{~S}_{\mathrm{R}}= & 47.7 \mathrm{mph} \\ \mathrm{S}_{0}= & 60.3 \mathrm{mph} \\ \mathrm{S}= & 47.8 \mathrm{mph}\end{array}$	xhibit 25-1 (Exhibit 25 (Exhibit 25 (Exhibit 25	-19)		

Conversion to pc/h Under Base Conditions

(pc/h)	$\begin{gathered} \mathrm{V} \\ (\mathrm{Veh} / \mathrm{hr}) \end{gathered}$	PHF	Terrain	\%Truck	\%Rv	f_{HV}	f_{p}	$v=$ V/PHF $\times f_{\text {HV }} \times f_{p}$
Freeway	1343	0.90	Level	15	0	0.930	1.00	1604
Ramp	382	0.90	Level	15	0	0.930	1.00	456
UpStream	794	0.90	Level	15	0	0.930	1.00	948
DownStream								
Merge Areas					Diverge Areas			
Estimation of v_{12}					Estimation of v_{12}			
$\begin{aligned} & \mathrm{L}_{\mathrm{EQ}}= \\ & \mathrm{P}_{\mathrm{FM}}= \\ & \mathrm{V}_{12}= \\ & \mathrm{V}_{3} \text { or } \mathrm{V}_{\text {av34 }} \\ & \text { Is } V_{3} \text { or } V_{\text {av34 }}>2,700 \mathrm{p} \\ & \text { Is } V_{3} \text { or } V_{\text {av34 }}>1.5 * V \\ & \text { If } Y \text { Yes }, V_{12 \mathrm{a}}= \\ & \hline \end{aligned}$	```\(\mathrm{V}_{12}=\mathrm{V}_{\mathrm{F}}\left(\mathrm{P}_{\mathrm{FM}}\right)\) (Equation 25-2 or 25-3) using Equation (Exhibit 25-5) pc/h \(\mathrm{pc} / \mathrm{h}\) (Equation 25-4 or 25-5) ГYes Г No 「Yes Г No pc/h (Equation 25-8)```							

Capacity Checks
Capacity Checks

	Actual		Capacity	LOS F?		Actual	Cap	acity	LOS F?
V_{FO}		Exhibit 25-7			V_{F}	1604	Exhibit 25-14	4500	No
					$\mathrm{V}_{\mathrm{FO}}=\mathrm{V}_{\mathrm{F}}-\mathrm{V}_{\mathrm{R}}$	1148	Exhibit 25-14	4500	No
					V_{R}	456	Exhibit 25-3	2000	No
Flow Entering Merge Influence Area					Flow Entering Diverge Influence Area				
	Actual	Max Desirable		Violation?		Actual	Max Desirable		Violation?
$\mathrm{V}_{\mathrm{R} 12}$		Exhibit 25-7			V_{12}	1604	Exhibit 25-14	4400:All	No
Level of Service Determination (if not F)					Level of Service Determination (if not F)				
$$	34 v_{R}	$0078 \mathrm{~V}_{12}-$	0.00627		$\begin{array}{lr} & D_{R} \\ D_{R}= & 14.9(\mathrm{p} \\ \text { LOS }= & B(\text { Exh } \end{array}$	$\begin{aligned} & =4.252+(\\ & \text { /mi/ln }) \\ & \text { ibit } 25-4) \end{aligned}$	$0086 V_{12}-0.00$	L_{D}	
Speed Determination					Speed Determination				
$\begin{cases}\mathrm{M}_{\mathrm{S}}= & \text { (Ex } \\ \mathrm{S}_{\mathrm{R}}= & \mathrm{mph} \\ \mathrm{~S}_{0}= & \mathrm{mph} \\ \mathrm{~S}= & \mathrm{mph}\end{cases}$	5-19)				$\begin{array}{ll}\mathrm{D}_{\mathrm{S}}= & 0.469(\\ \mathrm{S}_{\mathrm{R}}= & 48.9 \mathrm{mp} \\ \mathrm{S}_{0}= & \mathrm{N} / \mathrm{Amp} \\ \mathrm{S}= & 48.9 \mathrm{mph}\end{array}$	xhibit 25-1 (Exhibit 25 (Exhibit 25 (Exhibit 25	-19)		

Conversion to pc/h Under Base Conditions

(pc/h)	$\begin{gathered} \hline \mathrm{V} \\ (\mathrm{Veh} / \mathrm{hr}) \end{gathered}$	PHF	Terrain	\%Truck	\%Rv	f_{HV}	f_{p}	$v=$ V/PHF $\times f_{\text {HV }} \times \mathrm{f}_{\mathrm{p}}$
Freeway	1623	0.90	Level	15	0	0.930	1.00	1939
Ramp	141	0.90	Level	15	0	0.930	1.00	168
UpStream	1286	0.90	Level	15	0	0.930	1.00	1536
DownStream								
Merge Areas					Diverge Areas			
Estimation of v_{12}					Estimation of \mathbf{v}_{12}			
					$\mathrm{V}_{12}=\mathrm{V}_{\mathrm{R}}+\left(\mathrm{V}_{\mathrm{F}}-\mathrm{V}_{\mathrm{R}}\right) \mathrm{P}_{\mathrm{FD}}$ $\mathrm{L}_{\mathrm{EQ}}=$ (Equation 25-8 or 25-9) $\mathrm{P}_{\mathrm{FD}}=$ 1.000 using Equation (Exhibit 25-12) $\mathrm{V}_{12}=$ $1939 \mathrm{pc} / \mathrm{h}$ V_{3} or $\mathrm{V}_{\text {av34 }}$ $0 \mathrm{pc} / \mathrm{h}$ (Equation 25-15 or 25-16) Is V_{3} or $\mathrm{V}_{\text {av34 }}>2,700 \mathrm{pc} / \mathrm{h}$? Г Yes $\sqrt{V} \mathrm{No}$ Is V_{3} or $\mathrm{V}_{\text {av34 }}>1.5 * \mathrm{~V}_{12} / 2$ Г Yes $/ \mathrm{V}$ No If Yes, $\mathrm{V}_{12 \mathrm{a}}=$ pc/h (Equation 25-18)			

Capacity Checks
Capacity Checks

	Actual		Capacity	LOS F?		Actual	Cap	acity	LOS F?
V_{FO}		Exhibit 25-7			V_{F}	1939	Exhibit 25-14	4500	No
					$\mathrm{V}_{\mathrm{FO}}=\mathrm{V}_{\mathrm{F}}-\mathrm{V}_{\mathrm{R}}$	1771	Exhibit 25-14	4500	No
					V_{R}	168	Exhibit 25-3	2000	No
Flow Entering Merge Influence Area					Flow Entering Diverge Influence Area				
	Actual	Max Desirable		Violation?		Actual	Max Desirable		Violation?
$\mathrm{V}_{\mathrm{R} 12}$		Exhibit 25-7			V_{12}	1939	Exhibit 25-14	4400:All	No
Level of Service Determination (if not F)					Level of Service Determination (if not F)				
$$	34 v_{R}	$0078 \mathrm{~V}_{12}-$	0.00627		$\begin{array}{lr} & D_{R} \\ D_{R}= & 17.8(\mathrm{p} \\ \text { LOS }= & B(\text { Exh } \end{array}$	$\begin{aligned} & =4.252+(\\ & \text { /mi/ln }) \\ & \text { ibit } 25-4) \end{aligned}$	$0086 V_{12}-0.00$	L_{D}	
Speed Determination					Speed Determination				
$\begin{cases}\mathrm{M}_{\mathrm{S}}= & \text { (Ex } \\ \mathrm{S}_{\mathrm{R}}= & \mathrm{mph} \\ \mathrm{~S}_{0}= & \mathrm{mph} \\ \mathrm{~S}= & \mathrm{mph}\end{cases}$	5-19)				$\begin{array}{ll}\mathrm{D}_{\mathrm{S}}= & 0.443(\\ \mathrm{S}_{\mathrm{R}}= & 49.2 \mathrm{mp} \\ \mathrm{S}_{0}= & \mathrm{N} / \mathrm{Amp} \\ \mathrm{S}= & 49.2 \mathrm{mph}\end{array}$	xhibit 25-1 (Exhibit 25 (Exhibit 25 (Exhibit 25	-19)		

Conversion to pc/h Under Base Conditions

(pc/h)	$\begin{gathered} \mathrm{V} \\ (\mathrm{Veh} / \mathrm{hr}) \end{gathered}$	PHF	Terrain	\%Truck	\%Rv	f_{HV}	f_{p}	$v=$ V/PHF $\times f_{\text {HV }} \times f_{p}$
Freeway	1343	0.90	Level	15	0	0.930	1.00	1604
Ramp	362	0.90	Level	15	0	0.930	1.00	432
UpStream	794	0.90	Level	15	0	0.930	1.00	948
DownStream								
Merge Areas					Diverge Areas			
Estimation of v_{12}					Estimation of v_{12}			
$\begin{aligned} & \mathrm{L}_{\mathrm{EQ}}= \\ & \mathrm{P}_{\mathrm{FM}}= \\ & \mathrm{V}_{12}= \\ & \mathrm{V}_{3} \text { or } V_{\text {av34 }} \\ & \text { Is } V_{3} \text { or } V_{\text {av34 }}>2,700 \mathrm{p} \\ & \text { Is } V_{3} \text { or } V_{\text {av34 }}>1.5 * V \\ & \text { If } Y e s, V_{12 a}= \end{aligned}$	```\(V_{12}=V_{F}\left(P_{F M}\right)\) (Equation 25-2 or 25-3) using Equation (Exhibit 25-5) \(\mathrm{pc} / \mathrm{h}\) pc/h (Equation 25-4 or 25-5) Г Yes Г No 「Yes Г No pc/h (Equation 25-8)```				$\begin{aligned} & \mathrm{L}_{\mathrm{EQ}}= \\ & \mathrm{P}_{\mathrm{FD}}= \\ & \mathrm{V}_{12}= \\ & \mathrm{V}_{3} \text { or } V_{\mathrm{av} 34} \\ & \text { Is } V_{3} \text { or } V_{\mathrm{av}} \\ & \text { Is } V_{3} \text { or } V_{\mathrm{av}} \\ & \text { If } \mathrm{Yes}, \mathrm{~V}_{12 \mathrm{a}} \text { : } \end{aligned}$	00 pc $5 * V_{12}$	$+\left(V^{\prime}\right.$ (Eq sing /h (Equ 「 V quati) P_{FD} 25-8 or 25-9) tion (Exhibit 25-12) $25-15$ or 25-16) -18)

Capacity Checks
Capacity Checks

	Actual		Capacity	LOS F?		Actual	Cap	acity	LOS F?
V_{FO}		Exhibit 25-7			V_{F}	1604	Exhibit 25-14	6750	No
					$\mathrm{V}_{\mathrm{FO}}=\mathrm{V}_{\mathrm{F}}-\mathrm{V}_{\mathrm{R}}$	1172	Exhibit 25-14	6750	No
					V_{R}	432	Exhibit 25-3	2000	No
Flow Entering Merge Influence Area					Flow Entering Diverge Influence Area				
	Actual	Max Desirable		Violation?		Actual	Max Desirable		Violation?
$\mathrm{V}_{\mathrm{R} 12}$		Exhibit 25-7			V_{12}	1552	Exhibit 25-14	4400:All	No
Level of Service Determination (if not F)					Level of Service Determination (if not F)				
$$	34 v_{R}	$0078 \mathrm{~V}_{12}-$	0.00627		$\begin{array}{lr} \\ D_{R}= & D_{R} \\ \text { LOS }= & 14.4(p) \\ \text { B (Exh }\end{array}$	$\begin{aligned} & =4.252+(\\ & \text { /mi/ln }) \\ & \text { ibit } 25-4) \end{aligned}$	$0086 V_{12}-0.00$	L_{D}	
Speed Determination					Speed Determination				
$\begin{array}{ll} \mathrm{M}_{\mathrm{S}}= & (\mathrm{Ex} \\ \mathrm{S}_{\mathrm{R}}= & \mathrm{mph} \\ \mathrm{~S}_{0}= & \mathrm{mph} \\ \mathrm{~S}= & \mathrm{mph} \end{array}$	5-19)				$\begin{array}{ll}\mathrm{D}_{\mathrm{S}}= & 0.467(\\ \mathrm{S}_{\mathrm{R}}= & 48.9 \mathrm{mp} \\ \mathrm{S}_{0}= & 60.3 \mathrm{mp} \\ \mathrm{S}= & 49.2 \mathrm{mp}\end{array}$		-19)		

Conversion to pc/h Under Base Conditions

(pc/h)	$\begin{gathered} \hline \mathrm{V} \\ (\mathrm{Veh} / \mathrm{hr}) \end{gathered}$	PHF	Terrain	\%Truck	\%Rv	f_{HV}	f_{p}	$v=$ V/PHF $\times f_{\text {HV }} \times \mathrm{f}_{\mathrm{p}}$
Freeway	1623	0.90	Level	15	0	0.930	1.00	1939
Ramp	141	0.90	Level	15	0	0.930	1.00	168
UpStream	1286	0.90	Level	15	0	0.930	1.00	1536
DownStream								
Merge Areas					Diverge Areas			
Estimation of v_{12}					Estimation of v_{12}			
 $L_{E Q}=$ $V_{12}=V_{F}\left(P_{F M}\right)$ $P_{F M}=$ (Equation 25-2 or 25-3) $V_{12}=$ using Equation (Exhibit 25-5) V_{3} or $V_{\text {av34 }}$ pc / h Is V_{3} or $V_{\text {av34 }}>2,700 \mathrm{pc} / \mathrm{h}$? (Equation 25-4 or 25-5) Y Yes Г No Is V_{3} or $V_{\text {av34 }}>1.5 * V_{12} / 2$ Г Yes Г No If Yes,$V_{12 a}=$ pc/h (Equation 25-8)								

Capacity Checks
Capacity Checks

	Actual		Capacity	LOS F?		Actual	Cap	acity	LOS F?
V_{FO}		Exhibit 25-7			V_{F}	1939	Exhibit 25-14	6750	No
					$\mathrm{V}_{\mathrm{FO}}=\mathrm{V}_{\mathrm{F}}-\mathrm{V}_{\mathrm{R}}$	1771	Exhibit 25-14	6750	No
					V_{R}	168	Exhibit 25-3	2000	No
Flow Entering Merge Influence Area					Flow Entering Diverge Influence Area				
	Actual	Max Desirable		Violation?		Actual	Max Desirable		Violation?
$\mathrm{V}_{\mathrm{R} 12}$		Exhibit 25-7			V_{12}	1939	Exhibit 25-14	4400:All	No
Level of Service Determination (if not F)					Level of Service Determination (if not F)				
$$	34 v_{R}	$0078 \mathrm{~V}_{12}-$	0.00627		$\begin{array}{lr} & D_{R} \\ D_{R}= & 17.8(\mathrm{p} \\ \text { LOS }= & B(\text { Exh } \end{array}$	$\begin{aligned} & =4.252+(\\ & \text { /mi/ln }) \\ & \text { ibit } 25-4) \end{aligned}$	$0086 V_{12}-0.00$	L_{D}	
Speed Determination					Speed Determination				
$\begin{cases}\mathrm{M}_{\mathrm{S}}= & \text { (Ex } \\ \mathrm{S}_{\mathrm{R}}= & \mathrm{mph} \\ \mathrm{~S}_{0}= & \mathrm{mph} \\ \mathrm{~S}= & \mathrm{mph}\end{cases}$	5-19)				$\begin{array}{ll}\mathrm{D}_{\mathrm{S}}= & 0.443(\\ \mathrm{S}_{\mathrm{R}}= & 49.2 \mathrm{mp} \\ \mathrm{S}_{0}= & 60.3 \mathrm{mp} \\ \mathrm{S}= & 49.2 \mathrm{mp}\end{array}$		-19)		

Conversion to pc/h Under Base Conditions

(pc/h)	$\begin{gathered} \mathrm{V} \\ (\mathrm{Veh} / \mathrm{hr}) \end{gathered}$	PHF	Terrain	\%Truck	\%Rv	f_{HV}	f_{p}	$v=$ V/PHF $\times f_{\text {HV }} \times f_{p}$
Freeway	2085	0.90	Level	15	0	0.930	1.00	2490
Ramp	606	0.90	Level	15	0	0.930	1.00	724
UpStream	1253	0.90	Level	15	0	0.930	1.00	1497
DownStream								
Merge Areas					Diverge Areas			
Estimation of v_{12}					Estimation of v_{12}			
					V_{3} or $\mathrm{V}_{\text {av34 }}$ Is V_{3} or V_{a} Is V_{3} or V_{a} If $\mathrm{Yes}, \mathrm{V}_{12 \mathrm{a}}$	00 pc * V_{12}	$+\left(V^{\prime}\right.$ (Eq sing /h (Equa 「 V quati) P_{FD} 25-8 or 25-9) ion (Exhibit 25-12) 25-15 or 25-16) -18)

Capacity Checks
Capacity Checks

	Actual		Capacity	LOS F?		Actual	Cap	acity	LOS F?
V_{FO}		Exhibit 25-7			V_{F}	2490	Exhibit 25-14	6750	No
					$\mathrm{V}_{\mathrm{FO}}=\mathrm{V}_{\mathrm{F}}-\mathrm{V}_{\mathrm{R}}$	1766	Exhibit 25-14	6750	No
					V_{R}	724	Exhibit 25-3	2000	No
Flow Entering Merge Influence Area					Flow Entering Diverge Influence Area				
	Actual	Max Desirable		Violation?		Actual	Max Desirable		Violation?
$\mathrm{V}_{\mathrm{R} 12}$		Exhibit 25-7			V_{12}	2490	Exhibit 25-14	4400:All	No
Level of Service Determination (if not F)					Level of Service Determination (if not F)				
$$	34 v_{R}	$0078 \mathrm{~V}_{12}-$	0.00627		$\begin{array}{rr} & D_{R} \\ D_{R}= & 22.5(\mathrm{p} \\ \text { LOS }= & C(E x h \end{array}$	$\begin{aligned} & =4.252+ \\ & \text { /mi/ln) } \\ & \text { ibit } 25-4) \end{aligned}$	$0086 V_{12}-0.00$	L_{D}	
Speed Determination					Speed Determination				
$\begin{array}{ll} \mathrm{M}_{\mathrm{S}}= & (\mathrm{Ex} \\ \mathrm{S}_{\mathrm{R}}= & \mathrm{mph} \\ \mathrm{~S}_{0}= & \mathrm{mph} \\ \mathrm{~S}= & \mathrm{mph} \end{array}$	5-19)				$\begin{array}{ll}\mathrm{D}_{\mathrm{S}}= & 0.493(\\ \mathrm{S}_{\mathrm{R}}= & 48.6 \mathrm{mp} \\ \mathrm{S}_{0}= & 60.3 \mathrm{mp} \\ \mathrm{S}= & 48.6 \mathrm{mp}\end{array}$		-19)		

Conversion to pc/h Under Base Conditions

(pc/h)	$\begin{gathered} \mathrm{V} \\ (\mathrm{Veh} / \mathrm{hr}) \end{gathered}$	PHF	Terrain	\%Truck	\%Rv	f_{HV}	f_{p}	$\mathrm{v}=\mathrm{V} /$ PHF $\times \mathrm{f}_{\mathrm{HV}} \times \mathrm{f}_{\mathrm{p}}$
Freeway	1008	0.90	Level	15	0	0.930	1.00	1204
Ramp	167	0.90	Level	15	0	0.930	1.00	199
UpStream								
DownStream								
Merge Areas					Diverge Areas			
Estimation of \mathbf{v}_{12}					Estimation of \mathbf{v}_{12}			
$\begin{aligned} & \mathrm{L}_{\mathrm{EQ}}= \\ & \mathrm{P}_{\mathrm{FM}}= \\ & \mathrm{V}_{12}= \\ & \mathrm{V}_{3} \text { or } \mathrm{V}_{\text {av34 }} \\ & \text { Is } \mathrm{V}_{3} \text { or } \mathrm{V}_{\text {av34 }}> \\ & \text { Is } V_{3} \text { or } \mathrm{V}_{\text {av34 }}> \\ & \text { If } \mathrm{Yes}, \mathrm{~V}_{12 \mathrm{a}}= \\ & \hline \end{aligned}$	```V12}=\mp@subsup{V}{F}{}(\mp@subsup{P}{FM}{} (Equation 25-2 or 25-3) using Equation (Exhibit 25-5) pc/h pc/h (Equation 25-4 or 25-5) \GammaYes ГNo \Gamma Yes Г No pc/h (Equation 25-8)```				$\mathrm{V}_{12}=\mathrm{V}_{\mathrm{R}}+\left(\mathrm{V}_{\mathrm{F}}-\mathrm{V}_{\mathrm{R}}\right) \mathrm{P}_{\mathrm{FD}}$ $\mathrm{L}_{\mathrm{EQ}}=$ (Equation 25-8 or 25-9) $\mathrm{P}_{\mathrm{FD}}=$ 1.000 using Equation (Exhibit 25-12) $\mathrm{V}_{12}=$ $1204 \mathrm{pc} / \mathrm{h}$ V_{3} or $\mathrm{V}_{\text {av34 }}$ $0 \mathrm{pc} / \mathrm{h}$ (Equation 25-15 or 25-16) Is V_{3} or $\mathrm{V}_{\text {av34 }}>2,700 \mathrm{pc} / \mathrm{h}$? Г Yes V No Is V_{3} or $\mathrm{V}_{\text {av34 }}>1.5 * \mathrm{~V}_{12} / 2$ Г Yes $V \mathrm{~V}$ No If Yes, $\mathrm{V}_{12 \mathrm{a}}=$ pc/h (Equation 25-18)			

Capacity Checks
Capacity Checks

	Actual		Capacity	LOS F?		Actual	Cap	acity	LOS F?
V_{FO}		Exhibit 25-7			V_{F}	1204	Exhibit 25-14	4500	No
					$\mathrm{V}_{\mathrm{FO}}=\mathrm{V}_{\mathrm{F}}-\mathrm{V}_{\mathrm{R}}$	1005	Exhibit 25-14	4500	No
					V_{R}	199	Exhibit 25-3	2000	No
Flow Entering Merge Influence Area					Flow Entering Diverge Influence Area				
	Actual	Max Desirable		Violation?		Actual	Max Desirable		Violation?
$\mathrm{V}_{\mathrm{R} 12}$		Exhibit 25-7			V_{12}	1204	Exhibit 25-14	4400:All	No
Level of Service Determination (if not F)					Level of Service Determination (if not F)				
$$	$73 v_{R}$ 4)	$.0078 \mathrm{~V}_{12}-$	0.00627		$\begin{array}{lr} & D_{R} \\ D_{R}= & 10.1(p \\ \text { LOS }= & B(E x h \end{array}$	$=4.252+$ /mi/ln) bit 25-4)	$0086 V_{12}-0.00$	L_{D}	
Speed Determination					Speed Determination				
$\begin{array}{ll} \hline \mathrm{M}_{\mathrm{S}}= & (\mathrm{Ex} \\ \mathrm{S}_{\mathrm{R}}= & \mathrm{mph} \\ \mathrm{~S}_{0}= & \mathrm{mph} \\ \mathrm{~S}= & \mathrm{mph} \end{array}$	5-19)				$\begin{array}{ll}\mathrm{D}_{\mathrm{S}}= & 0.446(\\ \mathrm{S}_{\mathrm{R}}= & 49.2 \mathrm{mph} \\ \mathrm{S}_{0}= & \mathrm{N} / \mathrm{Amp} \\ \mathrm{S}= & 49.2 \mathrm{mph}\end{array}$	(Exhibit 25-1 (Exhibit 25 (Exhibit 25 (Exhibit 25	-19)		

Conversion to pc/h Under Base Conditions

(pc/h)	$\begin{gathered} \mathrm{V} \\ (\mathrm{Veh} / \mathrm{hr}) \end{gathered}$	PHF	Terrain	\%Truck	\%Rv	f_{HV}	f_{p}	$\mathrm{v}=\mathrm{V} /$ PHF $\times \mathrm{f}_{\mathrm{HV}} \times \mathrm{f}_{\mathrm{p}}$
Freeway	1480	0.90	Level	15	0	0.930	1.00	1768
Ramp	123	0.90	Level	15	0	0.930	1.00	147
UpStream								
DownStream								
Merge Areas					Diverge Areas			
Estimation of \mathbf{v}_{12}					Estimation of v_{12}			
$\begin{aligned} & \mathrm{L}_{\mathrm{EQ}}= \\ & \mathrm{P}_{\mathrm{FM}}= \\ & \mathrm{V}_{12}= \\ & \mathrm{V}_{3} \text { or } \mathrm{V}_{\text {av34 }} \\ & \text { Is } \mathrm{V}_{3} \text { or } \mathrm{V}_{\text {av34 }}> \\ & \text { Is } V_{3} \text { or } \mathrm{V}_{\text {av34 }}> \\ & \text { If } \mathrm{Yes}, \mathrm{~V}_{12 \mathrm{a}}= \\ & \hline \end{aligned}$	```V12}=\mp@subsup{V}{F}{}(\mp@subsup{P}{FM}{} (Equation 25-2 or 25-3) using Equation (Exhibit 25-5) pc/h pc/h (Equation 25-4 or 25-5) \GammaYes ГNo \Gamma Yes Г No pc/h (Equation 25-8)```				$\mathrm{V}_{12}=\mathrm{V}_{\mathrm{R}}+\left(\mathrm{V}_{\mathrm{F}}-\mathrm{V}_{\mathrm{R}}\right) \mathrm{P}_{\mathrm{FD}}$ $\mathrm{L}_{\mathrm{EQ}}=$ (Equation 25-8 or 25-9) $\mathrm{P}_{\mathrm{FD}}=$ 1.000 using Equation (Exhibit 25-12) $\mathrm{V}_{12}=$ $1768 \mathrm{pc} / \mathrm{h}$ V_{3} or $\mathrm{V}_{\text {av34 }}$ $0 \mathrm{pc} / \mathrm{h}$ (Equation 25-15 or 25-16) Is V_{3} or $\mathrm{V}_{\text {av34 }}>2,700 \mathrm{pc} / \mathrm{h}$? Г Yes V No Is V_{3} or $\mathrm{V}_{\text {av34 }}>1.5 * \mathrm{~V}_{12} / 2$ Г Yes $V \mathrm{~V}$ No If Yes, $\mathrm{V}_{12 \mathrm{a}}=$ pc/h (Equation 25-18)			

Capacity Checks
Capacity Checks

	Actual		Capacity	LOS F?		Actual	Cap	acity	LOS F?
V_{FO}		Exhibit 25-7			V_{F}	1768	Exhibit 25-14	4500	No
					$\mathrm{V}_{\mathrm{FO}}=\mathrm{V}_{\mathrm{F}}-\mathrm{V}_{\mathrm{R}}$	1621	Exhibit 25-14	4500	No
					V_{R}	147	Exhibit 25-3	2000	No
Flow Entering Merge Influence Area					Flow Entering Diverge Influence Area				
	Actual	Max Desirable		Violation?		Actual	Max Desirable		Violation?
$\mathrm{V}_{\mathrm{R} 12}$		Exhibit 25-7			V_{12}	1768	Exhibit 25-14	4400:All	No
Level of Service Determination (if not F)					Level of Service Determination (if not F)				
$$	$734 v_{R}$ 4)	. $0078 \mathrm{~V}_{12}$ -	0.00627		$\begin{array}{lr} & \mathrm{D}_{\mathrm{R}} \\ \mathrm{D}_{\mathrm{R}}= & 15.0(\mathrm{pc} \\ \text { LOS }= & \mathrm{B}(\text { Exhi } \end{array}$	$=4.252+0 .$ /mi/ln) ibit 25-4)	$0086 V_{12}-0.00$	$L_{\text {D }}$	
Speed Determination					Speed Determination				
$\left\lvert\, \begin{array}{ll} \mathrm{M}_{\mathrm{S}}= & (\mathrm{Ex} \\ \mathrm{S}_{\mathrm{R}}= & \mathrm{mph} \\ \mathrm{~S}_{0}= & \mathrm{mph} \\ \mathrm{~S}= & \mathrm{mph} \end{array}\right.$	5-19)				$\begin{array}{ll}\mathrm{D}_{\mathrm{S}}= & 0.441 \\ \mathrm{~S}_{\mathrm{R}}= & 49.3 \mathrm{mp} \\ \mathrm{S}_{0}= & \mathrm{N} / \mathrm{Amph} \\ \mathrm{S}= & 49.3 \mathrm{mph}\end{array}$	Exhibit 25-19) (Exhibit 25 (Exhibit 25 (Exhibit 25	(19)		

Conversion to pc/h Under Base Conditions

(pc/h)	$\begin{gathered} \mathrm{V} \\ (\mathrm{Veh} / \mathrm{hr}) \end{gathered}$	PHF	Terrain	\%Truck	\%Rv	f_{HV}	f_{p}	$v=$ V/PHF $\times \mathrm{f}_{\mathrm{HV}} \times \mathrm{f}_{\mathrm{p}}$
Freeway	1575	0.90	Level	15	0	0.930	1.00	1881
Ramp	252	0.90	Level	15	0	0.930	1.00	301
UpStream								
DownStream								
Merge Areas					Diverge Areas			
Estimation of \mathbf{v}_{12}					Estimation of v_{12}			
$\begin{aligned} & \mathrm{L}_{\mathrm{EQ}}= \\ & \mathrm{P}_{\mathrm{FM}}= \\ & \mathrm{V}_{12}= \\ & \mathrm{V}_{3} \text { or } \mathrm{V}_{\text {av34 }} \\ & \text { Is } \mathrm{V}_{3} \text { or } \mathrm{V}_{\text {av34 }}> \\ & \text { Is } V_{3} \text { or } \mathrm{V}_{\text {av34 }}> \\ & \text { If } \mathrm{Yes}, \mathrm{~V}_{12 \mathrm{a}}= \\ & \hline \end{aligned}$	```V12}=\mp@subsup{V}{F}{}(\mp@subsup{P}{FM}{} (Equation 25-2 or 25-3) using Equation (Exhibit 25-5) pc/h pc/h (Equation 25-4 or 25-5) \GammaYes ГNo \Gamma Yes Г No pc/h (Equation 25-8)```				$\mathrm{V}_{12}=\mathrm{V}_{\mathrm{R}}+\left(\mathrm{V}_{\mathrm{F}}-\mathrm{V}_{\mathrm{R}}\right) \mathrm{P}_{\mathrm{FD}}$ $\mathrm{L}_{\mathrm{EQ}}=$ (Equation 25-8 or 25-9) $\mathrm{P}_{\mathrm{FD}}=$ 1.000 using Equation (Exhibit 25-12) $\mathrm{V}_{12}=$ $1881 \mathrm{pc} / \mathrm{h}$ V_{3} or $\mathrm{V}_{\text {av34 }}$ $0 \mathrm{pc} / \mathrm{h}$ (Equation 25-15 or 25-16) Is V_{3} or $\mathrm{V}_{\text {av34 }}>2,700 \mathrm{pc} / \mathrm{h}$? Г Yes V No Is V_{3} or $\mathrm{V}_{\text {av34 }}>1.5 * \mathrm{~V}_{12} / 2$ Г Yes $V \mathrm{~V}$ No If Yes, $\mathrm{V}_{12 \mathrm{a}}=$ pc/h (Equation 25-18)			

Capacity Checks
Capacity Checks

	Actual		Capacity	LOS F?		Actual	Cap	acity	LOS F?
V_{FO}		Exhibit 25-7			V_{F}	1881	Exhibit 25-14	4500	No
					$\mathrm{V}_{\mathrm{FO}}=\mathrm{V}_{\mathrm{F}}-\mathrm{V}_{\mathrm{R}}$	1580	Exhibit 25-14	4500	No
					V_{R}	301	Exhibit 25-3	2000	No
Flow Entering Merge Influence Area					Flow Entering Diverge Influence Area				
	Actual	Max Desirable		Violation?		Actual	Max Desirable		Violation?
$\mathrm{V}_{\mathrm{R} 12}$		Exhibit 25-7			V_{12}	1881	Exhibit 25-14	4400:All	No
Level of Service Determination (if not F)					Level of Service Determination (if not F)				
$$	434 v_{R}	. $0078 \mathrm{~V}_{12}$ -	0.00627		$\begin{array}{lr} & \mathrm{D}_{\mathrm{R}} \\ \mathrm{D}_{\mathrm{R}}= & 15.9(\mathrm{pc} \\ \text { LOS }= & \mathrm{B}(\text { Exhi } \end{array}$	$=4.252+0 .$ /mi/ln) ibit 25-4)	$0086 V_{12}-0.00$	$L_{\text {D }}$	
Speed Determination					Speed Determination				
$\begin{aligned} & \mathrm{M}_{\mathrm{S}}= \\ & \mathrm{S}_{\mathrm{R}}= \\ & \mathrm{S}_{0}= \\ & \mathrm{S}= \end{aligned}$	5-19)				$\begin{array}{ll}\mathrm{D}_{\mathrm{S}}= & 0.455 \\ \mathrm{~S}_{\mathrm{R}}= & 49.1 \mathrm{mp} \\ \mathrm{S}_{0}= & \mathrm{N} / \mathrm{Amph} \\ \mathrm{S}= & 49.1 \mathrm{mph}\end{array}$	Exhibit 25-19) (Exhibit 25 (Exhibit 25 (Exhibit 25	(19)		

Conversion to pc/h Under Base Conditions

(pc/h)	$\begin{gathered} \mathrm{V} \\ (\mathrm{Veh} / \mathrm{hr}) \end{gathered}$	PHF	Terrain	\%Truck	\%Rv	f_{HV}	f_{p}	$\mathrm{v}=\mathrm{V} /$ PHF $\times \mathrm{f}_{\mathrm{HV}} \times \mathrm{f}_{\mathrm{p}}$
Freeway	2288	0.90	Level	15	0	0.930	1.00	2733
Ramp	188	0.90	Level	15	0	0.930	1.00	225
UpStream								
DownStream								
Merge Areas					Diverge Areas			
Estimation of \mathbf{v}_{12}					Estimation of v_{12}			
$\begin{aligned} & \mathrm{L}_{\mathrm{EQ}}= \\ & \mathrm{P}_{\mathrm{FM}}= \\ & \mathrm{V}_{12}= \\ & \mathrm{V}_{3} \text { or } \mathrm{V}_{\text {av34 }} \\ & \text { Is } \mathrm{V}_{3} \text { or } \mathrm{V}_{\text {av34 }}> \\ & \text { Is } V_{3} \text { or } \mathrm{V}_{\text {av34 }}> \\ & \text { If } \mathrm{Yes}, \mathrm{~V}_{12 \mathrm{a}}= \\ & \hline \end{aligned}$	```V12}=\mp@subsup{V}{F}{}(\mp@subsup{P}{FM}{} (Equation 25-2 or 25-3) using Equation (Exhibit 25-5) pc/h pc/h (Equation 25-4 or 25-5) \GammaYes ГNo \Gamma Yes Г No pc/h (Equation 25-8)```				$\mathrm{V}_{12}=\mathrm{V}_{\mathrm{R}}+\left(\mathrm{V}_{\mathrm{F}}-\mathrm{V}_{\mathrm{R}}\right) \mathrm{P}_{\mathrm{FD}}$ $\mathrm{L}_{\mathrm{EQ}}=$ (Equation 25-8 or 25-9) $\mathrm{P}_{\mathrm{FD}}=$ 1.000 using Equation (Exhibit 25-12) $\mathrm{V}_{12}=$ $2733 \mathrm{pc} / \mathrm{h}$ V_{3} or $\mathrm{V}_{\text {av34 }}$ $0 \mathrm{pc} / \mathrm{h}$ (Equation 25-15 or 25-16) Is V_{3} or $\mathrm{V}_{\text {av34 }}>2,700 \mathrm{pc} / \mathrm{h}$? Г Yes V No Is V_{3} or $\mathrm{V}_{\text {av34 }}>1.5 * \mathrm{~V}_{12} / 2$ Г Yes $V \mathrm{~V}$ No If Yes,$V_{12 a}=$ pc/h (Equation 25-18)			

Capacity Checks
Capacity Checks

	Actual		Capacity	LOS F?		Actual	Cap	acity	LOS F?
V_{FO}		Exhibit 25-7			V_{F}	2733	Exhibit 25-14	4500	No
					$\mathrm{V}_{\mathrm{FO}}=\mathrm{V}_{\mathrm{F}}-\mathrm{V}_{\mathrm{R}}$	2508	Exhibit 25-14	4500	No
					V_{R}	225	Exhibit 25-3	2000	No
Flow Entering Merge Influence Area					Flow Entering Diverge Influence Area				
	Actual	Max Desirable		Violation?		Actual	Max Desirable		Violation?
$\mathrm{V}_{\mathrm{R} 12}$		Exhibit 25-7			V_{12}	2733	Exhibit 25-14	4400:All	No
Level of Service Determination (if not F)					Level of Service Determination (if not F)				
$$	$73 v_{R}$ 4)	$0078 \mathrm{~V}_{12}$ -	0.00627		$\begin{array}{lr} \\ D_{R}= & D_{R} \\ \text { LOS }= & 23.3 \text { (p } \\ \text { C }\end{array}$	$=4.252+$ /mi/ln) bit 25-4)	$0086 V_{12}-0.00$	L_{D}	
Speed Determination					Speed Determination				
$\begin{array}{ll} \hline \mathrm{M}_{\mathrm{S}}= & (\mathrm{Ex} \\ \mathrm{S}_{\mathrm{R}}= & \mathrm{mph} \\ \mathrm{~S}_{0}= & \mathrm{mph} \\ \mathrm{~S}= & \mathrm{mph} \end{array}$	5-19)				$\begin{array}{ll}\mathrm{D}_{\mathrm{S}}= & 0.448(\\ \mathrm{S}_{\mathrm{R}}= & 49.2 \mathrm{mph} \\ \mathrm{S}_{0}= & \mathrm{N} / \mathrm{Amp} \\ \mathrm{S}= & 49.2 \mathrm{mph}\end{array}$	(Exhibit 25-1 (Exhibit 25 (Exhibit 25 (Exhibit 25	-19)		

APD-40 Weave Areas

Highway Capacity Software Computer Printouts

General Information

Analyst	SKB
Agency/Company	TDOT / Long Engineering
Date Performed	$05 / 04 / 2009$
Analysis Time Period	AM Peak Period

Site Information
Freeway/Dir of Travel
Weaving Seg Location Jurisdiction
Analysis Year

APD-40 EB
West of Prop. Interchange
Cleveland, TN
2013

Inputs

Freeway free-flow speed, $\mathrm{S}_{\mathrm{FF}}(\mathrm{mi} / \mathrm{h})$	55	Weaving type	A
Weaving number of lanes, N	2	Volume ratio, VR	0.54
Weaving seg length, $\mathrm{L}(\mathrm{ft})$	1900	Level	Weaving ratio, R

Conversions to pc/h Under Base Conditions

Weaving and Non-Weaving Speeds

	Unconstrained		Constrained	
	Weaving ($\mathrm{i}=\mathrm{w}$)	Non-Weaving ($\mathrm{i}=\mathrm{nw}$)	Weaving ($\mathrm{i}=\mathrm{w}$)	Non-Weaving (= nw)
a (Exhibit 24-6)	0.15	0.0035		
b (Exhibit 24-6)	2.20	4.00		
c (Exhibit 24-6)	0.97	1.30		
d (Exhibit 24-6)	0.80	0.75		
Weaving intensity factor, Wi	0.68	0.47		
Weaving and non-weaving speeds, Si (mi/h)	41.85	45.59		
Number of lanes required for unconstrained operation, Nw 1.18 Maximum number of lanes, Nw (max) 1.40 \sqrt{V} If Nw < Nw(max) unconstrained operation			$w>$ Nw (max)	d operation

Weaving Segment Speed, Density, Level of Service, and Capacity

Weaving segment speed, $\mathrm{S}(\mathrm{mi} / \mathrm{h})$	43.50
Weaving segment density, $\mathrm{D}(\mathrm{pc} / \mathrm{mi} / \mathrm{ln})$	20.69
Level of service, LOS	B
Capacity of base condition, $\mathrm{c}_{\mathrm{b}}(\mathrm{pc} / \mathrm{h})$	
Capacity as a 15-minute flow rate, $\mathrm{c}(\mathrm{veh} / \mathrm{h})$	
Capacity as a full-hour volume, $\mathrm{c}_{\mathrm{h}}(\mathrm{veh} / \mathrm{h})$	

Notes

a. Weaving segments longer than 2500 ft . are treated as isolated merge and diverge areas using the procedures of Chapter 25, "Ramps and Ramp Junctions".
b. Capacity constrained by basic freeway capacity.
c. Capacity occurs under constrained operating conditions.
d. Three-lane Type A segments do not operate well at volume ratios greater than 0.45 . Poor operations and some local queuing are expected in such cases.
e. Four-lane Type A segments do not operate well at volume ratios greater than 0.35 . Poor operations and some local queuing are expected in such cases.
f. Capacity constrained by maximum allowable weaving flow rate: $2,800 \mathrm{pc} / \mathrm{h}$ (Type A), 4,000 (Type B), 3,500 (Type C).
g. Five-lane Type A segments do not operate well at volume ratios greater than 0.20 . Poor operations and some local queuing are expected in such cases.
h. Type B weaving segments do not operate well at volume ratios greater than 0.80 . Poor operations and some local queuing are expected in such cases.
. Type C weaving segments do not operate well at volume ratios greater than 0.50 . Poor operations and some local queuing are expected in such cases.

General Information

Analyst	SKB
Agency/Company	TDOT / Long Engineering
Date Performed	$05 / 04 / 2009$
Analysis Time Period	PM Peak Period

Site Information
Freeway/Dir of Travel Weaving Seg Location Jurisdiction
Analysis Year

APD-40 EB
West of Prop. Interchange
Cleveland, TN
2013

Inputs

Freeway free-flow speed, $\mathrm{S}_{\mathrm{FF}}(\mathrm{mi} / \mathrm{h})$	55	Weaving type	A
Weaving number of lanes, N	2	Volume ratio, VR	0.71
Weaving seg length, $\mathrm{L}(\mathrm{ft})$	1900	Level	Weaving ratio, R

Conversions to pc/h Under Base Conditions

Weaving and Non-Weaving Speeds

Weaving Segment Speed, Density, Level of Service, and Capacity

Weaving segment speed, $\mathrm{S}(\mathrm{mi} / \mathrm{h})$	31.92
Weaving segment density, $\mathrm{D}(\mathrm{pc} / \mathrm{mi} / \mathrm{h})$	32.63
Level of service, LOS	D
Capacity of base condition, $\mathrm{c}_{\mathrm{b}}(\mathrm{pc} / \mathrm{h})$	
Capacity as a 15-minute flow rate, $\mathrm{c}(\mathrm{veh} / \mathrm{h})$	
Capacity as a full-hour volume, $\mathrm{c}_{\mathrm{h}}(\mathrm{veh} / \mathrm{h})$	

Notes

a. Weaving segments longer than 2500 ft . are treated as isolated merge and diverge areas using the procedures of Chapter 25, "Ramps and Ramp Junctions".
b. Capacity constrained by basic freeway capacity.
c. Capacity occurs under constrained operating conditions.
d. Three-lane Type A segments do not operate well at volume ratios greater than 0.45 . Poor operations and some local queuing are expected in such cases.
e. Four-lane Type A segments do not operate well at volume ratios greater than 0.35 . Poor operations and some local queuing are expected in such cases.
f. Capacity constrained by maximum allowable weaving flow rate: $2,800 \mathrm{pc} / \mathrm{h}$ (Type A), 4,000 (Type B), 3,500 (Type C).
g. Five-lane Type A segments do not operate well at volume ratios greater than 0.20 . Poor operations and some local queuing are expected in such cases.
h. Type B weaving segments do not operate well at volume ratios greater than 0.80 . Poor operations and some local queuing are expected in such cases.
Type C weaving segments do not operate well at volume ratios greater than 0.50 . Poor operations and some local queuing are expected in such cases.

General Information

Analyst	SKB
Agency/Company	TDOT / Long Engineering
Date Performed	$05 / 04 / 2009$
Analysis Time Period	AM Peak Period

Site Information
Freeway/Dir of Travel
Weaving Seg Location Jurisdiction
Analysis Year

APD-40 EB
West of Prop. Interchange
Cleveland, TN
2033

Inputs

Freeway free-flow speed, $\mathrm{S}_{\text {FF }}$ (mi/h) 55
Weaving number of lanes, $\mathrm{N} \quad 2$

Weaving seg length, L(ft) 1900
Terrain Level

Weaving type	A
Volume ratio, VR	0.54
Weaving ratio, R	0.24

Conversions to pc/h Under Base Conditions

Weaving and Non-Weaving Speeds

	Unconstrained		Constrained	
	Weaving ($\mathrm{i}=\mathrm{w}$)	Non-Weaving ($\mathrm{i}=\mathrm{nw}$)	Weaving ($\mathrm{i}=\mathrm{w}$)	Non-Weaving (= nw)
a (Exhibit 24-6)	0.15	0.0035		
b (Exhibit 24-6)	2.20	4.00		
C (Exhibit 24-6)	0.97	1.30		
d (Exhibit 24-6)	0.80	0.75		
Weaving intensity factor, Wi	1.03	0.83		
Weaving and non-weaving speeds, Si (mi/h)	37.12	39.55		
Number of lanes requi Maximum number of la F If Nw <	unconstrained ope (max) x) unconstrained	$\begin{aligned} & \hline 1.25 \\ & 1.40 \end{aligned}$	Nw > Nw (max)	ned operation

Weaving Segment Speed, Density, Level of Service, and Capacity

Weaving segment speed, $\mathrm{S}(\mathrm{mi} / \mathrm{h})$	38.20
Weaving segment density, $\mathrm{D}(\mathrm{pc} / \mathrm{mi} / \mathrm{h})$	36.51
Level of service, LOS	E
Capacity of base condition, $\mathrm{c}_{\mathrm{b}}(\mathrm{pc} / \mathrm{h})$	
Capacity as a 15-minute flow rate, $\mathrm{c}(\mathrm{veh} / \mathrm{h})$	
Capacity as a full-hour volume, $\mathrm{c}_{\mathrm{h}}(\mathrm{veh} / \mathrm{h})$	

Notes

a. Weaving segments longer than 2500 ft . are treated as isolated merge and diverge areas using the procedures of Chapter 25, "Ramps and Ramp Junctions".
b. Capacity constrained by basic freeway capacity.
c. Capacity occurs under constrained operating conditions.
d. Three-lane Type A segments do not operate well at volume ratios greater than 0.45 . Poor operations and some local queuing are expected in such cases.
e. Four-lane Type A segments do not operate well at volume ratios greater than 0.35 . Poor operations and some local queuing are expected in such cases.
f. Capacity constrained by maximum allowable weaving flow rate: $2,800 \mathrm{pc} / \mathrm{h}$ (Type A), 4,000 (Type B), 3,500 (Type C).
g. Five-lane Type A segments do not operate well at volume ratios greater than 0.20 . Poor operations and some local queuing are expected in such cases.
h. Type B weaving segments do not operate well at volume ratios greater than 0.80 . Poor operations and some local queuing are expected in such cases.
. Type C weaving segments do not operate well at volume ratios greater than 0.50 . Poor operations and some local queuing are expected in such cases.

General Information

Analyst	SKB
Agency/Company	TDOT / Long Engineering
Date Performed	$05 / 04 / 2009$
Analysis Time Period	PM Peak Period

Site Information
Freeway/Dir of Travel
Weaving Seg Location Jurisdiction
Analysis Year

APD-40 EB
West of Prop. Interchange
Cleveland, TN
2033

Inputs

Freeway free-flow speed, $\mathrm{S}_{\mathrm{FF}}(\mathrm{mi} / \mathrm{h})$	55	Weaving type	A
Weaving number of lanes, N	2	Volume ratio, VR	0.72
Weaving seg length, $\mathrm{L}(\mathrm{ft})$	1900	Level	Weaving ratio, R

Conversions to pc/h Under Base Conditions

Weaving and Non-Weaving Speeds

	Unconstrained		Constrained	
	Weaving ($\mathrm{i}=\mathrm{w}$)	Non-Weaving (i = nw)	Weaving (i=w)	Non-Weaving ($=\mathrm{nw}$)
a (Exhibit 24-6)			0.35	0.0020
b (Exhibit 24-6)			2.20	4.00
C (Exhibit 24-6)			0.97	1.30
d (Exhibit 24-6)			0.80	0.75
Weaving intensity factor, Wi			3.52	0.89
Weaving and non-weaving speeds, Si (mi/h)			24.95	38.86
Number of lanes requi Maximum number of	nconstrained ope (max)	$\begin{aligned} & \hline 1.55 \\ & 1.40 \end{aligned}$		

Weaving Segment Speed, Density, Level of Service, and Capacity

Weaving segment speed, $\mathrm{S}(\mathrm{mi} / \mathrm{h})$	27.78
Weaving segment density, $\mathrm{D}(\mathrm{pc} / \mathrm{mi} / \mathrm{h})$	57.83
Level of service, LOS	F
Capacity of base condition, $\mathrm{c}_{\mathrm{b}}(\mathrm{pc} / \mathrm{h})$	
Capacity as a 15-minute flow rate, $\mathrm{c}(\mathrm{veh} / \mathrm{h})$	
Capacity as a full-hour volume, $\mathrm{c}_{\mathrm{h}}(\mathrm{veh} / \mathrm{h})$	

Notes

a. Weaving segments longer than 2500 ft . are treated as isolated merge and diverge areas using the procedures of Chapter 25, "Ramps and Ramp Junctions".
b. Capacity constrained by basic freeway capacity.
c. Capacity occurs under constrained operating conditions.
d. Three-lane Type A segments do not operate well at volume ratios greater than 0.45 . Poor operations and some local queuing are expected in such cases.
e. Four-lane Type A segments do not operate well at volume ratios greater than 0.35 . Poor operations and some local queuing are expected in such cases.
f. Capacity constrained by maximum allowable weaving flow rate: $2,800 \mathrm{pc} / \mathrm{h}$ (Type A), 4,000 (Type B), 3,500 (Type C).
g. Five-lane Type A segments do not operate well at volume ratios greater than 0.20 . Poor operations and some local queuing are expected in such cases.
h. Type B weaving segments do not operate well at volume ratios greater than 0.80 . Poor operations and some local queuing are expected in such cases.
. Type C weaving segments do not operate well at volume ratios greater than 0.50 . Poor operations and some local queuing are expected in such cases.

General Information

Analyst	SKB
Agency/Company	TDOT / Long Engineering
Date Performed	$05 / 04 / 2009$
Analysis Time Period	AM Peak Period

Site Information

Freeway/Dir of Travel Weaving Seg Location Jurisdiction
Analysis Year
APD-40 EB
East of Prop. Interchange
Cleveland, TN
2013

Inputs

Freeway free-flow speed, $\mathrm{S}_{\mathrm{FF}}(\mathrm{mi} / \mathrm{h})$	55	Weaving type	A
Weaving number of lanes, N	2	Volume ratio, VR	0.30
Weaving seg length, $\mathrm{L}(\mathrm{ft})$	1975	Level	Weaving ratio, R

Conversions to pc/h Under Base Conditions

Weaving and Non-Weaving Speeds

	Unconstrained		Constrained	
	Weaving ($\mathrm{i}=\mathrm{w}$)	Non-Weaving ($\mathrm{i}=\mathrm{nw}$)	Weaving ($\mathrm{i}=\mathrm{w}$)	Non-Weaving ($=$ nw)
a (Exhibit 24-6)	0.15	0.0035		
b (Exhibit 24-6)	2.20	4.00		
C (Exhibit 24-6)	0.97	1.30		
d (Exhibit 24-6)	0.80	0.75		
Weaving intensity factor, Wi	0.33	0.15		
Weaving and non-weaving speeds, Si (milh)	48.76	53.97		
Number of lanes required for unconstrained operation, Nw 0.80 Maximum number of lanes, Nw (max) 1.40 \boxed{F} If Nw < Nw(max) unconstrained operation				
			Г if Nw $>$ Nw (max) constrained operation	

Weaving Segment Speed, Density, Level of Service, and Capacity

Weaving segment speed, $\mathrm{S}(\mathrm{mi} / \mathrm{h})$	52.30
Weaving segment density, $\mathrm{D}(\mathrm{pc} / \mathrm{mi} / \mathrm{h})$	12.55
Level of service, LOS	B
Capacity of base condition, $\mathrm{c}_{\mathrm{b}}(\mathrm{pc} / \mathrm{h})$	
Capacity as a 15-minute flow rate, $\mathrm{c}(\mathrm{veh} / \mathrm{h})$	
Capacity as a full-hour volume, $\mathrm{c}_{\mathrm{h}}(\mathrm{veh} / \mathrm{h})$	

Notes

a. Weaving segments longer than 2500 ft . are treated as isolated merge and diverge areas using the procedures of Chapter 25, "Ramps and Ramp Junctions".
b. Capacity constrained by basic freeway capacity.
c. Capacity occurs under constrained operating conditions.
d. Three-lane Type A segments do not operate well at volume ratios greater than 0.45 . Poor operations and some local queuing are expected in such cases.
e. Four-lane Type A segments do not operate well at volume ratios greater than 0.35 . Poor operations and some local queuing are expected in such cases.
f. Capacity constrained by maximum allowable weaving flow rate: $2,800 \mathrm{pc} / \mathrm{h}$ (Type A), 4,000 (Type B), 3,500 (Type C).
g. Five-lane Type A segments do not operate well at volume ratios greater than 0.20 . Poor operations and some local queuing are expected in such cases.
h. Type B weaving segments do not operate well at volume ratios greater than 0.80 . Poor operations and some local queuing are expected in such cases.
. Type C weaving segments do not operate well at volume ratios greater than 0.50 . Poor operations and some local queuing are expected in such cases.

General Information

Analyst	SKB
Agency/Company	TDOT / Long Engineering
Date Performed	$05 / 04 / 2009$
Analysis Time Period	PM Peak Period

Site Information

Freeway/Dir of Travel
Weaving Seg Location Jurisdiction
Analysis Year
APD-40 EB
East of Prop. Interchange Cleveland, TN
2013

Inputs

Freeway free-flow speed, $\mathrm{S}_{\mathrm{FF}}(\mathrm{mi} / \mathrm{h})$	55	Weaving type	A
Weaving number of lanes, N	2	Volume ratio, VR	0.27
Weaving seg length, $\mathrm{L}(\mathrm{ft})$	1975	Level	Weaving ratio, R

Conversions to pc/h Under Base Conditions

Weaving and Non-Weaving Speeds

	Unconstrained		Constrained	
	Weaving ($\mathrm{i}=\mathrm{w}$)	Non-Weaving ($\mathrm{i}=\mathrm{nw}$)	Weaving ($\mathrm{i}=\mathrm{w}$)	Non-Weaving (= nw)
a (Exhibit 24-6)	0.15	0.0035		
b (Exhibit 24-6)	2.20	4.00		
c (Exhibit 24-6)	0.97	1.30		
d (Exhibit 24-6)	0.80	0.75		
Weaving intensity factor, Wi	0.49	0.25		
Weaving and non-weaving speeds, Si (mi/h)	45.29	51.00		
Number of lanes required for unconstrained operation, Nw 0.77 Maximum number of lanes, Nw (max) 1.40 $\nabla \quad$ If Nw < Nw(max) unconstrained operation			lw > Nw (max) c	d operation

Weaving Segment Speed, Density, Level of Service, and Capacity

Weaving segment speed, $\mathrm{S}(\mathrm{mi} / \mathrm{h})$	49.34
Weaving segment density, $\mathrm{D}(\mathrm{pc} / \mathrm{mi} / \mathrm{ln})$	20.75
Level of service, LOS	B
Capacity of base condition, $\mathrm{c}_{\mathrm{b}}(\mathrm{pc} / \mathrm{h})$	
Capacity as a 15-minute flow rate, $\mathrm{c}(\mathrm{veh} / \mathrm{h})$	
Capacity as a full-hour volume, $\mathrm{c}_{\mathrm{h}}(\mathrm{veh} / \mathrm{h})$	

Notes

a. Weaving segments longer than 2500 ft . are treated as isolated merge and diverge areas using the procedures of Chapter 25, "Ramps and Ramp Junctions".
b. Capacity constrained by basic freeway capacity.
c. Capacity occurs under constrained operating conditions.
d. Three-lane Type A segments do not operate well at volume ratios greater than 0.45 . Poor operations and some local queuing are expected in such cases.
e. Four-lane Type A segments do not operate well at volume ratios greater than 0.35 . Poor operations and some local queuing are expected in such cases.
f. Capacity constrained by maximum allowable weaving flow rate: $2,800 \mathrm{pc} / \mathrm{h}$ (Type A), 4,000 (Type B), 3,500 (Type C).
g. Five-lane Type A segments do not operate well at volume ratios greater than 0.20 . Poor operations and some local queuing are expected in such cases.
h. Type B weaving segments do not operate well at volume ratios greater than 0.80 . Poor operations and some local queuing are expected in such cases.
. Type C weaving segments do not operate well at volume ratios greater than 0.50 . Poor operations and some local queuing are expected in such cases.

General Information

Analyst	SKB
Agency/Company	TDOT / Long Engineering
Date Performed	$05 / 04 / 2009$
Analysis Time Period	AM Peak Period

Site Information

Freeway/Dir of Travel	APD-40 EB
Weaving Seg Location	East of Prop. Interchange
Jurisdiction	Cleveland, TN
Analysis Year	2033

APD-40 EB Cleveland, TN 2033

Inputs

Freeway free-flow speed, $\mathrm{S}_{\mathrm{FF}}(\mathrm{mi} / \mathrm{h})$	55	Weaving type	A
Weaving number of lanes, N	2	Volume ratio, VR	0.30
Weaving seg length, $\mathrm{L}(\mathrm{ft})$	1975	Level	Weaving ratio, R

Conversions to pc/h Under Base Conditions

Weaving and Non-Weaving Speeds

	Unconstrained		Constrained	
	Weaving ($\mathrm{i}=\mathrm{w}$)	Non-Weaving ($\mathrm{i}=\mathrm{nw}$)	Weaving ($\mathrm{i}=\mathrm{w}$)	Non-Weaving (= nw)
a (Exhibit 24-6)	0.15	0.0035		
b (Exhibit 24-6)	2.20	4.00		
c (Exhibit 24-6)	0.97	1.30		
d (Exhibit 24-6)	0.80	0.75		
Weaving intensity factor, Wi	0.51	0.27		
Weaving and non-weaving speeds, Si (mi/h)	44.87	50.40		
Number of lanes required for unconstrained operation, Nw 0.83 Maximum number of lanes, Nw (max) 1.40 $\sqrt{\nabla}$ If Nw < Nw(max) unconstrained operation			lw > Nw (max) c	d operation

Weaving Segment Speed, Density, Level of Service, and Capacity

Weaving segment speed, $\mathrm{S}(\mathrm{mi} / \mathrm{h})$	48.61
Weaving segment density, $\mathrm{D}(\mathrm{pc} / \mathrm{mi} / \mathrm{ln})$	20.83
Level of service, LOS	B
Capacity of base condition, $\mathrm{c}_{\mathrm{b}}(\mathrm{pc} / \mathrm{h})$	
Capacity as a 15-minute flow rate, $\mathrm{c}(\mathrm{veh} / \mathrm{h})$	
Capacity as a full-hour volume, $\mathrm{c}_{\mathrm{h}}(\mathrm{veh} / \mathrm{h})$	

Notes

a. Weaving segments longer than 2500 ft . are treated as isolated merge and diverge areas using the procedures of Chapter 25, "Ramps and Ramp Junctions".
b. Capacity constrained by basic freeway capacity.
c. Capacity occurs under constrained operating conditions.
d. Three-lane Type A segments do not operate well at volume ratios greater than 0.45 . Poor operations and some local queuing are expected in such cases.
e. Four-lane Type A segments do not operate well at volume ratios greater than 0.35 . Poor operations and some local queuing are expected in such cases.
f. Capacity constrained by maximum allowable weaving flow rate: $2,800 \mathrm{pc} / \mathrm{h}$ (Type A), 4,000 (Type B), 3,500 (Type C).
g. Five-lane Type A segments do not operate well at volume ratios greater than 0.20 . Poor operations and some local queuing are expected in such cases.
h. Type B weaving segments do not operate well at volume ratios greater than 0.80 . Poor operations and some local queuing are expected in such cases.
Type C weaving segments do not operate well at volume ratios greater than 0.50 . Poor operations and some local queuing are expected in such cases.

General Information

Analyst	SKB
Agency/Company	TDOT / Long Engineering
Date Performed	$05 / 04 / 2009$
Analysis Time Period	PM Peak Period

Site Information

Freeway/Dir of Travel Weaving Seg Location Jurisdiction
Analysis Year
APD-40 EB
East of Prop. Interchange Cleveland, TN
2033

Inputs

Freeway free-flow speed, $\mathrm{S}_{\text {FF }}(\mathrm{mi} / \mathrm{h})$	55	Weaving type	A
Weaving number of lanes, N	2	Volume ratio, VR	A 0.27
Weaving seg length, L (ft)	1975	Weaving ratio, R	0.43
Terrain	Level		

Conversions to pc/h Under Base Conditions

Weaving and Non-Weaving Speeds

	Unconstrained		Constrained	
	Weaving ($\mathrm{i}=\mathrm{w}$)	Non-Weaving ($\mathrm{i}=\mathrm{nw}$)	Weaving ($\mathrm{i}=\mathrm{w}$)	Non-Weaving (= nw)
a (Exhibit 24-6)	0.15	0.0035		
b (Exhibit 24-6)	2.20	4.00		
c (Exhibit 24-6)	0.97	1.30		
d (Exhibit 24-6)	0.80	0.75		
Weaving intensity factor, Wi	0.74	0.44		
Weaving and non-weaving speeds, Si (mi/h)	40.91	46.33		
Number of lanes required for unconstrained operation, Nw 0.81 Maximum number of lanes, Nw (max) 1.40 \sqrt{V} If Nw < Nw(max) unconstrained operation			Iw > Nw (max) cc	ned operation

Weaving Segment Speed, Density, Level of Service, and Capacity

Weaving segment speed, $\mathrm{S}(\mathrm{mi} / \mathrm{h})$	44.75
Weaving segment density, $\mathrm{D}(\mathrm{pc} / \mathrm{mi} / \mathrm{h})$	35.27
Level of service, LOS	D
Capacity of base condition, $\mathrm{c}_{\mathrm{b}}(\mathrm{pc} / \mathrm{h})$	
Capacity as a 15-minute flow rate, $\mathrm{c}(\mathrm{veh} / \mathrm{h})$	
Capacity as a full-hour volume, $\mathrm{c}_{\mathrm{h}}(\mathrm{veh} / \mathrm{h})$	

Notes

a. Weaving segments longer than 2500 ft . are treated as isolated merge and diverge areas using the procedures of Chapter 25, "Ramps and Ramp Junctions".
b. Capacity constrained by basic freeway capacity.
c. Capacity occurs under constrained operating conditions.
d. Three-lane Type A segments do not operate well at volume ratios greater than 0.45 . Poor operations and some local queuing are expected in such cases.
e. Four-lane Type A segments do not operate well at volume ratios greater than 0.35 . Poor operations and some local queuing are expected in such cases.
f. Capacity constrained by maximum allowable weaving flow rate: $2,800 \mathrm{pc} / \mathrm{h}$ (Type A), 4,000 (Type B), 3,500 (Type C).
g. Five-lane Type A segments do not operate well at volume ratios greater than 0.20 . Poor operations and some local queuing are expected in such cases.
h. Type B weaving segments do not operate well at volume ratios greater than 0.80 . Poor operations and some local queuing are expected in such cases.
Type C weaving segments do not operate well at volume ratios greater than 0.50 . Poor operations and some local queuing are expected in such cases.

General Information

Analyst	SKB
Agency/Company	TDOT / Long Engineering
Date Performed	$05 / 04 / 2009$
Analysis Time Period	AM Peak Period

Site Information
Freeway/Dir of Travel
Weaving Seg Location Jurisdiction
Analysis Year

APD-40 EB
West of Prop. Interchange
Cleveland, TN
2013

Inputs

Freeway free-flow speed, $\mathrm{S}_{\mathrm{FF}}(\mathrm{mi} / \mathrm{h})$	55	Weaving type	A
Weaving number of lanes, N	3	Volume ratio, VR	0.54
Weaving seg length, $\mathrm{L}(\mathrm{ft})$	1900	Level	Weaving ratio, R

Conversions to pc/h Under Base Conditions

Weaving and Non-Weaving Speeds

	Unconstrained		Constrained	
	Weaving ($\mathrm{i}=\mathrm{w}$)	Non-Weaving ($\mathrm{i}=\mathrm{nw}$)	Weaving ($\mathrm{i}=\mathrm{w}$)	Non-Weaving (= nw)
a (Exhibit 24-6)			0.35	0.0020
b (Exhibit 24-6)			2.20	4.00
C (Exhibit 24-6)			0.97	1.30
d (Exhibit 24-6)			0.80	0.75
Weaving intensity factor, Wi			1.06	0.16
Weaving and non-weaving speeds, Si (milh)			36.80	53.83
Number of lanes required for unconstrained operation, Nw 1.71 Maximum number of lanes, Nw (max) 1.40				
			Nw > Nw (max) co	ned operation

Weaving Segment Speed, Density, Level of Service, and Capacity

Weaving segment speed, $\mathrm{S}(\mathrm{mi} / \mathrm{h})$	43.10
Weaving segment density, $\mathrm{D}(\mathrm{pc} / \mathrm{mi} / \mathrm{ln})$	13.92
Level of service, LOS	B
Capacity of base condition, $\mathrm{c}_{\mathrm{b}}(\mathrm{pc} / \mathrm{h})$	4656
Capacity as a 15-minute flow rate, $\mathrm{c}(\mathrm{veh} / \mathrm{h})$	4331
Capacity as a full-hour volume, $\mathrm{c}_{\mathrm{h}}(\mathrm{veh} / \mathrm{h})$	3898

Notes

a. Weaving segments longer than 2500 ft . are treated as isolated merge and diverge areas using the procedures of Chapter 25, "Ramps and Ramp Junctions".
b. Capacity constrained by basic freeway capacity.
c. Capacity occurs under constrained operating conditions.
d. Three-lane Type A segments do not operate well at volume ratios greater than 0.45 . Poor operations and some local queuing are expected in such cases.
e. Four-lane Type A segments do not operate well at volume ratios greater than 0.35 . Poor operations and some local queuing are expected in such cases.
f. Capacity constrained by maximum allowable weaving flow rate: $2,800 \mathrm{pc} / \mathrm{h}$ (Type A), 4,000 (Type B), 3,500 (Type C).
g. Five-lane Type A segments do not operate well at volume ratios greater than 0.20 . Poor operations and some local queuing are expected in such cases.
h. Type B weaving segments do not operate well at volume ratios greater than 0.80 . Poor operations and some local queuing are expected in such cases.
. Type C weaving segments do not operate well at volume ratios greater than 0.50 . Poor operations and some local queuing are expected in such cases.

General Information

Analyst	SKB
Agency/Company	TDOT / Long Engineering
Date Performed	$05 / 04 / 2009$
Analysis Time Period	PM Peak Period

Site Information
Freeway/Dir of Travel
Weaving Seg Location Jurisdiction
Analysis Year

APD-40 EB
West of Prop. Interchange
Cleveland, TN
2013

Inputs

Freeway free-flow speed, $\mathrm{S}_{\mathrm{FF}}(\mathrm{mi} / \mathrm{h})$	55	Weaving type	A
Weaving number of lanes, N	3	Volume ratio, VR	0.71
Weaving seg length, $\mathrm{L}(\mathrm{ft})$	1900	Level	Weaving ratio, R

Conversions to pc/h Under Base Conditions

Weaving and Non-Weaving Speeds

	Unconstrained		Constrained	
	Weaving ($\mathrm{i}=\mathrm{w}$)	Non-Weaving ($\mathrm{i}=\mathrm{nw}$)	Weaving ($\mathrm{i}=\mathrm{w}$)	Non-Weaving (= nw)
a (Exhibit 24-6)			0.35	0.0020
b (Exhibit 24-6)			2.20	4.00
C (Exhibit 24-6)			0.97	1.30
d (Exhibit 24-6)			0.80	0.75
Weaving intensity factor, Wi			1.56	0.30
Weaving and non-weaving speeds, Si (milh)			32.60	49.70
Number of lanes required for unconstrained operation, Nw 2.09 Maximum number of lanes, Nw (max) 1.40 Γ If Nw < Nw(max) unconstrained operation				
			F if $\mathrm{Nw}>\mathrm{Nw}$ (max) constrained operation	

Weaving Segment Speed, Density, Level of Service, and Capacity

Weaving segment speed, $\mathrm{S}(\mathrm{mi} / \mathrm{h})$	36.15
Weaving segment density, $\mathrm{D}(\mathrm{pc} / \mathrm{mi} / \mathrm{ln})$	19.21
Level of service, LOS	B
Capacity of base condition, $\mathrm{c}_{\mathrm{b}}(\mathrm{pc} / \mathrm{h})$	4656
Capacity as a 15-minute flow rate, $\mathrm{c}(\mathrm{veh} / \mathrm{h})$	4331
Capacity as a full-hour volume, $\mathrm{c}_{\mathrm{h}}(\mathrm{veh} / \mathrm{h})$	3898

Notes

a. Weaving segments longer than 2500 ft . are treated as isolated merge and diverge areas using the procedures of Chapter 25, "Ramps and Ramp Junctions".
b. Capacity constrained by basic freeway capacity.
c. Capacity occurs under constrained operating conditions.
d. Three-lane Type A segments do not operate well at volume ratios greater than 0.45 . Poor operations and some local queuing are expected in such cases.
e. Four-lane Type A segments do not operate well at volume ratios greater than 0.35 . Poor operations and some local queuing are expected in such cases.
f. Capacity constrained by maximum allowable weaving flow rate: $2,800 \mathrm{pc} / \mathrm{h}$ (Type A), 4,000 (Type B), 3,500 (Type C).
g. Five-lane Type A segments do not operate well at volume ratios greater than 0.20 . Poor operations and some local queuing are expected in such cases.
h. Type B weaving segments do not operate well at volume ratios greater than 0.80 . Poor operations and some local queuing are expected in such cases.
. Type C weaving segments do not operate well at volume ratios greater than 0.50 . Poor operations and some local queuing are expected in such cases.

General Information

Analyst	SKB
Agency/Company	TDOT / Long Engineering
Date Performed	$05 / 04 / 2009$
Analysis Time Period	AM Peak Period

Site Information
Freeway/Dir of Travel
Weaving Seg Location Jurisdiction
Analysis Year

APD-40 EB
West of Prop. Interchange
Cleveland, TN
2033

Inputs

Freeway free-flow speed, $\mathrm{S}_{\mathrm{FF}}(\mathrm{mi} / \mathrm{h})$	55	Weaving type	A
Weaving number of lanes, N	3	Volume ratio, VR	0.54
Weaving seg length, $\mathrm{L}(\mathrm{ft})$	1900	Level	Weaving ratio, R

Conversions to pc/h Under Base Conditions

Weaving and Non-Weaving Speeds

	Unconstrained		Constrained	
	Weaving ($\mathrm{i}=\mathrm{w}$)	Non-Weaving ($\mathrm{i}=\mathrm{nw}$)	Weaving ($\mathrm{i}=\mathrm{w}$)	Non-Weaving (= nw)
a (Exhibit 24-6)			0.35	0.0020
b (Exhibit 24-6)			2.20	4.00
C (Exhibit 24-6)			0.97	1.30
d (Exhibit 24-6)			0.80	0.75
Weaving intensity factor, Wi			1.63	0.28
Weaving and non-weaving speeds, Si (milh)			32.12	50.13
Number of lanes required for unconstrained operation, Nw 1.78 Maximum number of lanes, Nw (max) 1.40				
Г If Nw < Nw (max) unconstrained operation			Nw > Nw (max) co	ned operation

Weaving Segment Speed, Density, Level of Service, and Capacity

Weaving segment speed, $\mathrm{S}(\mathrm{mi} / \mathrm{h})$	38.51
Weaving segment density, $\mathrm{D}(\mathrm{pc} / \mathrm{mi} / \mathrm{ln})$	24.15
Level of service, LOS	C
Capacity of base condition, $\mathrm{c}_{\mathrm{b}}(\mathrm{pc} / \mathrm{h})$	4656
Capacity as a 15-minute flow rate, $\mathrm{c}(\mathrm{veh} / \mathrm{h})$	4331
Capacity as a full-hour volume, $\mathrm{c}_{\mathrm{h}}(\mathrm{veh} / \mathrm{h})$	3898

Notes

a. Weaving segments longer than 2500 ft . are treated as isolated merge and diverge areas using the procedures of Chapter 25, "Ramps and Ramp Junctions".
b. Capacity constrained by basic freeway capacity.
c. Capacity occurs under constrained operating conditions.
d. Three-lane Type A segments do not operate well at volume ratios greater than 0.45 . Poor operations and some local queuing are expected in such cases.
e. Four-lane Type A segments do not operate well at volume ratios greater than 0.35 . Poor operations and some local queuing are expected in such cases.
f. Capacity constrained by maximum allowable weaving flow rate: $2,800 \mathrm{pc} / \mathrm{h}$ (Type A), 4,000 (Type B), 3,500 (Type C).
g. Five-lane Type A segments do not operate well at volume ratios greater than 0.20 . Poor operations and some local queuing are expected in such cases.
h. Type B weaving segments do not operate well at volume ratios greater than 0.80 . Poor operations and some local queuing are expected in such cases.
. Type C weaving segments do not operate well at volume ratios greater than 0.50 . Poor operations and some local queuing are expected in such cases.

General Information

Analyst	SKB
Agency/Company	TDOT / Long Engineering
Date Performed	$05 / 04 / 2009$
Analysis Time Period	PM Peak Period

Site Information
Freeway/Dir of Travel
Weaving Seg Location Jurisdiction
Analysis Year

APD-40 EB
West of Prop. Interchange
Cleveland, TN
2033

Inputs

Freeway free-flow speed, $\mathrm{S}_{\text {FF }}$ (mi/h) 55
Weaving number of lanes, N 3

Weaving seg length, $\mathrm{L}(\mathrm{ft}) 1900$
Terrain Level

Weaving type	A
Volume ratio, VR	0.72
Weaving ratio, R	0.04

Conversions to pc/h Under Base Conditions

Weaving and Non-Weaving Speeds

	Unconstrained		Constrained	
	Weaving ($\mathrm{i}=\mathrm{w}$)	Non-Weaving ($\mathrm{i}=\mathrm{nw}$)	Weaving ($\mathrm{i}=\mathrm{w}$)	Non-Weaving (= nw)
a (Exhibit 24-6)			0.35	0.0020
b (Exhibit 24-6)			2.20	4.00
c (Exhibit 24-6)			0.97	1.30
d (Exhibit 24-6)			0.80	0.75
Weaving intensity factor, Wi			2.38	0.52
Weaving and non-weaving speeds, Si (milh			28.33	44.54
Number of lanes requir Maximum number of la	unconstrained ope (max)	$\begin{aligned} & \hline 2.20 \\ & 1.40 \end{aligned}$		

Weaving Segment Speed, Density, Level of Service, and Capacity

Weaving segment speed, $\mathrm{S}(\mathrm{mi} / \mathrm{h})$	31.60
Weaving segment density, $\mathrm{D}(\mathrm{pc} / \mathrm{mi} / \mathrm{h})$	33.89
Level of service, LOS	D
Capacity of base condition, $\mathrm{c}_{\mathrm{b}}(\mathrm{pc} / \mathrm{h})$	4656
Capacity as a 15-minute flow rate, $\mathrm{c}(\mathrm{veh} / \mathrm{h})$	4331
Capacity as a full-hour volume, $\mathrm{c}_{\mathrm{h}}(\mathrm{veh} / \mathrm{h})$	3898

Notes

a. Weaving segments longer than 2500 ft . are treated as isolated merge and diverge areas using the procedures of Chapter 25, "Ramps and Ramp Junctions".
b. Capacity constrained by basic freeway capacity.
c. Capacity occurs under constrained operating conditions.
d. Three-lane Type A segments do not operate well at volume ratios greater than 0.45 . Poor operations and some local queuing are expected in such cases.
e. Four-lane Type A segments do not operate well at volume ratios greater than 0.35 . Poor operations and some local queuing are expected in such cases.
f. Capacity constrained by maximum allowable weaving flow rate: $2,800 \mathrm{pc} / \mathrm{h}$ (Type A), 4,000 (Type B), 3,500 (Type C).
g. Five-lane Type A segments do not operate well at volume ratios greater than 0.20 . Poor operations and some local queuing are expected in such cases.
h. Type B weaving segments do not operate well at volume ratios greater than 0.80 . Poor operations and some local queuing are expected in such cases.
. Type C weaving segments do not operate well at volume ratios greater than 0.50 . Poor operations and some local queuing are expected in such cases.

General Information

Analyst	SKB
Agency/Company	TDOT / Long Engineering
Date Performed	$05 / 04 / 2009$
Analysis Time Period	AM Peak Period

Site Information

Freeway/Dir of Travel Weaving Seg Location Jurisdiction
Analysis Year
APD-40 EB
East of Prop. Interchange
Cleveland, TN
2013

Inputs

Freeway free-flow speed, $\mathrm{S}_{\mathrm{FF}}(\mathrm{mi} / \mathrm{h})$	55	Weaving type	A
Weaving number of lanes, N	3	Volume ratio, VR	0.30
Weaving seg length, $\mathrm{L}(\mathrm{ft})$	1975	Level	Weaving ratio, R

Conversions to pc/h Under Base Conditions

Weaving and Non-Weaving Speeds

	Unconstrained		Constrained	
	Weaving ($\mathrm{i}=\mathrm{w}$)	Non-Weaving ($\mathrm{i}=\mathrm{nw}$)	Weaving ($\mathrm{i}=\mathrm{w}$)	Non-Weaving (= nw)
a (Exhibit 24-6)	0.15	0.0035		
b (Exhibit 24-6)	2.20	4.00		
c (Exhibit 24-6)	0.97	1.30		
d (Exhibit 24-6)	0.80	0.75		
Weaving intensity factor, Wi	0.22	0.09		
Weaving and non-weaving speeds, Si (mi/h)	51.74	56.23		
Number of lanes required for unconstrained operation, Nw 1.17 Maximum number of lanes, Nw (max) 1.40 $\nabla \quad$ If Nw < Nw(max) unconstrained operation			$w>$ Nw (max)	d operation

Weaving Segment Speed, Density, Level of Service, and Capacity

Weaving segment speed, $\mathrm{S}(\mathrm{mi} / \mathrm{h})$	54.81
Weaving segment density, $\mathrm{D}(\mathrm{pc} / \mathrm{mi} / \mathrm{h})$	7.99
Level of service, LOS	A
Capacity of base condition, $\mathrm{c}_{\mathrm{b}}(\mathrm{pc} / \mathrm{h})$	5420
Capacity as a 15-minute flow rate, $\mathrm{c}(\mathrm{veh} / \mathrm{h})$	5042
Capacity as a full-hour volume, $\mathrm{c}_{\mathrm{h}}(\mathrm{veh} / \mathrm{h})$	4538

Notes

a. Weaving segments longer than 2500 ft . are treated as isolated merge and diverge areas using the procedures of Chapter 25, "Ramps and Ramp Junctions".
b. Capacity constrained by basic freeway capacity.
c. Capacity occurs under constrained operating conditions.
d. Three-lane Type A segments do not operate well at volume ratios greater than 0.45 . Poor operations and some local queuing are expected in such cases.
e. Four-lane Type A segments do not operate well at volume ratios greater than 0.35 . Poor operations and some local queuing are expected in such cases.
f. Capacity constrained by maximum allowable weaving flow rate: $2,800 \mathrm{pc} / \mathrm{h}$ (Type A), 4,000 (Type B), 3,500 (Type C).
g. Five-lane Type A segments do not operate well at volume ratios greater than 0.20 . Poor operations and some local queuing are expected in such cases.
h. Type B weaving segments do not operate well at volume ratios greater than 0.80 . Poor operations and some local queuing are expected in such cases.
. Type C weaving segments do not operate well at volume ratios greater than 0.50 . Poor operations and some local queuing are expected in such cases.

General Information

Analyst	SKB
Agency/Company	TDOT / Long Engineering
Date Performed	05/04/2009
Analysis Time Period	PM Peak Period

Site Information

Freeway/Dir of Travel Weaving Seg Location Jurisdiction
Analysis Year
APD-40 EB
East of Prop. Interchange Cleveland, TN
2013

Inputs

Freeway free-flow speed, $\mathrm{S}_{\mathrm{FF}}(\mathrm{mi} / \mathrm{h})$	55	Weaving type	A
Weaving number of lanes, N	3	Volume ratio, VR	0.27
Weaving seg length, $\mathrm{L}(\mathrm{ft})$	1975	Level	Weaving ratio, R

Conversions to pc/h Under Base Conditions

(pc/h)	V	PHF	Truck \%	RV \%	E_{\top}	E_{R}	f_{HV}	fp_{p}	v
V_{01}	1214	0.90	15	0	1.5	1.2	0.930	1.00	1450
V_{02}	42	0.90	15	0	1.5	1.2	0.930	1.00	50
$\mathrm{v}_{\mathrm{w} 1}$	268	0.90	15	0	1.5	1.2	0.930	1.00	320
$\mathrm{V}_{\mathrm{w} 2}$	191	0.90	15	0	1.5	1.2	0.930	1.00	228
$\mathrm{v}_{\text {w }}$									
V									

Weaving and Non-Weaving Speeds

	Unconstrained		Constrained	
	Weaving ($\mathrm{i}=\mathrm{w}$)	Non-Weaving (i = nw)	Weaving ($\mathrm{i}=\mathrm{w}$)	Non-Weaving (= nw)
a (Exhibit 24-6)	0.15	0.0035		
b (Exhibit 24-6)	2.20	4.00		
c (Exhibit 24-6)	0.97	1.30		
d (Exhibit 24-6)	0.80	0.75		
Weaving intensity factor, Wi	0.33	0.15		
Weaving and non-weaving speeds, Si (milh	48.90	54.22		
Number of lanes requi Maximum number of l V If Nw	unconstrained ope (max) x) unconstrained	$\begin{aligned} & \hline 1.12 \\ & 1.40 \end{aligned}$	Nw > Nw (max) con	ned operation

Weaving Segment Speed, Density, Level of Service, and Capacity

Weaving segment speed, $\mathrm{S}(\mathrm{mi} / \mathrm{h})$	52.68
Weaving segment density, $\mathrm{D}(\mathrm{pc} / \mathrm{mi} / \mathrm{h})$	12.96
Level of service, LOS	B
Capacity of base condition, $\mathrm{c}_{\mathrm{b}}(\mathrm{pc} / \mathrm{h})$	5529
Capacity as a 15-minute flow rate, $\mathrm{c}(\mathrm{veh} / \mathrm{h})$	5143
Capacity as a full-hour volume, $\mathrm{c}_{\mathrm{h}}(\mathrm{veh} / \mathrm{h})$	4629

Notes

a. Weaving segments longer than 2500 ft . are treated as isolated merge and diverge areas using the procedures of Chapter 25, "Ramps and Ramp Junctions".
b. Capacity constrained by basic freeway capacity.
c. Capacity occurs under constrained operating conditions.
d. Three-lane Type A segments do not operate well at volume ratios greater than 0.45 . Poor operations and some local queuing are expected in such cases.
e. Four-lane Type A segments do not operate well at volume ratios greater than 0.35 . Poor operations and some local queuing are expected in such cases.
f. Capacity constrained by maximum allowable weaving flow rate: $2,800 \mathrm{pc} / \mathrm{h}$ (Type A), 4,000 (Type B), 3,500 (Type C).
g. Five-lane Type A segments do not operate well at volume ratios greater than 0.20 . Poor operations and some local queuing are expected in such cases.
h. Type B weaving segments do not operate well at volume ratios greater than 0.80 . Poor operations and some local queuing are expected in such cases.
Type C weaving segments do not operate well at volume ratios greater than 0.50 . Poor operations and some local queuing are expected in such cases.

General Information

Analyst	SKB
Agency/Company	TDOT / Long Engineering
Date Performed	$05 / 04 / 2009$
Analysis Time Period	AM Peak Period

Site Information

Freeway/Dir of Travel	APD-40 EB
Weaving Seg Location	East of Prop. Interchange
Jurisdiction	Cleveland, TN
Analysis Year	2033

APD-40 EB Cleveland, TN 2033

Inputs

Freeway free-flow speed, $\mathrm{S}_{\mathrm{FF}}(\mathrm{mi} / \mathrm{h})$	55	Weaving type	A
Weaving number of lanes, N	3	Volume ratio, VR	0.30
Weaving seg length, $\mathrm{L}(\mathrm{ft})$	1975	Level	Weaving ratio, R

Conversions to pc/h Under Base Conditions

Weaving and Non-Weaving Speeds

	Unconstrained		Constrained	
	Weaving ($\mathrm{i}=\mathrm{w}$)	Non-Weaving ($\mathrm{i}=\mathrm{nw}$)	Weaving ($\mathrm{i}=\mathrm{w}$)	Non-Weaving ($=$ nw)
a (Exhibit 24-6)	0.15	0.0035		
b (Exhibit 24-6)	2.20	4.00		
C (Exhibit 24-6)	0.97	1.30		
d (Exhibit 24-6)	0.80	0.75		
Weaving intensity factor, Wi	0.34	0.16		
Weaving and non-weaving speeds, Si (milh)	48.54	53.79		
Number of lanes required for unconstrained operation, Nw 1.20 Maximum number of lanes, Nw (max) 1.40 \sqrt{F} If Nw < Nw(max) unconstrained operation				
			Г if Nw $>$ Nw (max) constrained operation	

Weaving Segment Speed, Density, Level of Service, and Capacity

Weaving segment speed, $\mathrm{S}(\mathrm{mi} / \mathrm{h})$	52.10
Weaving segment density, $\mathrm{D}(\mathrm{pc} / \mathrm{mi} / \mathrm{h})$	12.96
Level of service, LOS	B
Capacity of base condition, $\mathrm{c}_{\mathrm{b}}(\mathrm{pc} / \mathrm{h})$	5422
Capacity as a 15-minute flow rate, $\mathrm{c}(\mathrm{veh} / \mathrm{h})$	5044
Capacity as a full-hour volume, $\mathrm{c}_{\mathrm{h}}(\mathrm{veh} / \mathrm{h})$	4540

Notes

a. Weaving segments longer than 2500 ft . are treated as isolated merge and diverge areas using the procedures of Chapter 25, "Ramps and Ramp Junctions".
b. Capacity constrained by basic freeway capacity.
c. Capacity occurs under constrained operating conditions.
d. Three-lane Type A segments do not operate well at volume ratios greater than 0.45 . Poor operations and some local queuing are expected in such cases.
e. Four-lane Type A segments do not operate well at volume ratios greater than 0.35 . Poor operations and some local queuing are expected in such cases.
f. Capacity constrained by maximum allowable weaving flow rate: $2,800 \mathrm{pc} / \mathrm{h}$ (Type A), 4,000 (Type B), 3,500 (Type C).
g. Five-lane Type A segments do not operate well at volume ratios greater than 0.20 . Poor operations and some local queuing are expected in such cases.
h. Type B weaving segments do not operate well at volume ratios greater than 0.80 . Poor operations and some local queuing are expected in such cases.
Type C weaving segments do not operate well at volume ratios greater than 0.50 . Poor operations and some local queuing are expected in such cases.

General Information

Analyst	SKB
Agency/Company	TDOT / Long Engineering
Date Performed	$05 / 04 / 2009$
Analysis Time Period	PM Peak Period

Site Information

Freeway/Dir of Travel	APD-40 EB
Weaving Seg Location	East of Prop. Interchange
Jurisdiction	Cleveland, TN
Analysis Year	2033

APD-40 EB Cleveland, TN 2033

Inputs

Freeway free-flow speed, $\mathrm{S}_{\mathrm{FF}}(\mathrm{mi} / \mathrm{h})$	55	Weaving type	A
Weaving number of lanes, N	3	Volume ratio, VR	0.27
Weaving seg length, $\mathrm{L}(\mathrm{ft})$	1975	Level	Weaving ratio, R

Conversions to pc/h Under Base Conditions

Weaving and Non-Weaving Speeds

	Unconstrained		Constrained	
	Weaving ($\mathrm{i}=\mathrm{w}$)	Non-Weaving ($\mathrm{i}=\mathrm{nw}$)	Weaving ($\mathrm{i}=\mathrm{w}$)	Non-Weaving (= nw)
a (Exhibit 24-6)	0.15	0.0035		
b (Exhibit 24-6)	2.20	4.00		
c (Exhibit 24-6)	0.97	1.30		
d (Exhibit 24-6)	0.80	0.75		
Weaving intensity factor, Wi	0.50	0.26		
Weaving and non-weaving speeds, Si (mi/h)	45.06	50.78		
Number of lanes required for unconstrained operation, Nw 1.16 Maximum number of lanes, Nw (max) 1.40 $\sqrt{\nabla}$ If Nw < Nw(max) unconstrained operation			lw > Nw (max) c	d operation

Weaving Segment Speed, Density, Level of Service, and Capacity

Weaving segment speed, $\mathrm{S}(\mathrm{mi} / \mathrm{h})$	49.12
Weaving segment density, $\mathrm{D}(\mathrm{pc} / \mathrm{mi} / \mathrm{ln})$	21.42
Level of service, LOS	B
Capacity of base condition, $\mathrm{c}_{\mathrm{b}}(\mathrm{pc} / \mathrm{h})$	5534
Capacity as a 15-minute flow rate, $\mathrm{c}(\mathrm{veh} / \mathrm{h})$	5148
Capacity as a full-hour volume, $\mathrm{c}_{\mathrm{h}}(\mathrm{veh} / \mathrm{h})$	4633

Notes

a. Weaving segments longer than 2500 ft . are treated as isolated merge and diverge areas using the procedures of Chapter 25, "Ramps and Ramp Junctions".
b. Capacity constrained by basic freeway capacity.
c. Capacity occurs under constrained operating conditions.
d. Three-lane Type A segments do not operate well at volume ratios greater than 0.45 . Poor operations and some local queuing are expected in such cases.
e. Four-lane Type A segments do not operate well at volume ratios greater than 0.35 . Poor operations and some local queuing are expected in such cases.
f. Capacity constrained by maximum allowable weaving flow rate: $2,800 \mathrm{pc} / \mathrm{h}$ (Type A), 4,000 (Type B), 3,500 (Type C).
g. Five-lane Type A segments do not operate well at volume ratios greater than 0.20 . Poor operations and some local queuing are expected in such cases.
h. Type B weaving segments do not operate well at volume ratios greater than 0.80 . Poor operations and some local queuing are expected in such cases.
Type C weaving segments do not operate well at volume ratios greater than 0.50 . Poor operations and some local queuing are expected in such cases.

General Information

Analyst	SKB
Agency/Company	TDOT / Long Engineering
Date Performed	$05 / 04 / 2009$
Analysis Time Period	AM Peak Period

Site Information

Freeway/Dir of Travel Weaving Seg Location Jurisdiction
Analysis Year
APD-40 WB
East of Prop. Interchange
Cleveland, TN
2013

Inputs

Freeway free-flow speed, $\mathrm{S}_{\mathrm{FF}}(\mathrm{mi} / \mathrm{h})$	55	Weaving type	A
Weaving number of lanes, N	2	Volume ratio, VR	0.22
Weaving seg length, $\mathrm{L}(\mathrm{ft})$	1975	Level	Weaving ratio, R

Conversions to pc/h Under Base Conditions

Weaving and Non-Weaving Speeds

	Unconstrained		Constrained	
	Weaving ($\mathrm{i}=\mathrm{w}$)	Non-Weaving ($\mathrm{i}=\mathrm{nw}$)	Weaving ($\mathrm{i}=\mathrm{w}$)	Non-Weaving ($=$ nw)
a (Exhibit 24-6)	0.15	0.0035		
b (Exhibit 24-6)	2.20	4.00		
C (Exhibit 24-6)	0.97	1.30		
d (Exhibit 24-6)	0.80	0.75		
Weaving intensity factor, Wi	0.46	0.22		
Weaving and non-weaving speeds, Si (milh)	45.78	51.74		
Number of lanes required for unconstrained operation, Nw 0.69 Maximum number of lanes, Nw (max) 1.40 \square If Nw < Nw(max) unconstrained operation				
			Г if Nw $>$ Nw (max) constrained operation	

Weaving Segment Speed, Density, Level of Service, and Capacity

Weaving segment speed, $\mathrm{S}(\mathrm{mi} / \mathrm{h})$	50.30
Weaving segment density, $\mathrm{D}(\mathrm{pc} / \mathrm{mi} / \mathrm{h})$	21.07
Level of service, LOS	B
Capacity of base condition, $\mathrm{c}_{\mathrm{b}}(\mathrm{pc} / \mathrm{h})$	
Capacity as a 15-minute flow rate, $\mathrm{c}(\mathrm{veh} / \mathrm{h})$	
Capacity as a full-hour volume, $\mathrm{c}_{\mathrm{h}}(\mathrm{veh} / \mathrm{h})$	

Notes

a. Weaving segments longer than 2500 ft . are treated as isolated merge and diverge areas using the procedures of Chapter 25, "Ramps and Ramp Junctions".
b. Capacity constrained by basic freeway capacity.
c. Capacity occurs under constrained operating conditions.
d. Three-lane Type A segments do not operate well at volume ratios greater than 0.45 . Poor operations and some local queuing are expected in such cases.
e. Four-lane Type A segments do not operate well at volume ratios greater than 0.35 . Poor operations and some local queuing are expected in such cases.
f. Capacity constrained by maximum allowable weaving flow rate: $2,800 \mathrm{pc} / \mathrm{h}$ (Type A), 4,000 (Type B), 3,500 (Type C).
g. Five-lane Type A segments do not operate well at volume ratios greater than 0.20 . Poor operations and some local queuing are expected in such cases.
h. Type B weaving segments do not operate well at volume ratios greater than 0.80 . Poor operations and some local queuing are expected in such cases.
. Type C weaving segments do not operate well at volume ratios greater than 0.50 . Poor operations and some local queuing are expected in such cases.

General Information

Analyst	SKB
Agency/Company	TDOT / Long Engineering
Date Performed	05/04/2009
Analysis Time Period	PM Peak Period

Site Information

Freeway/Dir of Travel Weaving Seg Location Jurisdiction
Analysis Year
APD-40 WB
East of Prop. Interchange
Cleveland, TN
2013

Inputs

Freeway free-flow speed, $\mathrm{S}_{\mathrm{FF}}(\mathrm{mi} / \mathrm{h})$	55	Weaving type	A
Weaving number of lanes, N	2	Volume ratio, VR	0.35
Weaving seg length, $\mathrm{L}(\mathrm{ft})$	1975	Level	Weaving ratio, R

Conversions to pc/h Under Base Conditions

Weaving and Non-Weaving Speeds

	Unconstrained		Constrained	
	Weaving ($\mathrm{i}=\mathrm{w}$)	Non-Weaving ($\mathrm{i}=\mathrm{nw}$)	Weaving ($\mathrm{i}=\mathrm{w}$)	Non-Weaving (= nw)
a (Exhibit 24-6)	0.15	0.0035		
b (Exhibit 24-6)	2.20	4.00		
c (Exhibit 24-6)	0.97	1.30		
d (Exhibit 24-6)	0.80	0.75		
Weaving intensity factor, Wi	0.39	0.20		
Weaving and non-weaving speeds, Si (mi/h)	47.28	52.44		
Number of lanes requir Maximum number of la	unconstrained ope $w(\max)$ x) unconstrained	$\begin{aligned} & 0.89 \\ & 1.40 \end{aligned}$	Nw (max)	ned operation

Weaving Segment Speed, Density, Level of Service, and Capacity

Weaving segment speed, $\mathrm{S}(\mathrm{mi} / \mathrm{h})$	50.51
Weaving segment density, $\mathrm{D}(\mathrm{pc} / \mathrm{mi} / \mathrm{ln})$	14.16
Level of service, LOS	B
Capacity of base condition, $\mathrm{c}_{\mathrm{b}}(\mathrm{pc} / \mathrm{h})$	
Capacity as a 15-minute flow rate, $\mathrm{c}(\mathrm{veh} / \mathrm{h})$	
Capacity as a full-hour volume, $\mathrm{c}_{\mathrm{h}}(\mathrm{veh} / \mathrm{h})$	

Notes

a. Weaving segments longer than 2500 ft . are treated as isolated merge and diverge areas using the procedures of Chapter 25, "Ramps and Ramp Junctions".
b. Capacity constrained by basic freeway capacity.
c. Capacity occurs under constrained operating conditions.
d. Three-lane Type A segments do not operate well at volume ratios greater than 0.45 . Poor operations and some local queuing are expected in such cases.
e. Four-lane Type A segments do not operate well at volume ratios greater than 0.35 . Poor operations and some local queuing are expected in such cases.
f. Capacity constrained by maximum allowable weaving flow rate: $2,800 \mathrm{pc} / \mathrm{h}$ (Type A), 4,000 (Type B), 3,500 (Type C).
g. Five-lane Type A segments do not operate well at volume ratios greater than 0.20 . Poor operations and some local queuing are expected in such cases.
h. Type B weaving segments do not operate well at volume ratios greater than 0.80 . Poor operations and some local queuing are expected in such cases.
. Type C weaving segments do not operate well at volume ratios greater than 0.50 . Poor operations and some local queuing are expected in such cases.

General Information

Analyst	SKB
Agency/Company	TDOT / Long Engineering
Date Performed	05/04/2009
Analysis Time Period	AM Peak Period

Site Information

Freeway/Dir of Travel	APD-40 WB
Weaving Seg Location	East of Prop. Interchange
Jurisdiction	Cleveland, TN
Analysis Year	2033

APD-40 WB Cleveland, TN 2033

Inputs

Freeway free-flow speed, $\mathrm{S}_{\text {FF }}(\mathrm{mi} / \mathrm{h})$	55	Weaving type	A
Weaving number of lanes, N	2	Volume ratio, VR	0.22
Weaving seg length, $\mathrm{L}(\mathrm{ft})$	1975	Level	Weaving ratio, R

Conversions to pc/h Under Base Conditions

Weaving and Non-Weaving Speeds

	Unconstrained		Constrained	
	Weaving ($\mathrm{i}=\mathrm{w}$)	Non-Weaving ($\mathrm{i}=\mathrm{nw}$)	Weaving ($\mathrm{i}=\mathrm{w}$)	Non-Weaving ($=$ nw)
a (Exhibit 24-6)	0.15	0.0035		
b (Exhibit 24-6)	2.20	4.00		
C (Exhibit 24-6)	0.97	1.30		
d (Exhibit 24-6)	0.80	0.75		
Weaving intensity factor, Wi	0.70	0.39		
Weaving and non-weaving speeds, Si (milh)	41.53	47.42		
Number of lanes required for unconstrained operation, Nw 0.71 Maximum number of lanes, Nw (max) 1.40				
			Nw > Nw (max) co	ed operation

Weaving Segment Speed, Density, Level of Service, and Capacity

Weaving segment speed, $\mathrm{S}(\mathrm{mi} / \mathrm{h})$	46.01
Weaving segment density, $\mathrm{D}(\mathrm{pc} / \mathrm{mi} / \mathrm{ln})$	35.42
Level of service, LOS	D
Capacity of base condition, $\mathrm{c}_{\mathrm{b}}(\mathrm{pc} / \mathrm{h})$	
Capacity as a 15-minute flow rate, $\mathrm{c}(\mathrm{veh} / \mathrm{h})$	
Capacity as a full-hour volume, $\mathrm{c}_{\mathrm{h}}(\mathrm{veh} / \mathrm{h})$	

Notes

a. Weaving segments longer than 2500 ft . are treated as isolated merge and diverge areas using the procedures of Chapter 25, "Ramps and Ramp Junctions".
b. Capacity constrained by basic freeway capacity.
c. Capacity occurs under constrained operating conditions.
d. Three-lane Type A segments do not operate well at volume ratios greater than 0.45 . Poor operations and some local queuing are expected in such cases.
e. Four-lane Type A segments do not operate well at volume ratios greater than 0.35 . Poor operations and some local queuing are expected in such cases.
f. Capacity constrained by maximum allowable weaving flow rate: $2,800 \mathrm{pc} / \mathrm{h}$ (Type A), 4,000 (Type B), 3,500 (Type C).
g. Five-lane Type A segments do not operate well at volume ratios greater than 0.20 . Poor operations and some local queuing are expected in such cases.
h. Type B weaving segments do not operate well at volume ratios greater than 0.80 . Poor operations and some local queuing are expected in such cases.
Type C weaving segments do not operate well at volume ratios greater than 0.50 . Poor operations and some local queuing are expected in such cases.

General Information

Analyst	SKB
Agency/Company	TDOT / Long Engineering
Date Performed	05/04/2009
Analysis Time Period	PM Peak Period

Site Information

Freeway/Dir of Travel	APD-40 WB
Weaving Seg Location	East of Prop. Interchange
Jurisdiction	Cleveland, TN
Analysis Year	2033

APD-40 WB East of Prop. Interchange 2033

Inputs

Freeway free-flow speed, $\mathrm{S}_{\mathrm{FF}}(\mathrm{mi} / \mathrm{h})$	55	Aeaving type	A
Weaving number of lanes, N	2	Volume ratio, VR	0.34
Weaving seg length, $\mathrm{L}(\mathrm{ft})$	1975	Level	Weaving ratio, R

Conversions to pc/h Under Base Conditions

Weaving and Non-Weaving Speeds

	Unconstrained		Constrained	
	Weaving ($\mathrm{i}=\mathrm{w}$)	Non-Weaving ($\mathrm{i}=\mathrm{nw}$)	Weaving ($\mathrm{i}=\mathrm{w}$)	Non-Weaving (= nw)
a (Exhibit 24-6)	0.15	0.0035		
b (Exhibit 24-6)	2.20	4.00		
C (Exhibit 24-6)	0.97	1.30		
d (Exhibit 24-6)	0.80	0.75		
Weaving intensity factor, Wi	0.57	0.33		
Weaving and non-weaving speeds, Si (mi/h	43.70	48.93		
Number of lanes required for unconstrained operation, Nw 0.90 Maximum number of lanes, Nw (max) 1.40 \boxed{V} If Nw < Nw(max) unconstrained operation				
			Γ if $\mathrm{Nw}>\mathrm{Nw}(\mathrm{max})$ constrained operation	

Weaving Segment Speed, Density, Level of Service, and Capacity

Weaving segment speed, $\mathrm{S}(\mathrm{mi} / \mathrm{h})$	47.02
Weaving segment density, $\mathrm{D}(\mathrm{pc} / \mathrm{mi} / \mathrm{h})$	22.64
Level of service, LOS	B
Capacity of base condition, $\mathrm{c}_{\mathrm{b}}(\mathrm{pc} / \mathrm{h})$	
Capacity as a 15-minute flow rate, $\mathrm{c}(\mathrm{veh} / \mathrm{h})$	
Capacity as a full-hour volume, $\mathrm{c}_{\mathrm{h}}(\mathrm{veh} / \mathrm{h})$	

Notes

a. Weaving segments longer than 2500 ft . are treated as isolated merge and diverge areas using the procedures of Chapter 25, "Ramps and Ramp Junctions".
b. Capacity constrained by basic freeway capacity.
c. Capacity occurs under constrained operating conditions.
d. Three-lane Type A segments do not operate well at volume ratios greater than 0.45 . Poor operations and some local queuing are expected in such cases.
e. Four-lane Type A segments do not operate well at volume ratios greater than 0.35 . Poor operations and some local queuing are expected in such cases.
f. Capacity constrained by maximum allowable weaving flow rate: $2,800 \mathrm{pc} / \mathrm{h}$ (Type A), 4,000 (Type B), 3,500 (Type C).
g. Five-lane Type A segments do not operate well at volume ratios greater than 0.20 . Poor operations and some local queuing are expected in such cases.
h. Type B weaving segments do not operate well at volume ratios greater than 0.80 . Poor operations and some local queuing are expected in such cases.
Type C weaving segments do not operate well at volume ratios greater than 0.50 . Poor operations and some local queuing are expected in such cases.

General Information

Analyst	SKB
Agency/Company	TDOT / Long Engineering
Date Performed	$05 / 04 / 2009$
Analysis Time Period	AM Peak Period

Site Information
Freeway/Dir of Travel
Weaving Seg Location Jurisdiction
Analysis Year

APD-40 WB
West of Prop. Interchange
Cleveland, TN
2013

Inputs

Freeway free-flow speed, $\mathrm{S}_{\mathrm{FF}}(\mathrm{mi} / \mathrm{h})$	55	Weaving type	A
Weaving number of lanes, N	2	Volume ratio, VR	0.39
Weaving seg length, $\mathrm{L}(\mathrm{ft})$	1900	Level	Weaving ratio, R

Conversions to pc/h Under Base Conditions

Weaving and Non-Weaving Speeds

	Unconstrained		Constrained	
	Weaving ($\mathrm{i}=\mathrm{w}$)	Non-Weaving ($\mathrm{i}=\mathrm{nw}$)	Weaving ($\mathrm{i}=\mathrm{w}$)	Non-Weaving (= nw)
a (Exhibit 24-6)	0.15	0.0035		
b (Exhibit 24-6)	2.20	4.00		
c (Exhibit 24-6)	0.97	1.30		
d (Exhibit 24-6)	0.80	0.75		
Weaving intensity factor, Wi	0.66	0.41		
Weaving and non-weaving speeds, Si (mi/h)	42.11	46.93		
Number of lanes required for unconstrained operation, Nw 0.98 Maximum number of lanes, Nw (max) 1.40 $\nabla \quad$ If Nw < Nw(max) unconstrained operation			lw > Nw (max) c	d operation

Weaving Segment Speed, Density, Level of Service, and Capacity

Weaving segment speed, $\mathrm{S}(\mathrm{mi} / \mathrm{h})$	44.94
Weaving segment density, $\mathrm{D}(\mathrm{pc} / \mathrm{mi} / \mathrm{h})$	24.66
Level of service, LOS	C
Capacity of base condition, $\mathrm{c}_{\mathrm{b}}(\mathrm{pc} / \mathrm{h})$	
Capacity as a 15-minute flow rate, $\mathrm{c}(\mathrm{veh} / \mathrm{h})$	
Capacity as a full-hour volume, $\mathrm{c}_{\mathrm{h}}(\mathrm{veh} / \mathrm{h})$	

Notes

a. Weaving segments longer than 2500 ft . are treated as isolated merge and diverge areas using the procedures of Chapter 25 , "Ramps and Ramp Junctions".
b. Capacity constrained by basic freeway capacity.
c. Capacity occurs under constrained operating conditions.
d. Three-lane Type A segments do not operate well at volume ratios greater than 0.45 . Poor operations and some local queuing are expected in such cases.
e. Four-lane Type A segments do not operate well at volume ratios greater than 0.35 . Poor operations and some local queuing are expected in such cases.
f. Capacity constrained by maximum allowable weaving flow rate: $2,800 \mathrm{pc} / \mathrm{h}$ (Type A), 4,000 (Type B), 3,500 (Type C).
g. Five-lane Type A segments do not operate well at volume ratios greater than 0.20 . Poor operations and some local queuing are expected in such cases.
h. Type B weaving segments do not operate well at volume ratios greater than 0.80 . Poor operations and some local queuing are expected in such cases.
. Type C weaving segments do not operate well at volume ratios greater than 0.50 . Poor operations and some local queuing are expected in such cases.

General Information

Analyst	SKB
Agency/Company	TDOT / Long Engineering
Date Performed	$05 / 04 / 2009$
Analysis Time Period	PM Peak Period

Site Information
Freeway/Dir of Travel
Weaving Seg Location Jurisdiction
Analysis Year

APD-40 WB
West of Prop. Interchange
Cleveland, TN
2013

Inputs

Freeway free-flow speed, $\mathrm{S}_{\mathrm{FF}}(\mathrm{mi} / \mathrm{h})$	55	Weaving type	A
Weaving number of lanes, N	2	Volume ratio, VR	0.47
Weaving seg length, $\mathrm{L}(\mathrm{ft})$	1900	Level	Weaving ratio, R

Conversions to pc/h Under Base Conditions

Weaving and Non-Weaving Speeds

	Unconstrained		Constrained	
	Weaving ($\mathrm{i}=\mathrm{w}$)	Non-Weaving ($\mathrm{i}=\mathrm{nw}$)	Weaving ($\mathrm{i}=\mathrm{w}$)	Non-Weaving (= nw)
a (Exhibit 24-6)	0.15	0.0035		
b (Exhibit 24-6)	2.20	4.00		
c (Exhibit 24-6)	0.97	1.30		
d (Exhibit 24-6)	0.80	0.75		
Weaving intensity factor, Wi	0.71	0.48		
Weaving and non-weaving speeds, Si (mi/h)	41.33	45.39		
Number of lanes required for unconstrained operation, Nw 1.11 Maximum number of lanes, Nw (max) 1.40 \sqrt{V} If Nw < Nw(max) unconstrained operation			$w>$ Nw (max) co	ned operation

Weaving Segment Speed, Density, Level of Service, and Capacity

Weaving segment speed, $\mathrm{S}(\mathrm{mi} / \mathrm{h})$	43.37
Weaving segment density, $\mathrm{D}(\mathrm{pc} / \mathrm{mi} / \mathrm{h})$	24.02
Level of service, LOS	C
Capacity of base condition, $\mathrm{c}_{\mathrm{b}}(\mathrm{pc} / \mathrm{h})$	
Capacity as a 15-minute flow rate, $\mathrm{c}(\mathrm{veh} / \mathrm{h})$	
Capacity as a full-hour volume, $\mathrm{c}_{\mathrm{h}}(\mathrm{veh} / \mathrm{h})$	

Notes

a. Weaving segments longer than 2500 ft . are treated as isolated merge and diverge areas using the procedures of Chapter 25, "Ramps and Ramp Junctions".
b. Capacity constrained by basic freeway capacity.
c. Capacity occurs under constrained operating conditions.
d. Three-lane Type A segments do not operate well at volume ratios greater than 0.45 . Poor operations and some local queuing are expected in such cases.
e. Four-lane Type A segments do not operate well at volume ratios greater than 0.35 . Poor operations and some local queuing are expected in such cases.
f. Capacity constrained by maximum allowable weaving flow rate: $2,800 \mathrm{pc} / \mathrm{h}$ (Type A), 4,000 (Type B), 3,500 (Type C).
g. Five-lane Type A segments do not operate well at volume ratios greater than 0.20 . Poor operations and some local queuing are expected in such cases.
h. Type B weaving segments do not operate well at volume ratios greater than 0.80 . Poor operations and some local queuing are expected in such cases.
. Type C weaving segments do not operate well at volume ratios greater than 0.50 . Poor operations and some local queuing are expected in such cases.

General Information

Analyst	SKB
Agency/Company	TDOT / Long Engineering
Date Performed	$05 / 04 / 2009$
Analysis Time Period	AM Peak Period

Site Information
Freeway/Dir of Travel
Weaving Seg Location Jurisdiction
Analysis Year

APD-40 WB
West of Prop. Interchange
Cleveland, TN
2033

Inputs

Freeway free-flow speed, $\mathrm{S}_{\text {FF }}$ (mi/h) 55
Weaving number of lanes, $\mathrm{N} \quad 2$

Weaving seg length, L(ft) 1900
Terrain Level

Weaving type	A
Volume ratio, VR	0.37
Weaving ratio, R	0.22

Conversions to pc/h Under Base Conditions

Weaving and Non-Weaving Speeds

	Unconstrained		Constrained	
	Weaving ($\mathrm{i}=\mathrm{w}$)	Non-Weaving ($\mathrm{i}=\mathrm{nw}$)	Weaving ($\mathrm{i}=\mathrm{w}$)	Non-Weaving (= nw)
a (Exhibit 24-6)	0.15	0.0035		
b (Exhibit 24-6)	2.20	4.00		
c (Exhibit 24-6)	0.97	1.30		
d (Exhibit 24-6)	0.80	0.75		
Weaving intensity factor, Wi	0.92	0.63		
Weaving and non-weaving speeds, Si (mi/h)	38.44	42.62		
Number of lanes required for unconstrained operation, Nw 0.99 Maximum number of lanes, Nw (max) 1.40 \sqrt{V} If Nw < Nw(max) unconstrained operation			Iw > Nw (max) cc	ned operation

Weaving Segment Speed, Density, Level of Service, and Capacity

Weaving segment speed, $\mathrm{S}(\mathrm{mi} / \mathrm{h})$	40.98
Weaving segment density, $\mathrm{D}(\mathrm{pc} / \mathrm{mi} / \mathrm{ln})$	39.35
Level of service, LOS	E
Capacity of base condition, $\mathrm{c}_{\mathrm{b}}(\mathrm{pc} / \mathrm{h})$	
Capacity as a 15-minute flow rate, $\mathrm{c}(\mathrm{veh} / \mathrm{h})$	
Capacity as a full-hour volume, $\mathrm{c}_{\mathrm{h}}(\mathrm{veh} / \mathrm{h})$	

Notes

a. Weaving segments longer than 2500 ft . are treated as isolated merge and diverge areas using the procedures of Chapter 25 , "Ramps and Ramp Junctions".
b. Capacity constrained by basic freeway capacity.
c. Capacity occurs under constrained operating conditions.
d. Three-lane Type A segments do not operate well at volume ratios greater than 0.45 . Poor operations and some local queuing are expected in such cases.
e. Four-lane Type A segments do not operate well at volume ratios greater than 0.35 . Poor operations and some local queuing are expected in such cases.
f. Capacity constrained by maximum allowable weaving flow rate: $2,800 \mathrm{pc} / \mathrm{h}$ (Type A), 4,000 (Type B), 3,500 (Type C).
g. Five-lane Type A segments do not operate well at volume ratios greater than 0.20 . Poor operations and some local queuing are expected in such cases.
h. Type B weaving segments do not operate well at volume ratios greater than 0.80 . Poor operations and some local queuing are expected in such cases.
Type C weaving segments do not operate well at volume ratios greater than 0.50 . Poor operations and some local queuing are expected in such cases.

General Information

Analyst	SKB
Agency/Company	TDOT / Long Engineering
Date Performed	05/04/2009
Analysis Time Period	PM Peak Period

Site Information
Freeway/Dir of Travel
Weaving Seg Location Jurisdiction
Analysis Year

APD-40 WB
West of Prop. Interchange
Cleveland, TN
2033

Inputs

Freeway free-flow speed, $\mathrm{S}_{\mathrm{FF}}(\mathrm{mi} / \mathrm{h})$	55	Weaving type	A
Weaving number of lanes, N	2	Volume ratio, VR	0.48
Weaving seg length, $\mathrm{L}(\mathrm{ft})$	1900	Level	Weaving ratio, R

Conversions to pc/h Under Base Conditions

Weaving and Non-Weaving Speeds

	Unconstrained		Constrained	
	Weaving ($\mathrm{i}=\mathrm{w}$)	Non-Weaving ($\mathrm{i}=\mathrm{nw}$)	Weaving ($\mathrm{i}=\mathrm{w}$)	Non-Weaving (= nw)
a (Exhibit 24-6)	0.15	0.0035		
b (Exhibit 24-6)	2.20	4.00		
c (Exhibit 24-6)	0.97	1.30		
d (Exhibit 24-6)	0.80	0.75		
Weaving intensity factor, Wi	1.09	0.86		
Weaving and non-weaving speeds, Si (mi/h)	36.52	39.20		
Number of lanes required for unconstrained operation, Nw 1.18 Maximum number of lanes, Nw (max) 1.40 \sqrt{V} If Nw < Nw(max) unconstrained operation			$w>$ Nw (max) co	ned operation

Weaving Segment Speed, Density, Level of Service, and Capacity

Weaving segment speed, $\mathrm{S}(\mathrm{mi} / \mathrm{h})$	37.87
Weaving segment density, $\mathrm{D}(\mathrm{pc} / \mathrm{mi} / \mathrm{h})$	42.49
Level of service, LOS	F
Capacity of base condition, $\mathrm{c}_{\mathrm{b}}(\mathrm{pc} / \mathrm{h})$	
Capacity as a 15-minute flow rate, $\mathrm{c}(\mathrm{veh} / \mathrm{h})$	
Capacity as a full-hour volume, $\mathrm{c}_{\mathrm{h}}(\mathrm{veh} / \mathrm{h})$	

Notes

a. Weaving segments longer than 2500 ft . are treated as isolated merge and diverge areas using the procedures of Chapter 25, "Ramps and Ramp Junctions".
b. Capacity constrained by basic freeway capacity.
c. Capacity occurs under constrained operating conditions.
d. Three-lane Type A segments do not operate well at volume ratios greater than 0.45 . Poor operations and some local queuing are expected in such cases.
e. Four-lane Type A segments do not operate well at volume ratios greater than 0.35 . Poor operations and some local queuing are expected in such cases.
f. Capacity constrained by maximum allowable weaving flow rate: $2,800 \mathrm{pc} / \mathrm{h}$ (Type A), 4,000 (Type B), 3,500 (Type C).
g. Five-lane Type A segments do not operate well at volume ratios greater than 0.20 . Poor operations and some local queuing are expected in such cases.
h. Type B weaving segments do not operate well at volume ratios greater than 0.80 . Poor operations and some local queuing are expected in such cases.
. Type C weaving segments do not operate well at volume ratios greater than 0.50 . Poor operations and some local queuing are expected in such cases.

General Information

Analyst	SKB
Agency/Company	TDOT / Long Engineering
Date Performed	$05 / 04 / 2009$
Analysis Time Period	AM Peak Period

Site Information

Freeway/Dir of Travel Weaving Seg Location Jurisdiction
Analysis Year
APD-40 WB
East of Prop. Interchange
Cleveland, TN
2013

Inputs

Freeway free-flow speed, $\mathrm{S}_{\mathrm{FF}}(\mathrm{mi} / \mathrm{h})$	55	A	A
Weaving number of lanes, N	3	Voaving type	0.22
Weaving seg length, $\mathrm{L}(\mathrm{ft})$	1975	Level	Weaving ratio, VR
Terrain		0.48	

Conversions to pc/h Under Base Conditions

Weaving and Non-Weaving Speeds

	Unconstrained		Constrained	
	Weaving ($\mathrm{i}=\mathrm{w}$)	Non-Weaving ($\mathrm{i}=\mathrm{nw}$)	Weaving ($\mathrm{i}=\mathrm{w}$)	Non-Weaving ($=$ nw)
a (Exhibit 24-6)	0.15	0.0035		
b (Exhibit 24-6)	2.20	4.00		
C (Exhibit 24-6)	0.97	1.30		
d (Exhibit 24-6)	0.80	0.75		
Weaving intensity factor, Wi	0.31	0.13		
Weaving and non-weaving speeds, Si (milh)	49.30	54.73		
Number of lanes required for unconstrained operation, Nw 1.00 Maximum number of lanes, Nw (max) 1.40				
			Nw > Nw (max) co	ed operation

Weaving Segment Speed, Density, Level of Service, and Capacity

Weaving segment speed, $\mathrm{S}(\mathrm{mi} / \mathrm{h})$	53.43
Weaving segment density, $\mathrm{D}(\mathrm{pc} / \mathrm{mi} / \mathrm{h})$	13.22
Level of service, LOS	B
Capacity of base condition, $\mathrm{c}_{\mathrm{b}}(\mathrm{pc} / \mathrm{h})$	5688
Capacity as a 15-minute flow rate, $\mathrm{c}(\mathrm{veh} / \mathrm{h})$	5291
Capacity as a full-hour volume, $\mathrm{c}_{\mathrm{h}}(\mathrm{veh} / \mathrm{h})$	4762

Notes

a. Weaving segments longer than 2500 ft . are treated as isolated merge and diverge areas using the procedures of Chapter 25, "Ramps and Ramp Junctions".
b. Capacity constrained by basic freeway capacity.
c. Capacity occurs under constrained operating conditions.
d. Three-lane Type A segments do not operate well at volume ratios greater than 0.45 . Poor operations and some local queuing are expected in such cases.
e. Four-lane Type A segments do not operate well at volume ratios greater than 0.35 . Poor operations and some local queuing are expected in such cases.
f. Capacity constrained by maximum allowable weaving flow rate: $2,800 \mathrm{pc} / \mathrm{h}$ (Type A), 4,000 (Type B), 3,500 (Type C).
g. Five-lane Type A segments do not operate well at volume ratios greater than 0.20 . Poor operations and some local queuing are expected in such cases.
h. Type B weaving segments do not operate well at volume ratios greater than 0.80 . Poor operations and some local queuing are expected in such cases.
. Type C weaving segments do not operate well at volume ratios greater than 0.50 . Poor operations and some local queuing are expected in such cases.

General Information

Analyst	SKB
Agency/Company	TDOT / Long Engineering
Date Performed	$05 / 04 / 2009$
Analysis Time Period	PM Peak Period

Site Information

Freeway/Dir of Travel Weaving Seg Location Jurisdiction
Analysis Year
APD-40 WB
East of Prop. Interchange
Cleveland, TN
2013

Inputs

Freeway free-flow speed, $\mathrm{S}_{\mathrm{FF}}(\mathrm{mi} / \mathrm{h})$	55	Weaving type	A
Weaving number of lanes, N	3	Volume ratio, VR	0.35
Weaving seg length, $\mathrm{L}(\mathrm{ft})$	1975	Level	Weaving ratio, R

Conversions to pc/h Under Base Conditions

Weaving and Non-Weaving Speeds

	Unconstrained		Constrained	
	Weaving ($\mathrm{i}=\mathrm{w}$)	Non-Weaving ($\mathrm{i}=\mathrm{nw}$)	Weaving ($\mathrm{i}=\mathrm{w}$)	Non-Weaving (= nw)
a (Exhibit 24-6)	0.15	0.0035		
b (Exhibit 24-6)	2.20	4.00		
c (Exhibit 24-6)	0.97	1.30		
d (Exhibit 24-6)	0.80	0.75		
Weaving intensity factor, Wi	0.27	0.12		
Weaving and non-weaving speeds, Si (mi/h)	50.55	55.21		
Number of lanes requir Maximum number of la	unconstrained ope (max) x) unconstrained	$\begin{aligned} & \hline 1.29 \\ & 1.40 \end{aligned}$	Nw (max)	ned operation

Weaving Segment Speed, Density, Level of Service, and Capacity

Weaving segment speed, $\mathrm{S}(\mathrm{mi} / \mathrm{h})$	53.48
Weaving segment density, $\mathrm{D}(\mathrm{pc} / \mathrm{mi} / \mathrm{ln})$	8.92
Level of service, LOS	A
Capacity of base condition, $\mathrm{c}_{\mathrm{b}}(\mathrm{pc} / \mathrm{h})$	5148
Capacity as a 15-minute flow rate, $\mathrm{c}(\mathrm{veh} / \mathrm{h})$	4789
Capacity as a full-hour volume, $\mathrm{c}_{\mathrm{h}}(\mathrm{veh} / \mathrm{h})$	4310

Notes

a. Weaving segments longer than 2500 ft . are treated as isolated merge and diverge areas using the procedures of Chapter 25, "Ramps and Ramp Junctions".
b. Capacity constrained by basic freeway capacity.
c. Capacity occurs under constrained operating conditions.
d. Three-lane Type A segments do not operate well at volume ratios greater than 0.45 . Poor operations and some local queuing are expected in such cases.
e. Four-lane Type A segments do not operate well at volume ratios greater than 0.35 . Poor operations and some local queuing are expected in such cases.
f. Capacity constrained by maximum allowable weaving flow rate: $2,800 \mathrm{pc} / \mathrm{h}$ (Type A), 4,000 (Type B), 3,500 (Type C).
g. Five-lane Type A segments do not operate well at volume ratios greater than 0.20 . Poor operations and some local queuing are expected in such cases.
h. Type B weaving segments do not operate well at volume ratios greater than 0.80 . Poor operations and some local queuing are expected in such cases.
. Type C weaving segments do not operate well at volume ratios greater than 0.50 . Poor operations and some local queuing are expected in such cases.

General Information

Analyst	SKB
Agency/Company	TDOT / Long Engineering
Date Performed	05/04/2009
Analysis Time Period	AM Peak Period

Site Information

Freeway/Dir of Travel	APD-40 WB
Weaving Seg Location	East of Prop. Interchange
Jurisdiction	Cleveland, TN
Analysis Year	2033

APD-40 WB East of Prop. Interchange 2033

Inputs

Freeway free-flow speed, $\mathrm{S}_{\text {FF }}(\mathrm{mi} / \mathrm{h})$	55	Weaving type	A
Weaving number of lanes, N	3	Volume ratio, VR	0.22
Weaving seg length, $\mathrm{L}(\mathrm{ft})$	1975	Level	Weaving ratio, R

Conversions to pc/h Under Base Conditions

Weaving and Non-Weaving Speeds

	Unconstrained		Constrained	
	Weaving ($\mathrm{i}=\mathrm{w}$)	Non-Weaving ($\mathrm{i}=\mathrm{nw}$)	Weaving ($\mathrm{i}=\mathrm{w}$)	Non-Weaving (= nw)
a (Exhibit 24-6)	0.15	0.0035		
b (Exhibit 24-6)	2.20	4.00		
c (Exhibit 24-6)	0.97	1.30		
d (Exhibit 24-6)	0.80	0.75		
Weaving intensity factor, Wi	0.47	0.23		
Weaving and non-weaving speeds, Si (mi/h)	45.62	51.62		
Number of lanes required for unconstrained operation, Nw 1.03 Maximum number of lanes, Nw (max) 1.40 $\nabla \quad$ If Nw < Nw(max) unconstrained operation			lw > Nw (max) c	d operation

Weaving Segment Speed, Density, Level of Service, and Capacity

Weaving segment speed, $\mathrm{S}(\mathrm{mi} / \mathrm{h})$	50.19
Weaving segment density, $\mathrm{D}(\mathrm{pc} / \mathrm{mi} / \mathrm{ln})$	21.65
Level of service, LOS	B
Capacity of base condition, $\mathrm{c}_{\mathrm{b}}(\mathrm{pc} / \mathrm{h})$	5702
Capacity as a 15-minute flow rate, $\mathrm{c}(\mathrm{veh} / \mathrm{h})$	5304
Capacity as a full-hour volume, $\mathrm{c}_{\mathrm{h}}(\mathrm{veh} / \mathrm{h})$	4774

Notes

a. Weaving segments longer than 2500 ft . are treated as isolated merge and diverge areas using the procedures of Chapter 25, "Ramps and Ramp Junctions".
b. Capacity constrained by basic freeway capacity.
c. Capacity occurs under constrained operating conditions.
d. Three-lane Type A segments do not operate well at volume ratios greater than 0.45 . Poor operations and some local queuing are expected in such cases.
e. Four-lane Type A segments do not operate well at volume ratios greater than 0.35 . Poor operations and some local queuing are expected in such cases.
f. Capacity constrained by maximum allowable weaving flow rate: $2,800 \mathrm{pc} / \mathrm{h}$ (Type A), 4,000 (Type B), 3,500 (Type C).
g. Five-lane Type A segments do not operate well at volume ratios greater than 0.20 . Poor operations and some local queuing are expected in such cases.
h. Type B weaving segments do not operate well at volume ratios greater than 0.80 . Poor operations and some local queuing are expected in such cases.
Type C weaving segments do not operate well at volume ratios greater than 0.50 . Poor operations and some local queuing are expected in such cases.

General Information

Analyst	SKB
Agency/Company	TDOT / Long Engineering
Date Performed	05/04/2009
Analysis Time Period	PM Peak Period

Site Information

Freeway/Dir of Travel	APD-40 WB
Weaving Seg Location	East of Prop. Interchange
Jurisdiction	Cleveland, TN
Analysis Year	2033

APD-40 WB East of Prop. Interchange 2033

Inputs

Freeway free-flow speed, $\mathrm{S}_{\text {FF }}$ (mi/h) 55

Weaving number of lanes, $\mathrm{N} \quad 3$
Weaving seg length, L(ft) 1975
Terrain Level

Conversions to pc/h Under Base Conditions

Weaving and Non-Weaving Speeds

	Unconstrained		Constrained	
	Weaving ($\mathrm{i}=\mathrm{w}$)	Non-Weaving ($\mathrm{i}=\mathrm{nw}$)	Weaving ($\mathrm{i}=\mathrm{w}$)	Non-Weaving (= nw)
a (Exhibit 24-6)	0.15	0.0035		
b (Exhibit 24-6)	2.20	4.00		
C (Exhibit 24-6)	0.97	1.30		
d (Exhibit 24-6)	0.80	0.75		
Weaving intensity factor, Wi	0.38	0.19		
Weaving and non-weaving speeds, Si (mi/h)	47.53	52.73		
Number of lanes requi Maximum number of la F If Nw <	unconstrained ope (max) x) unconstrained	$\begin{aligned} & \hline 1.30 \\ & 1.40 \end{aligned}$	Nw > Nw (max) ${ }^{\text {col }}$	ned operation

Weaving Segment Speed, Density, Level of Service, and Capacity

Weaving segment speed, $\mathrm{S}(\mathrm{mi} / \mathrm{h})$	50.85
Weaving segment density, $\mathrm{D}(\mathrm{pc} / \mathrm{mi} / \mathrm{ln})$	13.96
Level of service, LOS	B
Capacity of base condition, $\mathrm{c}_{\mathrm{b}}(\mathrm{pc} / \mathrm{h})$	5212
Capacity as a 15-minute flow rate, $\mathrm{c}(\mathrm{veh} / \mathrm{h})$	4848
Capacity as a full-hour volume, $\mathrm{c}_{\mathrm{h}}(\mathrm{veh} / \mathrm{h})$	4363

Notes

a. Weaving segments longer than 2500 ft . are treated as isolated merge and diverge areas using the procedures of Chapter 25, "Ramps and Ramp Junctions".
b. Capacity constrained by basic freeway capacity.
c. Capacity occurs under constrained operating conditions.
d. Three-lane Type A segments do not operate well at volume ratios greater than 0.45 . Poor operations and some local queuing are expected in such cases.
e. Four-lane Type A segments do not operate well at volume ratios greater than 0.35 . Poor operations and some local queuing are expected in such cases.
f. Capacity constrained by maximum allowable weaving flow rate: $2,800 \mathrm{pc} / \mathrm{h}$ (Type A), 4,000 (Type B), 3,500 (Type C).
g. Five-lane Type A segments do not operate well at volume ratios greater than 0.20 . Poor operations and some local queuing are expected in such cases.
h. Type B weaving segments do not operate well at volume ratios greater than 0.80 . Poor operations and some local queuing are expected in such cases.
. Type C weaving segments do not operate well at volume ratios greater than 0.50 . Poor operations and some local queuing are expected in such cases.

General Information

Analyst	SKB
Agency/Company	TDOT / Long Engineering
Date Performed	$05 / 04 / 2009$
Analysis Time Period	AM Peak Period

Site Information
Freeway/Dir of Travel
Weaving Seg Location Jurisdiction
Analysis Year

APD-40 WB
West of Prop. Interchange
Cleveland, TN
2013

Inputs

Freeway free-flow speed, $\mathrm{S}_{\mathrm{FF}}(\mathrm{mi} / \mathrm{h})$	55	Weaving type	A
Weaving number of lanes, N	3	Volume ratio, VR	0.39
Weaving seg length, $\mathrm{L}(\mathrm{ft})$	1900	Level	Weaving ratio, R

Conversions to pc/h Under Base Conditions

Weaving and Non-Weaving Speeds

	Unconstrained		Constrained	
	Weaving ($\mathrm{i}=\mathrm{w}$)	Non-Weaving (i = nw)	Weaving ($\mathrm{i}=\mathrm{w}$)	Non-Weaving ($=\mathrm{nw}$)
a (Exhibit 24-6)			0.35	0.0020
b (Exhibit 24-6)			2.20	4.00
C (Exhibit 24-6)			0.97	1.30
d (Exhibit 24-6)			0.80	0.75
Weaving intensity factor, Wi			1.04	0.14
Weaving and non-weaving speeds, Si (mi/h)			37.07	54.54
Number of lanes requi Maximum number of	nconstrained ope (max)	$\begin{aligned} & \hline 1.41 \\ & 1.40 \end{aligned}$		

Weaving Segment Speed, Density, Level of Service, and Capacity

Weaving segment speed, $\mathrm{S}(\mathrm{mi} / \mathrm{h})$	46.12
Weaving segment density, $\mathrm{D}(\mathrm{pc} / \mathrm{mi} / \mathrm{ln})$	16.02
Level of service, LOS	B
Capacity of base condition, $\mathrm{c}_{\mathrm{b}}(\mathrm{pc} / \mathrm{h})$	4912
Capacity as a 15-minute flow rate, $\mathrm{c}(\mathrm{veh} / \mathrm{h})$	4569
Capacity as a full-hour volume, $\mathrm{c}_{\mathrm{h}}(\mathrm{veh} / \mathrm{h})$	4112

Notes

a. Weaving segments longer than 2500 ft . are treated as isolated merge and diverge areas using the procedures of Chapter 25, "Ramps and Ramp Junctions".
b. Capacity constrained by basic freeway capacity.
c. Capacity occurs under constrained operating conditions.
d. Three-lane Type A segments do not operate well at volume ratios greater than 0.45 . Poor operations and some local queuing are expected in such cases.
e. Four-lane Type A segments do not operate well at volume ratios greater than 0.35 . Poor operations and some local queuing are expected in such cases.
f. Capacity constrained by maximum allowable weaving flow rate: $2,800 \mathrm{pc} / \mathrm{h}$ (Type A), 4,000 (Type B), 3,500 (Type C).
g. Five-lane Type A segments do not operate well at volume ratios greater than 0.20 . Poor operations and some local queuing are expected in such cases.
h. Type B weaving segments do not operate well at volume ratios greater than 0.80 . Poor operations and some local queuing are expected in such cases.
. Type C weaving segments do not operate well at volume ratios greater than 0.50 . Poor operations and some local queuing are expected in such cases.

General Information

Analyst	SKB
Agency/Company	TDOT / Long Engineering
Date Performed	$05 / 04 / 2009$
Analysis Time Period	PM Peak Period

Site Information
Freeway/Dir of Travel
Weaving Seg Location Jurisdiction
Analysis Year

APD-40 WB
West of Prop. Interchange
Cleveland, TN
2013

Inputs

Freeway free-flow speed, $\mathrm{S}_{\mathrm{FF}}(\mathrm{mi} / \mathrm{h})$	55	Weaving type	A
Weaving number of lanes, N	3	Volume ratio, VR	0.47
Weaving seg length, $\mathrm{L}(\mathrm{ft})$	1900	Level	Weaving ratio, R

Conversions to pc/h Under Base Conditions

Weaving and Non-Weaving Speeds

	Unconstrained		Constrained	
	Weaving ($\mathrm{i}=\mathrm{w}$)	Non-Weaving ($\mathrm{i}=\mathrm{nw})$	Weaving ($\mathrm{i}=\mathrm{w}$)	Non-Weaving ($=\mathrm{nw})$
a (Exhibit 24-6)			0.35	0.0020
b (Exhibit 24-6)			2.20	4.00
c (Exhibit 24-6)			0.97	1.30
d (Exhibit 24-6)			0.80	0.75
Weaving intensity factor, Wi			1.12	0.16
Weaving and non-weaving speeds, Si (mi/h)			36.26	53.72

Number of lanes required for unconstrained operation, Nw
1.59

Maximum number of lanes, Nw (max)
1.40

Г If Nw < Nw(max) unconstrained operation
F if $\mathrm{Nw}>\mathrm{Nw}$ (max) constrained operation

Weaving Segment Speed, Density, Level of Service, and Capacity

Weaving segment speed, $\mathrm{S}(\mathrm{mi} / \mathrm{h})$	43.74
Weaving segment density, $\mathrm{D}(\mathrm{pc} / \mathrm{mi} / \mathrm{ln})$	15.88
Level of service, LOS	B
Capacity of base condition, $\mathrm{c}_{\mathrm{b}}(\mathrm{pc} / \mathrm{h})$	4656
Capacity as a 15-minute flow rate, $\mathrm{c}(\mathrm{veh} / \mathrm{h})$	4331
Capacity as a full-hour volume, $\mathrm{c}_{\mathrm{h}}(\mathrm{veh} / \mathrm{h})$	3898

Notes

a. Weaving segments longer than 2500 ft . are treated as isolated merge and diverge areas using the procedures of Chapter 25, "Ramps and Ramp Junctions".
b. Capacity constrained by basic freeway capacity.
c. Capacity occurs under constrained operating conditions.
d. Three-lane Type A segments do not operate well at volume ratios greater than 0.45 . Poor operations and some local queuing are expected in such cases.
e. Four-lane Type A segments do not operate well at volume ratios greater than 0.35 . Poor operations and some local queuing are expected in such cases.
f. Capacity constrained by maximum allowable weaving flow rate: $2,800 \mathrm{pc} / \mathrm{h}$ (Type A), 4,000 (Type B), 3,500 (Type C).
g. Five-lane Type A segments do not operate well at volume ratios greater than 0.20 . Poor operations and some local queuing are expected in such cases.
h. Type B weaving segments do not operate well at volume ratios greater than 0.80 . Poor operations and some local queuing are expected in such cases.
. Type C weaving segments do not operate well at volume ratios greater than 0.50 . Poor operations and some local queuing are expected in such cases.

General Information

Analyst	SKB
Agency/Company	TDOT / Long Engineering
Date Performed	$05 / 04 / 2009$
Analysis Time Period	AM Peak Period

Site Information
Freeway/Dir of Travel
Weaving Seg Location Jurisdiction
Analysis Year

APD-40 WB
West of Prop. Interchange
Cleveland, TN
2033

Inputs

Freeway free-flow speed, $\mathrm{S}_{\text {FF }}$ (mi/h) 55

Weaving number of lanes, N 3
Weaving seg length, L(ft) 1900
Terrain Level

Weaving type A
Volume ratio, VR 0.37
$\begin{array}{ll}\text { Weaving ratio, } \mathrm{R} & 0.22\end{array}$

Conversions to pc/h Under Base Conditions

Weaving and Non-Weaving Speeds

	Unconstrained		Constrained	
	Weaving ($\mathrm{i}=\mathrm{w}$)	Non-Weaving ($\mathrm{i}=\mathrm{nw}$)	Weaving ($\mathrm{i}=\mathrm{w}$)	Non-Weaving (= nw)
a (Exhibit 24-6)			0.35	0.0020
b (Exhibit 24-6)			2.20	4.00
C (Exhibit 24-6)			0.97	1.30
d (Exhibit 24-6)			0.80	0.75
Weaving intensity factor, Wi			1.45	0.21
Weaving and non-weaving speeds, Si (milh)			33.38	52.12
Number of lanes required for unconstrained operation, Nw 1.42 Maximum number of lanes, Nw (max) 1.40				
Г If Nw < Nw (max) unconstrained operation			Nw > Nw (max) co	ned operation

Weaving Segment Speed, Density, Level of Service, and Capacity

Weaving segment speed, $\mathrm{S}(\mathrm{mi} / \mathrm{h})$	43.20
Weaving segment density, $\mathrm{D} \mathrm{(pc/mi/hn)}$	24.88
Level of service, LOS	C
Capacity of base condition, $\mathrm{c}_{\mathrm{b}}(\mathrm{pc} / \mathrm{h})$	5019
Capacity as a 15-minute flow rate, $\mathrm{c}(\mathrm{veh} / \mathrm{h})$	4669
Capacity as a full-hour volume, $\mathrm{c}_{\mathrm{h}}(\mathrm{veh} / \mathrm{h})$	4202

Notes

a. Weaving segments longer than 2500 ft . are treated as isolated merge and diverge areas using the procedures of Chapter 25, "Ramps and Ramp Junctions".
b. Capacity constrained by basic freeway capacity.
c. Capacity occurs under constrained operating conditions.
d. Three-lane Type A segments do not operate well at volume ratios greater than 0.45 . Poor operations and some local queuing are expected in such cases.
e. Four-lane Type A segments do not operate well at volume ratios greater than 0.35 . Poor operations and some local queuing are expected in such cases.
f. Capacity constrained by maximum allowable weaving flow rate: $2,800 \mathrm{pc} / \mathrm{h}$ (Type A), 4,000 (Type B), 3,500 (Type C).
g. Five-lane Type A segments do not operate well at volume ratios greater than 0.20 . Poor operations and some local queuing are expected in such cases.
h. Type B weaving segments do not operate well at volume ratios greater than 0.80 . Poor operations and some local queuing are expected in such cases.
. Type C weaving segments do not operate well at volume ratios greater than 0.50 . Poor operations and some local queuing are expected in such cases.

General Information

Analyst	SKB
Agency/Company	TDOT / Long Engineering
Date Performed	$05 / 04 / 2009$
Analysis Time Period	PM Peak Period

Site Information
Freeway/Dir of Travel
Weaving Seg Location Jurisdiction
Analysis Year

APD-40 WB
West of Prop. Interchange
Cleveland, TN
2033

Inputs

Freeway free-flow speed, $\mathrm{S}_{\mathrm{FF}}(\mathrm{mi} / \mathrm{h})$	55	Weaving type	A
Weaving number of lanes, N	3	Volume ratio, VR	0.48
Weaving seg length, $\mathrm{L}(\mathrm{ft})$	1900	Level	Weaving ratio, R

Conversions to pc/h Under Base Conditions

Weaving and Non-Weaving Speeds

	Unconstrained		Constrained	
	Weaving ($\mathrm{i}=\mathrm{w}$)	Non-Weaving (i = nw)	Weaving ($\mathrm{i}=\mathrm{w}$)	Non-Weaving ($=\mathrm{nw}$)
a (Exhibit 24-6)			0.35	0.0020
b (Exhibit 24-6)			2.20	4.00
C (Exhibit 24-6)			0.97	1.30
d (Exhibit 24-6)			0.80	0.75
Weaving intensity factor, Wi			1.72	0.29
Weaving and non-weaving speeds, Si (mi/h)			31.56	49.88
Number of lanes requi Maximum number of	nconstrained ope (max)	$\begin{aligned} & \hline 1.68 \\ & 1.40 \end{aligned}$		

Weaving Segment Speed, Density, Level of Service, and Capacity

Weaving segment speed, $\mathrm{S}(\mathrm{mi} / \mathrm{h})$	39.01
Weaving segment density, $\mathrm{D}(\mathrm{pc} / \mathrm{mi} / \mathrm{ln})$	27.50
Level of service, LOS	C
Capacity of base condition, $\mathrm{c}_{\mathrm{b}}(\mathrm{pc} / \mathrm{h})$	4656
Capacity as a 15-minute flow rate, $\mathrm{c}(\mathrm{veh} / \mathrm{h})$	4331
Capacity as a full-hour volume, $\mathrm{c}_{\mathrm{h}}(\mathrm{veh} / \mathrm{h})$	3898

Notes

a. Weaving segments longer than 2500 ft . are treated as isolated merge and diverge areas using the procedures of Chapter 25, "Ramps and Ramp Junctions".
b. Capacity constrained by basic freeway capacity.
c. Capacity occurs under constrained operating conditions.
d. Three-lane Type A segments do not operate well at volume ratios greater than 0.45 . Poor operations and some local queuing are expected in such cases.
e. Four-lane Type A segments do not operate well at volume ratios greater than 0.35 . Poor operations and some local queuing are expected in such cases.
f. Capacity constrained by maximum allowable weaving flow rate: $2,800 \mathrm{pc} / \mathrm{h}$ (Type A), 4,000 (Type B), 3,500 (Type C).
g. Five-lane Type A segments do not operate well at volume ratios greater than 0.20 . Poor operations and some local queuing are expected in such cases.
h. Type B weaving segments do not operate well at volume ratios greater than 0.80 . Poor operations and some local queuing are expected in such cases.
. Type C weaving segments do not operate well at volume ratios greater than 0.50 . Poor operations and some local queuing are expected in such cases.

General Information

Analyst	SKB
Agency/Company	TDOT / Long Engineering
Date Performed	$05 / 04 / 2009$
Analysis Time Period	AM Peak Period

Site Information
Freeway/Dir of Travel
Weaving Seg Location Jurisdiction
Analysis Year

APD-40 EB
West of Prop. Interchange
Cleveland, TN
2013

Inputs

Freeway free-flow speed, $\mathrm{S}_{\mathrm{FF}}(\mathrm{mi} / \mathrm{h})$	55	Weaving type	A
Weaving number of lanes, N	2	Volume ratio, VR	0.54
Weaving seg length, $\mathrm{L}(\mathrm{ft})$	1900	Level	Weaving ratio, R

Conversions to pc/h Under Base Conditions

Weaving and Non-Weaving Speeds

	Unconstrained		Constrained	
	Weaving ($\mathrm{i}=\mathrm{w}$)	Non-Weaving ($\mathrm{i}=\mathrm{nw}$)	Weaving ($\mathrm{i}=\mathrm{w}$)	Non-Weaving (= nw)
a (Exhibit 24-6)	0.15	0.0035		
b (Exhibit 24-6)	2.20	4.00		
c (Exhibit 24-6)	0.97	1.30		
d (Exhibit 24-6)	0.80	0.75		
Weaving intensity factor, Wi	0.61	0.41		
Weaving and non-weaving speeds, Si (mi/h)	43.00	46.94		
Number of lanes required for unconstrained operation, Nw 1.17 Maximum number of lanes, Nw (max) 1.40 $\nabla \quad$ If Nw < Nw(max) unconstrained operation			lw > Nw (max) c	d operation

Weaving Segment Speed, Density, Level of Service, and Capacity

Weaving segment speed, $\mathrm{S}(\mathrm{mi} / \mathrm{h})$	44.72
Weaving segment density, $\mathrm{D}(\mathrm{pc} / \mathrm{mi} / \mathrm{ln})$	17.92
Level of service, LOS	B
Capacity of base condition, $\mathrm{c}_{\mathrm{b}}(\mathrm{pc} / \mathrm{h})$	
Capacity as a 15-minute flow rate, $\mathrm{c}(\mathrm{veh} / \mathrm{h})$	
Capacity as a full-hour volume, $\mathrm{c}_{\mathrm{h}}(\mathrm{veh} / \mathrm{h})$	

Notes

a. Weaving segments longer than 2500 ft . are treated as isolated merge and diverge areas using the procedures of Chapter 25, "Ramps and Ramp Junctions".
b. Capacity constrained by basic freeway capacity.
c. Capacity occurs under constrained operating conditions.
d. Three-lane Type A segments do not operate well at volume ratios greater than 0.45 . Poor operations and some local queuing are expected in such cases.
e. Four-lane Type A segments do not operate well at volume ratios greater than 0.35 . Poor operations and some local queuing are expected in such cases.
f. Capacity constrained by maximum allowable weaving flow rate: $2,800 \mathrm{pc} / \mathrm{h}$ (Type A), 4,000 (Type B), 3,500 (Type C).
g. Five-lane Type A segments do not operate well at volume ratios greater than 0.20 . Poor operations and some local queuing are expected in such cases.
h. Type B weaving segments do not operate well at volume ratios greater than 0.80 . Poor operations and some local queuing are expected in such cases.
. Type C weaving segments do not operate well at volume ratios greater than 0.50 . Poor operations and some local queuing are expected in such cases.

General Information

Analyst	SKB
Agency/Company	TDOT / Long Engineering
Date Performed	$05 / 04 / 2009$
Analysis Time Period	PM Peak Period

Site Information
Freeway/Dir of Travel
Weaving Seg Location Jurisdiction
Analysis Year

APD-40 EB
West of Prop. Interchange
Cleveland, TN
2013

Inputs

Freeway free-flow speed, $\mathrm{S}_{\mathrm{FF}}(\mathrm{mi} / \mathrm{h})$	55	Weaving type	A
Weaving number of lanes, N	2	Volume ratio, VR	0.74
Weaving seg length, $\mathrm{L}(\mathrm{ft})$	1900	Level	Weaving ratio, R

Conversions to pc/h Under Base Conditions

Weaving and Non-Weaving Speeds

	Unconstrained		Constrained	
	Weaving ($\mathrm{i}=\mathrm{w}$)	Non-Weaving ($\mathrm{i}=\mathrm{nw}$)	Weaving ($\mathrm{i}=\mathrm{w}$)	Non-Weaving (= nw)
a (Exhibit 24-6)			0.35	0.0020
b (Exhibit 24-6)			2.20	4.00
C (Exhibit 24-6)			0.97	1.30
d (Exhibit 24-6)			0.80	0.75
Weaving intensity factor, Wi			2.23	0.49
Weaving and non-weaving speeds, Si (milh)			28.95	45.26
Number of lanes required for unconstrained operation, Nw 1.48 Maximum number of lanes, Nw (max) 1.40				
			Nw > Nw (max) co	ned operation

Weaving Segment Speed, Density, Level of Service, and Capacity

Weaving segment speed, $\mathrm{S}(\mathrm{mi} / \mathrm{h})$	31.92
Weaving segment density, $\mathrm{D}(\mathrm{pc} / \mathrm{mi} / \mathrm{ln})$	30.33
Level of service, LOS	C
Capacity of base condition, $\mathrm{c}_{\mathrm{b}}(\mathrm{pc} / \mathrm{h})$	
Capacity as a 15-minute flow rate, $\mathrm{c}(\mathrm{veh} / \mathrm{h})$	
Capacity as a full-hour volume, $\mathrm{c}_{\mathrm{h}}(\mathrm{veh} / \mathrm{h})$	

Notes

a. Weaving segments longer than 2500 ft . are treated as isolated merge and diverge areas using the procedures of Chapter 25, "Ramps and Ramp Junctions".
b. Capacity constrained by basic freeway capacity.
c. Capacity occurs under constrained operating conditions.
d. Three-lane Type A segments do not operate well at volume ratios greater than 0.45 . Poor operations and some local queuing are expected in such cases.
e. Four-lane Type A segments do not operate well at volume ratios greater than 0.35 . Poor operations and some local queuing are expected in such cases.
f. Capacity constrained by maximum allowable weaving flow rate: $2,800 \mathrm{pc} / \mathrm{h}$ (Type A), 4,000 (Type B), 3,500 (Type C).
g. Five-lane Type A segments do not operate well at volume ratios greater than 0.20 . Poor operations and some local queuing are expected in such cases.
h. Type B weaving segments do not operate well at volume ratios greater than 0.80 . Poor operations and some local queuing are expected in such cases.
. Type C weaving segments do not operate well at volume ratios greater than 0.50 . Poor operations and some local queuing are expected in such cases.

General Information

Analyst	SKB
Agency/Company	TDOT / Long Engineering
Date Performed	$05 / 04 / 2009$
Analysis Time Period	AM Peak Period

Site Information
Freeway/Dir of Travel
Weaving Seg Location Jurisdiction
Analysis Year

APD-40 EB
West of Prop. Interchange
Cleveland, TN
2033

Inputs

Freeway free-flow speed, $\mathrm{S}_{\mathrm{FF}}(\mathrm{mi} / \mathrm{h})$	55	Weaving type	A
Weaving number of lanes, N	2	Volume ratio, VR	0.54
Weaving seg length, $\mathrm{L}(\mathrm{ft})$	1900	Level	Weaving ratio, R

Conversions to pc/h Under Base Conditions

Weaving and Non-Weaving Speeds

	Unconstrained		Constrained	
	Weaving ($\mathrm{i}=\mathrm{w}$)	Non-Weaving ($\mathrm{i}=\mathrm{nw}$)	Weaving ($\mathrm{i}=\mathrm{w}$)	Non-Weaving (= nw)
a (Exhibit 24-6)	0.15	0.0035		
b (Exhibit 24-6)	2.20	4.00		
c (Exhibit 24-6)	0.97	1.30		
d (Exhibit 24-6)	0.80	0.75		
Weaving intensity factor, Wi	0.93	0.73		
Weaving and non-weaving speeds, Si (mi/h)	38.30	41.06		
Number of lanes required for unconstrained operation, Nw 1.24 Maximum number of lanes, Nw (max) 1.40 ∇ If Nw < Nw(max) unconstrained operation			lw > Nw (max) c	d operation

Weaving Segment Speed, Density, Level of Service, and Capacity

Weaving segment speed, $\mathrm{S}(\mathrm{mi} / \mathrm{h})$	39.51
Weaving segment density, $\mathrm{D}(\mathrm{pc} / \mathrm{mi} / \mathrm{ln})$	31.48
Level of service, LOS	C
Capacity of base condition, $\mathrm{c}_{\mathrm{b}}(\mathrm{pc} / \mathrm{h})$	
Capacity as a 15-minute flow rate, $\mathrm{c}(\mathrm{veh} / \mathrm{h})$	
Capacity as a full-hour volume, $\mathrm{c}_{\mathrm{h}}(\mathrm{veh} / \mathrm{h})$	

Notes

a. Weaving segments longer than 2500 ft . are treated as isolated merge and diverge areas using the procedures of Chapter 25, "Ramps and Ramp Junctions".
b. Capacity constrained by basic freeway capacity.
c. Capacity occurs under constrained operating conditions.
d. Three-lane Type A segments do not operate well at volume ratios greater than 0.45 . Poor operations and some local queuing are expected in such cases.
e. Four-lane Type A segments do not operate well at volume ratios greater than 0.35 . Poor operations and some local queuing are expected in such cases.
f. Capacity constrained by maximum allowable weaving flow rate: $2,800 \mathrm{pc} / \mathrm{h}$ (Type A), 4,000 (Type B), 3,500 (Type C).
g. Five-lane Type A segments do not operate well at volume ratios greater than 0.20 . Poor operations and some local queuing are expected in such cases.
h. Type B weaving segments do not operate well at volume ratios greater than 0.80 . Poor operations and some local queuing are expected in such cases.
. Type C weaving segments do not operate well at volume ratios greater than 0.50 . Poor operations and some local queuing are expected in such cases.

General Information

Analyst	SKB
Agency/Company	TDOT / Long Engineering
Date Performed	$05 / 04 / 2009$
Analysis Time Period	PM Peak Period

Site Information
Freeway/Dir of Travel
Weaving Seg Location Jurisdiction
Analysis Year

APD-40 EB
West of Prop. Interchange
Cleveland, TN
2033

Inputs

Freeway free-flow speed, $\mathrm{S}_{\mathrm{FF}}(\mathrm{mi} / \mathrm{h})$	55	Weaving type	A
Weaving number of lanes, N	2	Volume ratio, VR	0.74
Weaving seg length, $\mathrm{L}(\mathrm{ft})$	1900	Level	Weaving ratio, R

Conversions to pc/h Under Base Conditions

Weaving and Non-Weaving Speeds

	Unconstrained		Constrained	
	Weaving ($\mathrm{i}=\mathrm{w}$)	Non-Weaving ($\mathrm{i}=\mathrm{nw}$)	Weaving ($\mathrm{i}=\mathrm{w}$)	Non-Weaving ($=\mathrm{nw}$)
a (Exhibit 24-6)			0.35	0.0020
b (Exhibit 24-6)			2.20	4.00
C (Exhibit 24-6)			0.97	1.30
d (Exhibit 24-6)			0.80	0.75
Weaving intensity factor, Wi			3.40	0.86
Weaving and non-weaving speeds, Si (mi/h)			25.23	39.19
Number of lanes required for unconstrained operation, Nw 1.57 Maximum number of lanes, Nw (max) 1.40				
Г If Nw < Nw (max) unconstrained operation			Nw > Nw (max) co	ed operation

Weaving Segment Speed, Density, Level of Service, and Capacity

Weaving segment speed, $\mathrm{S}(\mathrm{mi} / \mathrm{h})$	27.76
Weaving segment density, $\mathrm{D}(\mathrm{pc} / \mathrm{mi} / \mathrm{h})$	53.84
Level of service, LOS	F
Capacity of base condition, $\mathrm{c}_{\mathrm{b}}(\mathrm{pc} / \mathrm{h})$	
Capacity as a 15-minute flow rate, $\mathrm{c}(\mathrm{veh} / \mathrm{h})$	
Capacity as a full-hour volume, $\mathrm{c}_{\mathrm{h}}(\mathrm{veh} / \mathrm{h})$	

Notes

a. Weaving segments longer than 2500 ft . are treated as isolated merge and diverge areas using the procedures of Chapter 25, "Ramps and Ramp Junctions".
b. Capacity constrained by basic freeway capacity.
c. Capacity occurs under constrained operating conditions.
d. Three-lane Type A segments do not operate well at volume ratios greater than 0.45 . Poor operations and some local queuing are expected in such cases.
e. Four-lane Type A segments do not operate well at volume ratios greater than 0.35 . Poor operations and some local queuing are expected in such cases.
f. Capacity constrained by maximum allowable weaving flow rate: $2,800 \mathrm{pc} / \mathrm{h}$ (Type A), 4,000 (Type B), 3,500 (Type C).
g. Five-lane Type A segments do not operate well at volume ratios greater than 0.20 . Poor operations and some local queuing are expected in such cases.
h. Type B weaving segments do not operate well at volume ratios greater than 0.80 . Poor operations and some local queuing are expected in such cases.
. Type C weaving segments do not operate well at volume ratios greater than 0.50 . Poor operations and some local queuing are expected in such cases.

General Information

Analyst	SKB
Agency/Company	TDOT / Long Engineering
Date Performed	$05 / 04 / 2009$
Analysis Time Period	AM Peak Period

Site Information
Freeway/Dir of Travel
Weaving Seg Location Jurisdiction
Analysis Year

APD-40 EB
West of Prop. Interchange
Cleveland, TN
2013

Inputs

Freeway free-flow speed, $\mathrm{S}_{\mathrm{FF}}(\mathrm{mi} / \mathrm{h})$	55	Weaving type	A
Weaving number of lanes, N	3	Volume ratio, VR	0.54
Weaving seg length, $\mathrm{L}(\mathrm{ft})$	1900	Level	Weaving ratio, R

Conversions to pc/h Under Base Conditions

Weaving and Non-Weaving Speeds

	Unconstrained		Constrained	
	Weaving ($\mathrm{i}=\mathrm{w}$)	Non-Weaving ($\mathrm{i}=\mathrm{nw}$)	Weaving ($\mathrm{i}=\mathrm{w}$)	Non-Weaving (= nw)
a (Exhibit 24-6)			0.35	0.0020
b (Exhibit 24-6)			2.20	4.00
C (Exhibit 24-6)			0.97	1.30
d (Exhibit 24-6)			0.80	0.75
Weaving intensity factor, Wi			0.96	0.14
Weaving and non-weaving speeds, Si (milh)			38.00	54.54
Number of lanes required for unconstrained operation, Nw 1.70 Maximum number of lanes, Nw (max) 1.40				
Г If Nw < Nw (max) unconstrained operation			Nw > Nw (max) co	ned operation

Weaving Segment Speed, Density, Level of Service, and Capacity

Weaving segment speed, $\mathrm{S}(\mathrm{mi} / \mathrm{h})$	44.14
Weaving segment density, $\mathrm{D}(\mathrm{pc} / \mathrm{mi} / \mathrm{ln})$	12.10
Level of service, LOS	B
Capacity of base condition, $\mathrm{c}_{\mathrm{b}}(\mathrm{pc} / \mathrm{h})$	4656
Capacity as a 15-minute flow rate, $\mathrm{c}(\mathrm{veh} / \mathrm{h})$	4331
Capacity as a full-hour volume, $\mathrm{c}_{\mathrm{h}}(\mathrm{veh} / \mathrm{h})$	3898

Notes

a. Weaving segments longer than 2500 ft . are treated as isolated merge and diverge areas using the procedures of Chapter 25, "Ramps and Ramp Junctions".
b. Capacity constrained by basic freeway capacity.
c. Capacity occurs under constrained operating conditions.
d. Three-lane Type A segments do not operate well at volume ratios greater than 0.45 . Poor operations and some local queuing are expected in such cases.
e. Four-lane Type A segments do not operate well at volume ratios greater than 0.35 . Poor operations and some local queuing are expected in such cases.
f. Capacity constrained by maximum allowable weaving flow rate: $2,800 \mathrm{pc} / \mathrm{h}$ (Type A), 4,000 (Type B), 3,500 (Type C).
g. Five-lane Type A segments do not operate well at volume ratios greater than 0.20 . Poor operations and some local queuing are expected in such cases.
h. Type B weaving segments do not operate well at volume ratios greater than 0.80 . Poor operations and some local queuing are expected in such cases.
. Type C weaving segments do not operate well at volume ratios greater than 0.50 . Poor operations and some local queuing are expected in such cases.

General Information

Analyst	SKB
Agency/Company	TDOT / Long Engineering
Date Performed	$05 / 04 / 2009$
Analysis Time Period	PM Peak Period

Site Information
Freeway/Dir of Travel
Weaving Seg Location Jurisdiction
Analysis Year

APD-40 EB
West of Prop. Interchange
Cleveland, TN
2013

Inputs

Freeway free-flow speed, $\mathrm{S}_{\text {FF }}$ (mi/h) 55

Weaving number of lanes, N 3
Weaving seg length, $\mathrm{L}(\mathrm{ft}) 1900$
Terrain Level

Weaving type A
Volume ratio, VR 0.74
$\begin{array}{ll}\text { Weaving ratio, } \mathrm{R} & 0.02\end{array}$

Conversions to pc/h Under Base Conditions

Weaving and Non-Weaving Speeds

Weaving Segment Speed, Density, Level of Service, and Capacity

Weaving segment speed, $\mathrm{S}(\mathrm{mi} / \mathrm{h})$	36.16
Weaving segment density, $\mathrm{D}(\mathrm{pc} / \mathrm{mi} / \mathrm{ln})$	17.85
Level of service, LOS	B
Capacity of base condition, $\mathrm{c}_{\mathrm{b}}(\mathrm{pc} / \mathrm{h})$	4656
Capacity as a 15-minute flow rate, $\mathrm{c}(\mathrm{veh} / \mathrm{h})$	4331
Capacity as a full-hour volume, $\mathrm{c}_{\mathrm{h}}(\mathrm{veh} / \mathrm{h})$	3898

Notes

a. Weaving segments longer than 2500 ft . are treated as isolated merge and diverge areas using the procedures of Chapter 25, "Ramps and Ramp Junctions".
b. Capacity constrained by basic freeway capacity.
c. Capacity occurs under constrained operating conditions.
d. Three-lane Type A segments do not operate well at volume ratios greater than 0.45 . Poor operations and some local queuing are expected in such cases.
e. Four-lane Type A segments do not operate well at volume ratios greater than 0.35 . Poor operations and some local queuing are expected in such cases.
f. Capacity constrained by maximum allowable weaving flow rate: $2,800 \mathrm{pc} / \mathrm{h}$ (Type A), 4,000 (Type B), 3,500 (Type C).
g. Five-lane Type A segments do not operate well at volume ratios greater than 0.20 . Poor operations and some local queuing are expected in such cases.
h. Type B weaving segments do not operate well at volume ratios greater than 0.80 . Poor operations and some local queuing are expected in such cases.
. Type C weaving segments do not operate well at volume ratios greater than 0.50 . Poor operations and some local queuing are expected in such cases.

General Information

Analyst	SKB
Agency/Company	TDOT / Long Engineering
Date Performed	$05 / 04 / 2009$
Analysis Time Period	AM Peak Period

Site Information
Freeway/Dir of Travel
Weaving Seg Location Jurisdiction
Analysis Year

APD-40 EB
West of Prop. Interchange
Cleveland, TN
2033

Inputs

Freeway free-flow speed, $\mathrm{S}_{\mathrm{FF}}(\mathrm{mi} / \mathrm{h})$	55	Weaving type	A
Weaving number of lanes, N	3	Volume ratio, VR	0.54
Weaving seg length, $\mathrm{L}(\mathrm{ft})$	1900	Level	Weaving ratio, R

Conversions to pc/h Under Base Conditions

Weaving and Non-Weaving Speeds

	Unconstrained		Constrained	
	Weaving ($\mathrm{i}=\mathrm{w}$)	Non-Weaving (i = nw)	Weaving ($\mathrm{i}=\mathrm{w}$)	Non-Weaving ($=\mathrm{nw}$)
a (Exhibit 24-6)			0.35	0.0020
b (Exhibit 24-6)			2.20	4.00
C (Exhibit 24-6)			0.97	1.30
d (Exhibit 24-6)			0.80	0.75
Weaving intensity factor, Wi			1.47	0.25
Weaving and non-weaving speeds, Si (mi/h)			33.24	51.14
Number of lanes requi Maximum number of	nconstrained ope (max)	$\begin{aligned} & 1.77 \\ & 1.40 \end{aligned}$		

Weaving Segment Speed, Density, Level of Service, and Capacity

Weaving segment speed, $\mathrm{S}(\mathrm{mi} / \mathrm{h})$	39.58
Weaving segment density, $\mathrm{D}(\mathrm{pc} / \mathrm{mi} / \mathrm{h})$	20.95
Level of service, LOS	B
Capacity of base condition, $\mathrm{c}_{\mathrm{b}}(\mathrm{pc} / \mathrm{h})$	4656
Capacity as a 15-minute flow rate, $\mathrm{c}(\mathrm{veh} / \mathrm{h})$	4331
Capacity as a full-hour volume, $\mathrm{c}_{\mathrm{h}}(\mathrm{veh} / \mathrm{h})$	3898

Notes

a. Weaving segments longer than 2500 ft . are treated as isolated merge and diverge areas using the procedures of Chapter 25, "Ramps and Ramp Junctions".
b. Capacity constrained by basic freeway capacity.
c. Capacity occurs under constrained operating conditions.
d. Three-lane Type A segments do not operate well at volume ratios greater than 0.45 . Poor operations and some local queuing are expected in such cases.
e. Four-lane Type A segments do not operate well at volume ratios greater than 0.35 . Poor operations and some local queuing are expected in such cases.
f. Capacity constrained by maximum allowable weaving flow rate: $2,800 \mathrm{pc} / \mathrm{h}$ (Type A), 4,000 (Type B), 3,500 (Type C).
g. Five-lane Type A segments do not operate well at volume ratios greater than 0.20 . Poor operations and some local queuing are expected in such cases.
h. Type B weaving segments do not operate well at volume ratios greater than 0.80 . Poor operations and some local queuing are expected in such cases.
. Type C weaving segments do not operate well at volume ratios greater than 0.50 . Poor operations and some local queuing are expected in such cases.

General Information

Analyst	SKB
Agency/Company	TDOT / Long Engineering
Date Performed	$05 / 04 / 2009$
Analysis Time Period	PM Peak Period

Site Information
Freeway/Dir of Travel
Weaving Seg Location Jurisdiction
Analysis Year

APD-40 EB
West of Prop. Interchange
Cleveland, TN
2033

Inputs

Freeway free-flow speed, $\mathrm{S}_{\text {FF }}$ (mi/h) 55
Weaving number of lanes, $\mathrm{N} \quad 3$

Weaving seg length, L(ft) 1900
Terrain Level

Weaving type	A
Volume ratio, VR	0.74
Weaving ratio, R	0.02

Conversions to pc/h Under Base Conditions

Weaving and Non-Weaving Speeds

	Unconstrained		Constrained	
	Weaving ($\mathrm{i}=\mathrm{w}$)	Non-Weaving (i = nw)	Weaving ($\mathrm{i}=\mathrm{w}$)	Non-Weaving ($=\mathrm{nw}$)
a (Exhibit 24-6)			0.35	0.0020
b (Exhibit 24-6)			2.20	4.00
C (Exhibit 24-6)			0.97	1.30
d (Exhibit 24-6)			0.80	0.75
Weaving intensity factor, Wi			2.29	0.51
Weaving and non-weaving speeds, Si (mi/h)			28.66	44.84
Number of lanes requi Maximum number of	nconstrained ope (max)	$\begin{aligned} & \hline 2.24 \\ & 1.40 \end{aligned}$		

Weaving Segment Speed, Density, Level of Service, and Capacity

Weaving segment speed, $\mathrm{S}(\mathrm{mi} / \mathrm{h})$	31.58
Weaving segment density, $\mathrm{D}(\mathrm{pc} / \mathrm{mi} / \mathrm{h})$	31.55
Level of service, LOS	C
Capacity of base condition, $\mathrm{c}_{\mathrm{b}}(\mathrm{pc} / \mathrm{h})$	4656
Capacity as a 15-minute flow rate, $\mathrm{c}(\mathrm{veh} / \mathrm{h})$	4331
Capacity as a full-hour volume, $\mathrm{c}_{\mathrm{h}}(\mathrm{veh} / \mathrm{h})$	3898

Notes

a. Weaving segments longer than 2500 ft . are treated as isolated merge and diverge areas using the procedures of Chapter 25, "Ramps and Ramp Junctions".
b. Capacity constrained by basic freeway capacity.
c. Capacity occurs under constrained operating conditions.
d. Three-lane Type A segments do not operate well at volume ratios greater than 0.45 . Poor operations and some local queuing are expected in such cases.
e. Four-lane Type A segments do not operate well at volume ratios greater than 0.35 . Poor operations and some local queuing are expected in such cases.
f. Capacity constrained by maximum allowable weaving flow rate: $2,800 \mathrm{pc} / \mathrm{h}$ (Type A), 4,000 (Type B), 3,500 (Type C).
g. Five-lane Type A segments do not operate well at volume ratios greater than 0.20 . Poor operations and some local queuing are expected in such cases.
h. Type B weaving segments do not operate well at volume ratios greater than 0.80 . Poor operations and some local queuing are expected in such cases.
. Type C weaving segments do not operate well at volume ratios greater than 0.50 . Poor operations and some local queuing are expected in such cases.

Multi-Lane Highways
 Highway Capacity Software Computer Printouts

Two-Lane Highways

Highway Capacity Software Computer Printouts

TWO-WAY TWO-LANE HIGHWAY SEGMENT WORKSHEET

General Information	Site Information
Analyst Agency or Company SKB Dane Performed TDOT/Long Engineering Analysis Time Period O5/04/2009 AM Peak Period	Highway Pleasant Grove Road From/To West of I-75 Jurisdiction Cleveland, TN Analysis Year 2013
Project Description: Existing System Without Slip Ramp	
Input Data	
Average Travel Speed	
Grade adjustment factor, f_{G} (Exhibit 20-7)	1.00
Passenger-car equivalents for trucks, E_{T} (Exhibit 20-9)	1.7
Passenger-car equivalents for RVs, E_{R} (Exhibit 20-9)	1.0
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}}=1 /\left(1+\mathrm{P}_{\mathrm{T}}\left(\mathrm{E}_{\mathrm{T}}-1\right)+\mathrm{P}_{\mathrm{R}}\left(\mathrm{E}_{\mathrm{R}}-1\right)\right)$	0.979
Two-way flow rate ${ }^{1}, \mathrm{v}_{\mathrm{p}}(\mathrm{pc} / \mathrm{h})=\mathrm{V} /\left(\mathrm{PHF}^{*} \mathrm{f}_{\mathrm{G}}{ }^{*} \mathrm{f}_{\mathrm{HV}}\right)$	480
v_{p} * highest directional split proportion ${ }^{2}$ (pc/h)	293
Free-Flow Speed from Field Measurement	Estimated Free-Flow Speed
Field Measured speed, S_{FM} mi / h Observed volume, V_{f} $\mathrm{veh} / \mathrm{h}$ Free-flow speed, FFS FFS $=\mathrm{S}_{\mathrm{FM}}+0.00776\left(\mathrm{~V}_{\mathrm{f}} / \mathrm{f}_{\mathrm{HV}}\right)$ mi / h	Base free-flow speed, $\mathrm{BFFS}_{F M}$ $45.0 \mathrm{~m} / \mathrm{h}$ Adj. for lane width and shoulder width ${ }^{3}, \mathrm{f}_{\mathrm{LS}}($ Exhibit 20-5) $1.3 \mathrm{~m} / \mathrm{h}$ Adj. for access points, $\mathrm{f}_{\mathrm{A}}($ Exhibit 20-6) $3.0 \mathrm{mi} / \mathrm{h}$ Free-flow speed, $\mathrm{FFS}\left(\right.$ FSS=BFFS- $\left.\mathrm{f}_{\mathrm{LS}}-\mathrm{f}_{\mathrm{A}}\right)$ $40.7 \mathrm{~m} / \mathrm{h}$
Adj. for no-passing zones, $\mathrm{f}_{\text {np }}$ (mi/h) (Exhibit 20-11)	4.3
Average travel speed, ATS (mi/h) ATS=FFS-0.00776v $\mathrm{v}_{\mathrm{p}} \mathrm{f}_{\mathrm{np}}$	32.7
Percent Time-Spent-Following	
Grade Adjustment factor, f_{G} (Exhibit 20-8)	1.00
Passenger-car equivalents for trucks, E_{T} (Exhibit 20-10)	1.1
Passenger-car equivalents for RVs, E_{R} (Exhibit 20-10)	1.0
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}}=1 /\left(1+\mathrm{P}_{\mathrm{T}}\left(\mathrm{E}_{\mathrm{T}}-1\right)+\mathrm{P}_{\mathrm{R}}\left(\mathrm{E}_{\mathrm{R}}-1\right)\right.$)	0.997
Two-way flow rate ${ }^{1}, \mathrm{v}_{\mathrm{p}}(\mathrm{pc} / \mathrm{h})=\mathrm{V} /\left(\mathrm{PHF}^{*} \mathrm{f}_{\mathrm{G}}{ }^{*} \mathrm{f}_{\mathrm{HV}}\right)$	471
$\mathrm{v}_{\mathrm{p}}{ }^{*}$ highest directional split proportion ${ }^{2}(\mathrm{pc} / \mathrm{h})$	287
Base percent time-spent-following, BPTSF(\%)=100(1-- ${ }^{-0.000879 v_{p} \text {) }}$	33.9
Adj. for directional distribution and no-passing zone, $\mathrm{f}_{\text {dhpp }}(\%)($ Exh. 20-12)	21.7
Percent time-spent-following, PTSF(\%)=BPTSF $+\mathrm{f}_{\mathrm{d} / \mathrm{np}}$	55.6
Level of Service and Other Performance Measures	
Level of service, LOS (Exhibit 20-3 for Class I or 20-4 for Class II)	C
Volume to capacity ratio, $\mathrm{v} / \mathrm{c}=\mathrm{V}_{\mathrm{p}} / 3,200$	0.15
Peak 15-min veh-miles of travel, VMT_{15} (veh- mi^{\prime}) $=0.25 \mathrm{~L}_{\mathrm{t}}$ (V/PHF)	59
Peak-hour vehicle-miles of travel, $\mathrm{VMT}_{60}($ veh $-m i)=\mathrm{V}^{\star} \mathrm{L}_{t}$	212
Peak 15-min total travel time, $\mathrm{TT}_{15}(\mathrm{veh}-\mathrm{h})=\mathrm{VMT}_{15} / \mathrm{ATS}$	1.8
Notes	
1. If $V p>=3,200 \mathrm{pc} / \mathrm{h}$, terminate analysis-the LOS is F . 2. If highest directional split $V p>=1,700 \mathrm{pc} / \mathrm{h}$, terminated anlysis-the LOS is F .	

TWO-WAY TWO-LANE HIGHWAY SEGMENT WORKSHEET

General Information	Site Information
Analyst SKB Agency or Company TDOT/Long Engineering Dane Performed $04 / 05 / 2009$ Analysis Time Period PM Peak Period	Highway Pleasant Grove Road From/To West of I-75 Jurisdiction Cleveland, TN Analysis Year 2013
Project Description: Existing System Without Slip Ramp	
Input Data	
Average Travel Speed	
Grade adjustment factor, f_{G} (Exhibit 20-7)	1.00
Passenger-car equivalents for trucks, E_{T} (Exhibit 20-9)	1.7
Passenger-car equivalents for RVs, E_{R} (Exhibit 20-9)	1.0
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}}=1 /\left(1+\mathrm{P}_{\mathrm{T}}\left(\mathrm{E}_{\mathrm{T}}-1\right)+\mathrm{P}_{\mathrm{R}}\left(\mathrm{E}_{\mathrm{R}}-1\right)\right)$	0.979
Two-way flow rate ${ }^{1}, \mathrm{v}_{\mathrm{p}}(\mathrm{pc} / \mathrm{h})=\mathrm{V} /\left(\mathrm{PHF}^{*} \mathrm{f}_{\mathrm{G}}{ }^{*} \mathrm{f}_{\mathrm{HV}}\right)$	546
v_{p} * highest directional split proportion ${ }^{2}$ (pc/h)	349
Free-Flow Speed from Field Measurement	Estimated Free-Flow Speed
Field Measured speed, S_{FM} mi / h Observed volume, V_{f} $\mathrm{veh} / \mathrm{h}$ Free-flow speed, FFS FFS $=\mathrm{S}_{\mathrm{FM}}+0.00776\left(\mathrm{~V}_{\mathrm{f}} / \mathrm{f}_{\mathrm{HV}}\right)$ mi / h	Base free-flow speed, $\mathrm{BFFS}_{F M}$ $45.0 \mathrm{~m} / \mathrm{h}$ Adj. for lane width and shoulder width ${ }^{3}, \mathrm{f}_{\mathrm{LS}}($ Exhibit 20-5) $1.3 \mathrm{~m} / \mathrm{h}$ Adj. for access points, $\mathrm{f}_{\mathrm{A}}($ Exhibit 20-6) $3.0 \mathrm{mi} / \mathrm{h}$ Free-flow speed, $\mathrm{FFS}\left(\right.$ FSS=BFFS- $\left.\mathrm{f}_{\mathrm{LS}}-\mathrm{f}_{\mathrm{A}}\right)$ $40.7 \mathrm{~m} / \mathrm{h}$
Adj. for no-passing zones, $\mathrm{f}_{\text {np }}$ (mi/h) (Exhibit 20-11)	4.1
Average travel speed, ATS (mi/h) ATS=FFS-0.00776v $\mathrm{v}_{\mathrm{p}} \mathrm{f}_{\mathrm{np}}$	32.4
Percent Time-Spent-Following	
Grade Adjustment factor, f_{G} (Exhibit 20-8)	1.00
Passenger-car equivalents for trucks, E_{T} (Exhibit 20-10)	1.1
Passenger-car equivalents for RVs, E_{R} (Exhibit 20-10)	1.0
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}}=1 /\left(1+\mathrm{P}_{\mathrm{T}}\left(\mathrm{E}_{\mathrm{T}}-1\right)+\mathrm{P}_{\mathrm{R}}\left(\mathrm{E}_{\mathrm{R}}-1\right)\right.$)	0.997
Two-way flow rate ${ }^{1}, \mathrm{v}_{\mathrm{p}}(\mathrm{pc} / \mathrm{h})=\mathrm{V} /\left(\mathrm{PHF}^{*} \mathrm{f}_{\mathrm{G}}{ }^{*} \mathrm{f}_{\mathrm{HV}}\right)$	536
$\mathrm{v}_{\mathrm{p}}{ }^{*}$ highest directional split proportion ${ }^{2}(\mathrm{pc} / \mathrm{h})$	343
Base percent time-spent-following, BPTSF(\%)=100(1-- ${ }^{-0.000879 v_{p} \text {) }}$	37.6
Adj. for directional distribution and no-passing zone, $\mathrm{f}_{\text {dhpp }}(\%)($ Exh. 20-12)	21.4
Percent time-spent-following, PTSF(\%)=BPTSF $+\mathrm{f}_{\mathrm{d} / \mathrm{np}}$	58.9
Level of Service and Other Performance Measures	
Level of service, LOS (Exhibit 20-3 for Class I or 20-4 for Class II)	C
Volume to capacity ratio, $\mathrm{v} / \mathrm{c}=\mathrm{V}_{\mathrm{p}} / 3,200$	0.17
Peak 15-min veh-miles of travel, VMT_{15} (veh- mi^{\prime}) $=0.25 \mathrm{~L}_{\mathrm{t}}$ (V/PHF)	67
Peak-hour vehicle-miles of travel, $\mathrm{VMT}_{60}($ veh $-m i)=\mathrm{V}^{\star} \mathrm{L}_{t}$	241
Peak 15-min total travel time, $\mathrm{TT}_{15}(\mathrm{veh}-\mathrm{h})=\mathrm{VMT}_{15} / \mathrm{ATS}$	2.1
Notes	
1. If $V p>=3,200 \mathrm{pc} / \mathrm{h}$, terminate analysis-the LOS is F . 2. If highest directional split $V p>=1,700 \mathrm{pc} / \mathrm{h}$, terminated anlysis-the LOS is F .	

TWO-WAY TWO-LANE HIGHWAY SEGMENT WORKSHEET

General Information	Site Information
Analyst Agency or Company SKB Date Performed TDOT/Long Engineering Analysis Time Period O5/04/2009 AM Peak Period	Highway Pleasant Grove Road From/To West of I-75 Jurisdiction Cleveland, TN Analysis Year 2033
Project Description: Existing System Without Slip Ramp	
Input Data	
Average Travel Speed	
Grade adjustment factor, f_{G} (Exhibit 20-7)	1.00
Passenger-car equivalents for trucks, E_{T} (Exhibit 20-9)	1.2
Passenger-car equivalents for RVs, E_{R} (Exhibit 20-9)	1.0
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}}=1 /\left(1+\mathrm{P}_{\mathrm{T}}\left(\mathrm{E}_{\mathrm{T}}-1\right)+\mathrm{P}_{\mathrm{R}}\left(\mathrm{E}_{\mathrm{R}}-1\right)\right.$)	0.994
Two-way flow rate ${ }^{1}, \mathrm{v}_{\mathrm{p}}(\mathrm{pc} / \mathrm{h})=\mathrm{V} /\left(\mathrm{PHF}^{*} \mathrm{f}_{\mathrm{G}}{ }^{\text {f }} \mathrm{HV}\right)$	719
v_{p} * highest directional split proportion ${ }^{2}(\mathrm{pc} / \mathrm{h})$	439
Free-Flow Speed from Field Measurement	Estimated Free-Flow Speed
Field Measured speed, S_{FM} m / h Observed volume, V_{f} $\mathrm{veh} / \mathrm{h}$ Free-flow speed, FFS FFS=S $\mathrm{S}_{\mathrm{FM}}+0.00776\left(\mathrm{~V}_{\mathrm{f}} / \mathrm{f}_{\mathrm{HV}}\right)$ mi / h	Base free-flow speed, $\mathrm{BFFS}_{\mathrm{FM}}$ $45.0 \mathrm{mi} / \mathrm{h}$ Adj. for lane width and shoulder width ${ }^{3}$, f_{LS} (Exhibit 20-5) $1.3 \mathrm{mi} / \mathrm{h}$ Adj. for access points, $\mathrm{f}_{\mathrm{A}}($ Exhibit 20-6 $3.0 \mathrm{mi} / \mathrm{h}$ Free-flow speed, FFS (FSS=BFFS-f $\left.\mathrm{f}_{\mathrm{LS}} \mathrm{f}_{\mathrm{A}}\right)$ $40.7 \mathrm{mi/h}$
Adj. for no-passing zones, f_{np} (mi/h) (Exhibit 20-11)	3.4
Average travel speed, ATS (mi/h) ATS=FFS-0.00776v $\mathrm{v}_{\mathrm{p}} \mathrm{f}_{\mathrm{np}}$	31.8
Percent Time-Spent-Following	
Grade Adjustment factor, f_{G} (Exhibit 20-8)	1.00
Passenger-car equivalents for trucks, E_{T} (Exhibit 20-10)	1.1
Passenger-car equivalents for RVs, E_{R} (Exhibit 20-10)	1.0
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}}=1 /\left(1+\mathrm{P}_{\mathrm{T}}\left(\mathrm{E}_{\mathrm{T}-1}-1\right)+\mathrm{P}_{\mathrm{R}}\left(\mathrm{E}_{\mathrm{R}}-1\right)\right.$)	0.997
Two-way flow rate ${ }^{1}, \mathrm{v}_{\mathrm{p}}(\mathrm{pc} / \mathrm{h})=\mathrm{V} /\left(\mathrm{PHF}^{*} \mathrm{f}_{\mathrm{G}}{ }^{*} \mathrm{f}_{\mathrm{HV}}\right)$	717
v_{p} * highest directional split proportion ${ }^{2}(\mathrm{pc} / \mathrm{h})$	437
Base percent time-spent-following, BPTSF(\%)=100(1-e ${ }^{-0.000879 v_{p} \text {) }}$	46.8
Adj. for directional distribution and no-passing zone, $\mathrm{f}_{\text {d/hp }}(\%)$ (Exh. 20-12)	17.0
Percent time-spent-following, PTSF(\%)=BPTSF $+\mathrm{f}_{\mathrm{d} / \mathrm{np}}$	63.8
Level of Service and Other Performance Measures	
Level of service, LOS (Exhibit 20-3 for Class I or 20-4 for Class II)	C
Volume to capacity ratio, $\mathrm{v} / \mathrm{c}=\mathrm{V}_{\mathrm{p}} / 3,200$	0.22
Peak 15-min veh-miles of travel, VMT_{15} (veh- mi) $=0.25 \mathrm{~L}_{\mathrm{t}}$ (V/PHF)	89
Peak-hour vehicle-miles of travel, VMT_{60} (veh- $\left.\mathrm{mi}^{\prime}\right)=\mathrm{V} * \mathrm{~L}_{t}$	322
Peak 15-min total travel time, $\mathrm{TT}_{15}(\mathrm{veh}-\mathrm{h})=\mathrm{VMT}_{15} / \mathrm{ATS}$	2.8
Notes	
1. If $V p>=3,200 \mathrm{pc} / \mathrm{h}$, terminate analysis-the LOS is F. 2. If highest directional split $\mathrm{Vp}>=1,700 \mathrm{pc} / \mathrm{h}$, terminated anlysis-the LOS is F .	

TWO-WAY TWO-LANE HIGHWAY SEGMENT WORKSHEET

General Information	Site Information
Analyst SKB Agency or Company TDOT/Long Engineering Dane Performed $05 / 04 / 2009$ Analysis Time Period PM Peak Period	Highway Pleasant Grove Road From/To West of I-75 Jurisdiction Cleveland Analysis Year 2033
Project Description: Existing System Without Slip Ramp	
Input Data	
Average Travel Speed	
Grade adjustment factor, f_{G} (Exhibit 20-7)	1.00
Passenger-car equivalents for trucks, E_{T} (Exhibit 20-9)	1.2
Passenger-car equivalents for RVs, E_{R} (Exhibit 20-9)	1.0
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}}=1 /\left(1+\mathrm{P}_{\mathrm{T}}\left(\mathrm{E}_{\mathrm{T}}-1\right)+\mathrm{P}_{\mathrm{R}}\left(\mathrm{E}_{\mathrm{R}}-1\right)\right)$	0.994
Two-way flow rate ${ }^{1}, \mathrm{v}_{\mathrm{p}}(\mathrm{pc} / \mathrm{h})=\mathrm{V} /\left(\mathrm{PHF}^{*} \mathrm{f}_{\mathrm{G}}{ }^{*} \mathrm{f}_{\mathrm{HV}}\right)$	807
$\mathrm{v}_{\mathrm{p}}{ }^{\text {* }}$ highest directional split proportion ${ }^{2}$ (pc/h)	516
Free-Flow Speed from Field Measurement	Estimated Free-Flow Speed
Field Measured speed, S_{FM} mi / h Observed volume, V_{f} $\mathrm{veh} / \mathrm{h}$ Free-flow speed, FFS FFS $=\mathrm{S}_{\mathrm{FM}}+0.00776\left(\mathrm{~V}_{\mathrm{f}} / \mathrm{f}_{\mathrm{HV}}\right)$ mi / h	Base free-flow speed, $\mathrm{BFFS}_{\text {FM }}$ $45.0 \mathrm{mi} / \mathrm{h}$ Adj. for lane width and shoulder width ${ }^{3}$, $\mathrm{f}_{\mathrm{LS}}($ Exhibit 20-5) $1.3 \mathrm{mi} / \mathrm{h}$ Adj. for access points, $\mathrm{f}_{\mathrm{A}}($ Exhibit 20-6) $3.0 \mathrm{mi} / \mathrm{h}$ Free-flow speed, FFS (FSS=BFFS- $\left.\mathrm{f}_{\mathrm{Ls}} \mathrm{f}_{\mathrm{A}}\right)$ $40.7 \mathrm{mi} / \mathrm{h}$
Adj. for no-passing zones, $\mathrm{f}_{\text {np }}$ (mi/h) (Exhibit 20-11)	3.0
Average travel speed, ATS (mi/h) ATS=FFS-0.00776v $\mathrm{v}_{\mathrm{p}}-\mathrm{f}_{\text {np }}$	31.5
Percent Time-Spent-Following	
Grade Adjustment factor, f_{G} (Exhibit 20-8)	1.00
Passenger-car equivalents for trucks, E_{T} (Exhibit 20-10)	1.1
Passenger-car equivalents for RVs, E_{R} (Exhibit 20-10)	1.0
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}}=1 /\left(1+\mathrm{P}_{\mathrm{T}}\left(\mathrm{E}_{\mathrm{T}}-1\right)+\mathrm{P}_{\mathrm{R}}\left(\mathrm{E}_{\mathrm{R}}-1\right)\right.$)	0.997
Two-way flow rate ${ }^{1}, \mathrm{v}_{\mathrm{p}}(\mathrm{pc} / \mathrm{h})=\mathrm{V} /\left(\mathrm{PHF}^{*} \mathrm{f}_{\mathrm{G}}{ }^{*} \mathrm{f}_{\mathrm{HV}}\right)$	805
$\mathrm{v}_{\mathrm{p}}{ }^{*}$ highest directional split proportion ${ }^{2}(\mathrm{pc} / \mathrm{h})$	515
Base percent time-spent-following, BPTSF(\%)=100(1-- ${ }^{-0.000879 v_{p} \text {) }}$	50.7
Adj. for directional distribution and no-passing zone, $\mathrm{f}_{\text {dhpp }}(\%)$ (Exh. 20-12)	14.4
Percent time-spent-following, PTSF(\%)=BPTSF+ $\mathrm{f}_{\mathrm{d} / \mathrm{np}}$	65.1
Level of Service and Other Performance Measures	
Level of service, LOS (Exhibit 20-3 for Class I or 20-4 for Class II)	C
Volume to capacity ratio, $\mathrm{v} / \mathrm{c}=\mathrm{V}_{\mathrm{p}} / 3,200$	0.25
Peak 15-min veh-miles of travel, VMT_{15} (veh- mi^{\prime}) $=0.25 \mathrm{~L}_{\mathrm{t}}$ (V/PHF)	100
Peak-hour vehicle-miles of travel, $\mathrm{VMT}_{60}(\mathrm{veh}-\mathrm{mi})=\mathrm{V} * \mathrm{~L}_{t}$	361
Peak 15-min total travel time, $\mathrm{TT}_{15}(\mathrm{veh}-\mathrm{h})=\mathrm{VMT}_{15} / \mathrm{ATS}$	3.2
Notes	
1. If $V p>=3,200 \mathrm{pc} / \mathrm{h}$, terminate analysis-the LOS is F . 2. If highest directional split $\mathrm{Vp}>=1,700 \mathrm{pc} / \mathrm{h}$, terminated anlysis-the LOS is F .	

TWO-WAY TWO-LANE HIGHWAY SEGMENT WORKSHEET

General Information	Site Information
Analyst SKB Agency or Company TDOT/Long Engineering Date Performed O5/O4/2009 Analysis Time Period AM Peak Period Pal	Highway Pleasant Grove Road From/To West of $I-75$ Jurisdiction Cleveland, TN Analysis Year 2013
Project Description: Proposed System Without Slip Ramp	
Input Data	
Average Travel Speed	
Grade adjustment factor, f_{G} (Exhibit 20-7)	1.00
Passenger-car equivalents for trucks, E_{T} (Exhibit 20-9)	1.7
Passenger-car equivalents for RVs, E_{R} (Exhibit 20-9)	1.0
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}}=1 /\left(1+\mathrm{P}_{\mathrm{T}}\left(\mathrm{E}_{\mathrm{T}}-1\right)+\mathrm{P}_{\mathrm{R}}\left(\mathrm{E}_{\mathrm{R}}-1\right)\right.$)	0.979
Two-way flow rate ${ }^{1}, \mathrm{v}_{\mathrm{p}}(\mathrm{pc} / \mathrm{h})=\mathrm{V} /\left(\mathrm{PHF}^{*} \mathrm{f}_{\mathrm{G}} * \mathrm{f}_{\mathrm{HV}}\right)$	583
v_{p} * highest directional split proportion ${ }^{2}$ (pc/h)	379
Free-Flow Speed from Field Measurement	Estimated Free-Flow Speed
Field Measured speed, S_{FM} mi / h Observed volume, V_{f} $\mathrm{veh} / \mathrm{h}$ Free-flow speed, FFS FFS $=\mathrm{S}_{\mathrm{FM}}+0.00776\left(\mathrm{~V}_{\mathrm{f}} / \mathrm{f}_{\mathrm{HV}}\right)$ mi / h	
Adj. for no-passing zones, $\mathrm{f}_{\text {np }}$ (mi/h) (Exhibit 20-11)	4.0
Average travel speed, ATS (mi/h) ATS=FFS-0.00776v $\mathrm{v}_{\mathrm{p}} \mathrm{f}_{\mathrm{np}}$	32.2
Percent Time-Spent-Following	
Grade Adjustment factor, f_{G} (Exhibit 20-8)	1.00
Passenger-car equivalents for trucks, E_{T} (Exhibit 20-10)	1.1
Passenger-car equivalents for RVs, E_{R} (Exhibit 20-10)	1.0
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}}=1 /\left(1+\mathrm{P}_{\mathrm{T}}\left(\mathrm{E}_{\mathrm{T}}-1\right)+\mathrm{P}_{\mathrm{R}}\left(\mathrm{E}_{\mathrm{R}}-1\right)\right.$)	0.997
Two-way flow rate ${ }^{1}, \mathrm{v}_{\mathrm{p}}(\mathrm{pc} / \mathrm{h})=\mathrm{V} /\left(\mathrm{PHF}^{*} \mathrm{f}_{\mathrm{G}}{ }^{*} \mathrm{f}_{\mathrm{HV}}\right)$	573
$\mathrm{v}_{\mathrm{p}}{ }^{*}$ highest directional split proportion ${ }^{2}(\mathrm{pc} / \mathrm{h})$	372
Base percent time-spent-following, BPTSF(\%)=100(1-- ${ }^{-0.000879 v_{p} \text {) }}$	39.6
Adj. for directional distribution and no-passing zone, $\mathrm{f}_{\text {dhpp }}(\%)$ (Exh. 20-12)	21.1
Percent time-spent-following, PTSF(\%)=BPTSF $+\mathrm{f}_{\mathrm{d} / \mathrm{np}}$	60.6
Level of Service and Other Performance Measures	
Level of service, LOS (Exhibit 20-3 for Class I or 20-4 for Class II)	C
Volume to capacity ratio, $\mathrm{v} / \mathrm{c}=\mathrm{V}_{\mathrm{p}} / 3,200$	0.18
Peak 15-min veh-miles of travel, VMT_{15} (veh- $\mathrm{mi}^{\text {i }}$) $0.25 \mathrm{~L}_{\mathrm{t}}$ (V/PHF)	71
Peak-hour vehicle-miles of travel, $\mathrm{VMT}_{60}(\mathrm{veh}-\mathrm{mi})=\mathrm{V}^{*} \mathrm{~L}_{t}$	257
Peak 15-min total travel time, $\mathrm{TT}_{15}(\mathrm{veh}-\mathrm{h})=\mathrm{VMT}_{15} / \mathrm{ATS}$	2.2
Notes	
1. If $V p>=3,200 \mathrm{pc} / \mathrm{h}$, terminate analysis-the LOS is F. 2. If highest directional split $\mathrm{Vp}>=1,700 \mathrm{pc} / \mathrm{h}$, terminated anlysis-the LOS is F .	

TWO-WAY TWO-LANE HIGHWAY SEGMENT WORKSHEET

General Information	Site Information
Analyst SKB Agency or Company TDOT/Long Engineering Dane Performed $04 / 05 / 2009$ Analysis Time Period PM Peak Period	Highway Pleasant Grove Road From/To West of I-75 Jurisdiction Cleveland, TN Analysis Year 2013
Project Description: Proposed System Without Slip Ramp	
Input Data	
Average Travel Speed	
Grade adjustment factor, f_{G} (Exhibit 20-7)	1.00
Passenger-car equivalents for trucks, E_{T} (Exhibit 20-9)	1.7
Passenger-car equivalents for RVs, E_{R} (Exhibit 20-9)	1.0
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}}=1 /\left(1+\mathrm{P}_{\mathrm{T}}\left(\mathrm{E}_{\mathrm{T}}-1\right)+\mathrm{P}_{\mathrm{R}}\left(\mathrm{E}_{\mathrm{R}}-1\right)\right)$	0.979
Two-way flow rate ${ }^{1}, \mathrm{v}_{\mathrm{p}}(\mathrm{pc} / \mathrm{h})=\mathrm{V} /\left(\mathrm{PHF}^{*} \mathrm{f}_{\mathrm{G}}{ }^{*} \mathrm{f}_{\mathrm{HV}}\right)$	590
v_{p} * highest directional split proportion ${ }^{2}$ (pc/h)	384
Free-Flow Speed from Field Measurement	Estimated Free-Flow Speed
Field Measured speed, S_{FM} mi / h Observed volume, V_{f} $\mathrm{veh} / \mathrm{h}$ Free-flow speed, FFS FFS $=\mathrm{S}_{\mathrm{FM}}+0.00776\left(\mathrm{~V}_{\mathrm{f}} / \mathrm{f}_{\mathrm{HV}}\right)$ $\mathrm{mi} h$	Base free-flow speed, $\mathrm{BFFS}_{\mathrm{FM}}$ $45.0 \mathrm{mi} / \mathrm{h}$ Adj. for lane width and shoulder width ${ }^{3}$, $\mathrm{f}_{\mathrm{LS}}($ Exhibit 20-5) $1.3 \mathrm{~m} / \mathrm{h}$ Adj. for access points, $\mathrm{f}_{\mathrm{A}}\left(\right.$ Exhibit $^{20-6)}$ $3.0 \mathrm{mi} / \mathrm{h}$ Free-flow speed, $\mathrm{FFS}\left(\right.$ FSS=BFFS- $\left.\mathrm{f}_{\mathrm{Ls}}-\mathrm{f}_{\mathrm{A}}\right)$ $40.7 \mathrm{mi} / \mathrm{h}$
Adj. for no-passing zones, $\mathrm{f}_{\text {np }}$ (mi/h) (Exhibit 20-11)	3.9
Average travel speed, ATS (mi/h) ATS=FFS-0.00776v $\mathrm{v}_{\mathrm{p}}-\mathrm{f}_{\text {np }}$	32.2
Percent Time-Spent-Following	
Grade Adjustment factor, f_{G} (Exhibit 20-8)	1.00
Passenger-car equivalents for trucks, E_{T} (Exhibit 20-10)	1.1
Passenger-car equivalents for RVs, E_{R} (Exhibit 20-10)	1.0
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}}=1 /\left(1+\mathrm{P}_{\mathrm{T}}\left(\mathrm{E}_{\mathrm{T}}-1\right)+\mathrm{P}_{\mathrm{R}}\left(\mathrm{E}_{\mathrm{R}}-1\right)\right.$)	0.997
Two-way flow rate ${ }^{1}, \mathrm{v}_{\mathrm{p}}(\mathrm{pc} / \mathrm{h})=\mathrm{V} /\left(\mathrm{PHF}^{*} \mathrm{f}_{\mathrm{G}}{ }^{*} \mathrm{f}_{\mathrm{HV}}\right)$	580
$\mathrm{v}_{\mathrm{p}}{ }^{\text {a }}$ highest directional split proportion ${ }^{2}(\mathrm{pc} / \mathrm{h})$	377
Base percent time-spent-following, BPTSF(\%)=100(1-- ${ }^{-0.000879 v_{p} \text {) }}$	39.9
Adj. for directional distribution and no-passing zone, $\mathrm{f}_{\text {dhpp }}(\%)($ Exh. 20-12)	21.0
Percent time-spent-following, PTSF(\%)=BPTSF+ $\mathrm{f}_{\mathrm{d} / \mathrm{np}}$	60.9
Level of Service and Other Performance Measures	
Level of service, LOS (Exhibit 20-3 for Class I or 20-4 for Class II)	C
Volume to capacity ratio, $\mathrm{v} / \mathrm{c}=\mathrm{V}_{\mathrm{p}} / 3,200$	0.18
Peak 15-min veh-miles of travel, VMT_{15} (veh- $\mathrm{mi}^{\text {i }}$) $0.25 \mathrm{~L}_{\mathrm{t}}(\mathrm{V} / \mathrm{PHF}$)	72
Peak-hour vehicle-miles of travel, $\mathrm{VMT}_{60}(\mathrm{veh}-\mathrm{mi})=\mathrm{V}^{*} \mathrm{~L}_{t}$	260
Peak 15-min total travel time, $\mathrm{TT}_{15}(\mathrm{veh}-\mathrm{h})=\mathrm{VMT}_{15} / \mathrm{ATS}$	2.2
Notes	
1. If $V p>=3,200 \mathrm{pc} / \mathrm{h}$, terminate analysis-the LOS is F . 2. If highest directional split $\mathrm{Vp}>=1,700 \mathrm{pc} / \mathrm{h}$, terminated anlysis-the LOS is F .	

TWO-WAY TWO-LANE HIGHWAY SEGMENT WORKSHEET

General Information	Site Information
Analyst SKB Agency or Company TDOT/Long Engineering Date Performed O5/O4/2009 Analysis Time Period AM Peak Period Pal	Highway Pleasant Grove Road From/To West of $I-75$ Jurisdiction Cleveland, TN Analysis Year 2033
Project Description: Proposed System Without Slip Ramp	
Input Data	
Average Travel Speed	
Grade adjustment factor, f_{G} (Exhibit 20-7)	1.00
Passenger-car equivalents for trucks, E_{T} (Exhibit 20-9)	1.2
Passenger-car equivalents for RVs, E_{R} (Exhibit 20-9)	1.0
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}}=1 /\left(1+\mathrm{P}_{\mathrm{T}}\left(\mathrm{E}_{\mathrm{T}}-1\right)+\mathrm{P}_{\mathrm{R}}\left(\mathrm{E}_{\mathrm{R}}-1\right)\right.$)	0.994
Two-way flow rate ${ }^{1}, \mathrm{v}_{\mathrm{p}}(\mathrm{pc} / \mathrm{h})=\mathrm{V} /\left(\mathrm{PHF}^{*} \mathrm{f}_{\mathrm{G}}{ }^{*} \mathrm{f}_{\mathrm{HV}}\right)$	879
v_{p} * highest directional split proportion ${ }^{2}$ (pc/h)	571
Free-Flow Speed from Field Measurement	Estimated Free-Flow Speed
Field Measured speed, S_{FM} mi / h Observed volume, V_{f} $\mathrm{veh} / \mathrm{h}$ Free-flow speed, FFS FFS $=\mathrm{S}_{\mathrm{FM}}+0.00776\left(\mathrm{~V}_{\mathrm{f}} / \mathrm{f}_{\mathrm{HV}}\right)$ mi / h	
Adj. for no-passing zones, $\mathrm{f}_{\text {np }}$ (mi/h) (Exhibit 20-11)	2.8
Average travel speed, ATS (mi/h) ATS=FFS-0.00776v $\mathrm{v}_{\mathrm{p}} \mathrm{f}_{\mathrm{np}}$	31.0
Percent Time-Spent-Following	
Grade Adjustment factor, f_{G} (Exhibit 20-8)	1.00
Passenger-car equivalents for trucks, E_{T} (Exhibit 20-10)	1.1
Passenger-car equivalents for RVs, E_{R} (Exhibit 20-10)	1.0
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}}=1 /\left(1+\mathrm{P}_{\mathrm{T}}\left(\mathrm{E}_{\mathrm{T}}-1\right)+\mathrm{P}_{\mathrm{R}}\left(\mathrm{E}_{\mathrm{R}}-1\right)\right.$)	0.997
Two-way flow rate ${ }^{1}, \mathrm{v}_{\mathrm{p}}(\mathrm{pc} / \mathrm{h})=\mathrm{V} /\left(\mathrm{PHF}^{*} \mathrm{f}_{\mathrm{G}}{ }^{*} \mathrm{f}_{\mathrm{HV}}\right)$	876
$\mathrm{v}_{\mathrm{p}}{ }^{*}$ highest directional split proportion ${ }^{2}(\mathrm{pc} / \mathrm{h})$	569
Base percent time-spent-following, BPTSF(\%)=100(1-- ${ }^{-0.000879 v_{p} \text {) }}$	53.7
Adj. for directional distribution and no-passing zone, $\mathrm{f}_{\text {dhpp }}(\%)$ (Exh. 20-12)	13.7
Percent time-spent-following, PTSF(\%)=BPTSF $+\mathrm{f}_{\mathrm{d} / \mathrm{np}}$	67.4
Level of Service and Other Performance Measures	
Level of service, LOS (Exhibit 20-3 for Class I or 20-4 for Class II)	C
Volume to capacity ratio, $\mathrm{v} / \mathrm{c}=\mathrm{V}_{\mathrm{p}} / 3,200$	0.27
Peak 15-min veh-miles of travel, VMT_{15} (veh- $\mathrm{mi}^{\text {i }}$) $0.25 \mathrm{~L}_{\mathrm{t}}$ (V/PHF)	109
Peak-hour vehicle-miles of travel, $\mathrm{VMT}_{60}(\mathrm{veh}-\mathrm{mi})=\mathrm{V} * \mathrm{~L}_{t}$	393
Peak 15-min total travel time, $\mathrm{TT}_{15}(\mathrm{veh}-\mathrm{h})=\mathrm{VMT}_{15} / \mathrm{ATS}$	3.5
Notes	
1. If $V p>=3,200 \mathrm{pc} / \mathrm{h}$, terminate analysis-the LOS is F. 2. If highest directional split $\mathrm{Vp}>=1,700 \mathrm{pc} / \mathrm{h}$, terminated anlysis-the LOS is F .	

TWO-WAY TWO-LANE HIGHWAY SEGMENT WORKSHEET

General Information	Site Information
Analyst SKB Agency or Company TDOT/Long Engineering Dane Performed $05 / 04 / 2009$ Analysis Time Period PM Peak Period	$\|$Highway Pleasant Grove Road From/To West of I-75 Jurisdiction Clever Analysis Year Cleveland, TN 2033
Project Description: Proposed System Without Slip Ramp	
Input Data	
Average Travel Speed	
Grade adjustment factor, f_{G} (Exhibit 20-7)	1.00
Passenger-car equivalents for trucks, E_{T} (Exhibit 20-9)	1.2
Passenger-car equivalents for RVs, E_{R} (Exhibit 20-9)	1.0
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}}=1 /\left(1+\mathrm{P}_{\mathrm{T}}\left(\mathrm{E}_{\mathrm{T}}-1\right)+\mathrm{P}_{\mathrm{R}}\left(\mathrm{E}_{\mathrm{R}}-1\right)\right)$	0.994
Two-way flow rate ${ }^{1}, \mathrm{v}_{\mathrm{p}}(\mathrm{pc} / \mathrm{h})=\mathrm{V} /\left(\mathrm{PHF}^{*} \mathrm{f}_{\mathrm{G}}{ }^{*} \mathrm{f}_{\mathrm{HV}}\right)$	893
v_{p} * highest directional split proportion ${ }^{2}$ (pc/h)	580
Free-Flow Speed from Field Measurement	Estimated Free-Flow Speed
Field Measured speed, S_{FM} mi / h Observed volume, V_{f} $\mathrm{veh} / \mathrm{h}$ Free-flow speed, FFS FFS $=\mathrm{S}_{\mathrm{FM}}+0.00776\left(\mathrm{~V}_{\mathrm{f}} / \mathrm{f}_{\mathrm{HV}}\right)$ $\mathrm{mi} h$	Base free-flow speed, $\mathrm{BFFS}_{\mathrm{FM}}$ $45.0 \mathrm{mi} / \mathrm{h}$ Adj. for lane width and shoulder width ${ }^{3}$, f_{LS} (Exhibit 20-5) $1.3 \mathrm{mi} / \mathrm{h}$ Adj. for access points, $\mathrm{f}_{\mathrm{A}}($ Exhibit 20-6 $3.0 \mathrm{mi} / \mathrm{h}$ Free-flow speed, $\mathrm{FFS}\left(\mathrm{FSS}=\mathrm{BFFS}-\mathrm{f}_{\mathrm{Ls}}-\mathrm{f}_{\mathrm{A}}\right)$ $40.7 \mathrm{mi} / \mathrm{h}$
Adj. for no-passing zones, $\mathrm{f}_{\text {np }}$ (mi/h) (Exhibit 20-11)	2.8
Average travel speed, ATS (mi/h) ATS=FFS-0.00776v $\mathrm{v}_{\mathrm{p}}-\mathrm{f}_{\text {np }}$	31.0
Percent Time-Spent-Following	
Grade Adjustment factor, f_{G} (Exhibit 20-8)	1.00
Passenger-car equivalents for trucks, E_{T} (Exhibit 20-10)	1.1
Passenger-car equivalents for RVs, E_{R} (Exhibit 20-10)	1.0
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}}=1 /\left(1+\mathrm{P}_{\mathrm{T}}\left(\mathrm{E}_{\mathrm{T}}-1\right)+\mathrm{P}_{\mathrm{R}}\left(\mathrm{E}_{\mathrm{R}}-1\right)\right.$)	0.997
Two-way flow rate ${ }^{1}, \mathrm{v}_{\mathrm{p}}(\mathrm{pc} / \mathrm{h})=\mathrm{V} /\left(\mathrm{PHF}^{*} \mathrm{f}_{\mathrm{G}}{ }^{*} \mathrm{f}_{\mathrm{HV}}\right)$	890
$\mathrm{v}_{\mathrm{p}}{ }^{\text {a }}$ highest directional split proportion ${ }^{2}(\mathrm{pc} / \mathrm{h})$	579
Base percent time-spent-following, BPTSF(\%)=100(1-- ${ }^{-0.000879 v_{p} \text {) }}$	54.3
Adj. for directional distribution and no-passing zone, $\mathrm{f}_{\text {dhpp }}(\%)($ Exh. 20-12)	13.6
Percent time-spent-following, PTSF(\%)=BPTSF+ $\mathrm{f}_{\mathrm{d} / \mathrm{np}}$	67.8
Level of Service and Other Performance Measures	
Level of service, LOS (Exhibit 20-3 for Class I or 20-4 for Class II)	C
Volume to capacity ratio, $\mathrm{v} / \mathrm{c}=\mathrm{V}_{\mathrm{p}} / 3,200$	0.28
Peak 15-min veh-miles of travel, VMT_{15} (veh- $\mathrm{mi}^{\text {i }}$) $0.25 \mathrm{~L}_{\mathrm{t}}(\mathrm{V} / \mathrm{PHF}$)	111
Peak-hour vehicle-miles of travel, $\mathrm{VMT}_{60}(\mathrm{veh}-\mathrm{mi})=\mathrm{V}^{*} \mathrm{~L}_{t}$	400
Peak 15-min total travel time, $\mathrm{TT}_{15}(\mathrm{veh}-\mathrm{h})=\mathrm{VMT}_{15} / \mathrm{ATS}$	3.6
Notes	
1. If $V p>=3,200 \mathrm{pc} / \mathrm{h}$, terminate analysis-the LOS is F . 2. If highest directional split $\mathrm{Vp}>=1,700 \mathrm{pc} / \mathrm{h}$, terminated anlysis-the LOS is F .	

Ramp Terminal Unsignalized Intersections

Highway Capacity Software Computer Printouts

TWO-WAY STOP CONTROL SUMMARY

General Information

Analyst	SKB
Agency/Co.	TDOT / Long Engineering
Date Performed	O5/04/2009
Analysis Time Period	AM Peak Period

Project Description Existing System Without Slip Ramp
East/West Street: APD-40 EB Off-Ramp
Intersection Orientation: North-South
Vehicle Volumes and Adjustments

Major Street	Northbound			Southbound		
Movement	1	2	3	4	5	6
	L	T	R	L	T	R
Volume (veh/h)		538	44	156	789	
Peak-Hour Factor, PHF	0.90	0.94	0.94	0.94	0.94	0.90
Hourly Flow Rate, HFR (veh/h)	0	572	46	165	839	0
Percent Heavy Vehicles	0	--	--	3	--	--
Median Type	Raised curb					
RT Channelized			0			0
Lanes	0	2	1	1	2	0
Configuration		T	R	L	T	
Upstream Signal		0			0	

Minor Street	Eastbound			Westbound		
Movement	7	8	9	10	11	12
	L	T	R	L	T	R
Volume (veh/h)	194		326			
Peak-Hour Factor, PHF	0.94	0.90	0.94	0.90	0.90	0.90
Hourly Flow Rate, HFR (veh/h)	206	0	346	0	0	0
Percent Heavy Vehicles	3	0	3	0	0	0
Percent Grade (\%)	0			0		
Flared Approach		Y			N	
Storage		2			0	
RT Channelized			0			0
Lanes	1	0	1	0	0	0
Configuration	L		R			

Delay, Queue Length, and Level of Service

Approach	Northbound	Southbound	Westbound			Eastbound		
Movement	1	4	7	8	9	10	11	12
Lane Configuration		L				L		R
v (veh/h)		165				206		346
C (m) (veh/h)		951				209		629
v/c		0.17				0.99		0.55
95\% queue length		0.63				8.60		3.35
Control Delay (s/veh)		9.6				106.5		17.5
LOS		A				F		C
Approach Delay (s/veh)	--	--					0.7	
Approach LOS	--	--					F	

TWO-WAY STOP CONTROL SUMMARY

General Information

Analyst	SKB
Agency/Co.	TDOT / Long Engineering
Date Performed	$05 / 04 / 2009$
Analysis Time Period	PM Peak Period
Project Desc\|	

Site Information

Intersection	APD-40 EB @ S. Lee Hwy.
Jurisdiction	Cleveland, TN
Analysis Year	2013

North/South Street: S. Lee Hwy.
Study Period (hrs): 0.25

Vehicle Volumes and Adjustments

Major Street	Northbound			Southbound		
Movement	1	2	3	4	5	6
	L	T	R	L	T	R
Volume (veh/h)		980	78	316	754	
Peak-Hour Factor, PHF	0.90	0.94	0.94	0.94	0.94	0.90
Hourly Flow Rate, HFR (veh/h)	0	1042	82	336	802	0
Percent Heavy Vehicles	0	--	--	3	--	--
Median Type	Raised curb					
RT Channelized			0			0
Lanes	0	2	1	1	2	0
Configuration		T	R	L	T	
Upstream Signal		0			0	

Minor Street	Eastbound			Westbound		
Movement	7	8	9	10	11	12
	L	T	R	L	T	R
Volume (veh/h)	157		207			
Peak-Hour Factor, PHF	0.94	0.90	0.94	0.90	0.90	0.90
Hourly Flow Rate, HFR (veh/h)	167	0	220	0	0	0
Percent Heavy Vehicles	3	0	3	0	0	0
Percent Grade (\%)	0			0		
Flared Approach		Y			N	
Storage		2			0	
RT Channelized			0			0
Lanes	1	0	1	0	0	0
Configuration	L		R			

Delay, Queue Length, and Level of Service

Approach	Northbound	Southbound	Westbound			Eastbound		
Movement	1	4	7	8	9	10	11	12
Lane Configuration		L				L		R
v (veh/h)		336				167		220
C (m) (veh/h)		611				78		644
v/c		0.55				2.14		0.34
95\% queue length		3.34				15.24		1.51
Control Delay (s/veh)		17.9				640.1		13.5
LOS		C				F		B
Approach Delay (s/veh)	--	--					3.9	
Approach LOS	--	--					F	

TWO-WAY STOP CONTROL SUMMARY

General Information

Analyst	SKB
Agency/Co.	TDOT / Long Engineering
Date Performed	$05 / 04 / 2009$
Analysis Time Period	AM Peak Period
Projec	

Intersection	APD-40 EB @ S. Lee Hwy.
Jurisdiction	Cleveland, TN
Analysis Year	2033

North/South Street: S. Lee Hwy.
Study Period (hrs): 0.25

Vehicle Volumes and Adjustments

Major Street	Northbound			Southbound		
Movement	1	2	3	4	5	6
	L	T	R	L	T	R
Volume (veh/h)		841	69	244	1232	
Peak-Hour Factor, PHF	0.90	0.94	0.94	0.94	0.94	0.90
Hourly Flow Rate, HFR (veh/h)	0	894	73	259	1310	0
Percent Heavy Vehicles	0	--	--	3	--	--
Median Type	Raised curb					
RT Channelized			0			0
Lanes	0	2	1	1	2	0
Configuration		T	R	L	T	
Upstream Signal		0			0	

Minor Street	Eastbound			Westbound		
Movement	7	8	9	10	11	12
	L	T	R	L	T	R
Volume (veh/h)	303		510			
Peak-Hour Factor, PHF	0.94	0.90	0.94	0.90	0.90	0.90
Hourly Flow Rate, HFR (veh/h)	322	0	542	0	0	0
Percent Heavy Vehicles	3	0	3	0	0	0
Percent Grade (\%)		0			0	
Flared Approach		Y			N	
Storage		2			0	
RT Channelized			0			0
Lanes	1	0	1	0	0	0
Configuration	L		R			

Delay, Queue Length, and Level of Service

Approach	Northbound	Southbound	Westbound			Eastbound		
Movement	1	4	7	8	9	10	11	12
Lane Configuration		L				L		R
v (veh/h)		259				322		542
C (m) (veh/h)		702				70		461
v/c		0.37				4.60		1.18
95% queue length		1.70				34.95		20.19
Control Delay (s/veh)		13.1				1740		127.8
LOS	B				F		F	
Approach Delay (s/veh)	--	--				728.5		
Approach LOS	--	--						

TWO-WAY STOP CONTROL SUMMARY

General Information

Analyst	SKB
Agency/Co.	TDOT / Long Engineering
Date Performed	$05 / 04 / 2009$
Analysis Time Period	PM Peak Period
Project Des	

Site Information

Intersection	APD-40 EB @ S. Lee Hwy.
Jurisdiction	Cleveland, TN
Analysis Year	2033

North/South Street: S. Lee Hwy.
Study Period (hrs): 0.25

Vehicle Volumes and Adjustments

Major Street	Northbound			Southbound		
Movement	1	2	3	4	5	6
	L	T	R	L	T	R
Volume (veh/h)		1543	113	454	1198	
Peak-Hour Factor, PHF	0.90	0.94	0.94	0.94	0.94	0.90
Hourly Flow Rate, HFR (veh/h)	0	1641	120	482	1274	0
Percent Heavy Vehicles	0	--	--	3	--	--
Median Type	Raised curb					
RT Channelized			0			0
Lanes	0	2	1	1	2	0
Configuration		T	R	L	T	
Upstream Signal		0			0	

Minor Street	Eastbound			Westbound		
Movement	7	8	9	10	11	12
	L	T	R	L	T	R
Volume (veh/h)	255		329			
Peak-Hour Factor, PHF	0.94	0.90	0.94	0.90	0.90	0.90
Hourly Flow Rate, HFR (veh/h)	271	0	350	0	0	0
Percent Heavy Vehicles	3	0	3	0	0	0
Percent Grade (\%)		0			0	
Flared Approach		Y			N	
Storage		2			0	
RT Channelized			0			0
Lanes	1	0	1	0	0	0
Configuration	L		R			

Delay, Queue Length, and Level of Service

Approach	Northbound	Southbound	Westbound			Eastbound		
Movement	1	4	7	8	9	10	11	12
Lane Configuration		L				L		R
v (veh/h)		482				271		350
C (m) (veh/h)		347				0		473
v/c		1.39						0.74
95\% queue length		24.31						6.11
Control Delay (s/veh)		221.9						31.3
LOS		F				F		D
Approach Delay (s/veh)	--	--						
Approach LOS	--	--						

TWO-WAY STOP CONTROL SUMMARY

General Information

Analyst	SKB
Agency/Co.	TDOT / Long Engineering
Date Performed	$05 / 04 / 2009$
Analysis Time Period	AM Peak Period
Project Der\|	

Intersection	APD-40 WB @ S. Lee Hwy.
Jurisdiction	Cleveland, TN
Analysis Year	2013

Vehicle Volumes and Adjustments

Major Street	Northbound			Southbound		
Movement	1	2	3	4	5	6
	L	T	R	L	T	R
Volume (veh/h)	211	521			803	154
Peak-Hour Factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90
Hourly Flow Rate, HFR (veh/h)	234	578	0	0	892	171
Percent Heavy Vehicles	3	--	--	3	--	--
Median Type	Raised curb					
RT Channelized			0			0
Lanes	1	2	0	0	2	1
Configuration	L	T			T	R
Upstream Signal		0			0	

Minor Street	Eastbound			Westbound		
Movement	7	8	9	10	11	12
	L	T	R	L	T	R
Volume (veh/h)				142		129
Peak-Hour Factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90
Hourly Flow Rate, HFR (veh/h)	0	0	0	157	0	143
Percent Heavy Vehicles	3	0	3	3	0	3
Percent Grade (\%)	0			0		
Flared Approach		Y			N	
Storage		2			0	
RT Channelized			0			0
Lanes	0	0	0	1	0	1
Configuration				L		R

Delay, Queue Length, and Level of Service

Approach	Northbound	Southbound	Westbound			Eastbound		
Movement	1	4	7	8	9	10	11	12
Lane Configuration	L		L		R			
v (veh/h)	234		157		143			
C (m) (veh/h)	645		186		745			
v/c	0.36		0.84		0.19			
95% queue length	1.65		6.07		0.71			
Control Delay (s/veh)	13.7		81.9		11.0			
LOS	B		F		B			
Approach Delay (s/veh)	--	--	48.1					
Approach LOS	--	--	E					

TWO-WAY STOP CONTROL SUMMARY

General Information

Analyst	SKB
Agency/Co.	TDOT / Long Engineering
Date Performed	$05 / 04 / 2009$
Analysis Time Period	PM Peak Period
Project De	

Intersection	APD-40 WB @ S. Lee Hwy.
Jurisdiction	Cleveland, TN
Analysis Year	2013

Vehicle Volumes and Adjustments

Major Street	Northbound			Southbound		
Movement	1	2	3	4	5	6
	L	T	R	L	T	R
Volume (veh/h)	347	790			937	223
Peak-Hour Factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90
Hourly Flow Rate, HFR (veh/h)	385	877	0	0	1041	247
Percent Heavy Vehicles	3	--	--	3	--	--
Median Type	Raised curb					
RT Channelized			0			0
Lanes	1	2	0	0	2	1
Configuration	L	T			T	R
Upstream Signal		0			0	

Minor Street	Eastbound			Westbound		
Movement	7	8	9	10	11	12
	L	T	R	L	T	R
Volume (veh/h)				133		112
Peak-Hour Factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90
Hourly Flow Rate, HFR (veh/h)	0	0	0	147	0	124
Percent Heavy Vehicles	3	0	3	3	0	3
Percent Grade (\%)		0			0	
Flared Approach		Y			N	
Storage		2			0	
RT Channelized			0			0
Lanes	0	0	0	1	0	1
Configuration				L		R

Delay, Queue Length, and Level of Service

Approach	Northbound	Southbound	Westbound			Eastbound		
Movement	1	4	7	8	9	10	11	12
Lane Configuration	L		L		R			
V (veh/h)	385		147		124			
C (m) (veh/h)	529		37		614			
v/c	0.73		3.97		0.20			
95% queue length	6.01		16.99		0.75			
Control Delay (s/veh)	27.9		1560		12.3			
LOS	D		F		B			
Approach Delay (s/veh)	--	--	851.6					
Approach LOS	--	--						

TWO-WAY STOP CONTROL SUMMARY

General Information

Analyst	SKB
Agency/Co.	TDOT / Long Engineering
Date Performed	$05 / 04 / 2009$
Analysis Time Period	AM Peak Period
Project	

Intersection	APD-40 WB @ S. Lee Hwy.
Jurisdiction	Cleveland, TN
Analysis Year	2033

Vehicle Volumes and Adjustments

Major Street	Northbound			Southbound		
Movement	1	2	3	4	5	6
	L	T	R	L	T	R
Volume (veh/h)	329	815			1254	227
Peak-Hour Factor, PHF	0.94	0.94	0.90	0.90	0.94	0.94
Hourly Flow Rate, HFR (veh/h)	350	867	0	0	1334	241
Percent Heavy Vehicles	3	--	--	3	--	--
Median Type	Raised curb					
RT Channelized			0			0
Lanes	1	2	0	0	2	1
Configuration	L	T			T	R
Upstream Signal		0			0	

Minor Street	Eastbound			Westbound		
Movement	7	8	9	10	11	12
	L	T	R	L	T	R
Volume (veh/h)				0		201
Peak-Hour Factor, PHF	0.90	0.90	0.90	0.94	0.90	0.94
Hourly Flow Rate, HFR (veh/h)	0	0	0	0	0	213
Percent Heavy Vehicles	3	0	3	3	0	3
Percent Grade (\%)	0			0		
Flared Approach		Y			N	
Storage		2			0	
RT Channelized			0			0
Lanes	0	0	0	1	0	1
Configuration				L		R

Delay, Queue Length, and Level of Service

Approach	Northbound	Southbound	Westbound			Eastbound		
Movement	1	4	7	8	9	10	11	12
Lane Configuration	L		L		R			
v (veh/h)	350		0		213			
C (m) (veh/h)	410		23		617			
v/c	0.85		0.00		0.35			
95\% queue length	8.30		0.00		1.54			
Control Delay (s/veh)	47.6		161.5		13.9			
LOS	E		F		B			
Approach Delay (s/veh)	--	--	13.9					
Approach LOS	--	--	B					

TWO-WAY STOP CONTROL SUMMARY

General Information

Analyst	SKB
Agency/Co.	TDOT / Long Engineering
Date Performed	$05 / 04 / 2009$
Analysis Time Period	PM Peak Period
Project De	

Intersection	APD-40 WB @ S. Lee Hwy.
Jurisdiction	Cleveland, TN
Analysis Year	2033

Vehicle Volumes and Adjustments

Major Street	Northbound			Southbound		
Movement	1	2	3	4	5	6
	L	T	R	L	T	R
Volume (veh/h)	552	1246			1456	362
Peak-Hour Factor, PHF	0.94	0.94	0.90	0.90	0.94	0.94
Hourly Flow Rate, HFR (veh/h)	587	1325	0	0	1548	385
Percent Heavy Vehicles	3	--	--	3	--	--
Median Type	Raised curb					
RT Channelized			0			0
Lanes	1	2	0	0	2	1
Configuration	L	T			T	R
Upstream Signal		0			0	

Minor Street	Eastbound			Westbound		
Movement	7	8	9	10	11	12
	L	T	R	L	T	R
Volume (veh/h)				196		167
Peak-Hour Factor, PHF	0.90	0.90	0.90	0.94	0.90	0.94
Hourly Flow Rate, HFR (veh/h)	0	0	0	208	0	177
Percent Heavy Vehicles	3	0	3	3	0	3
Percent Grade (\%)	0			0		
Flared Approach		Y			N	
Storage		2			0	
RT Channelized			0			0
Lanes	0	0	0	1	0	1
Configuration				L		R

Delay, Queue Length, and Level of Service

Approach	Northbound	Southbound	Westbound			Eastbound		
Movement	1	4	7	8	9	10	11	12
Lane Configuration	L		L		R			
V (veh/h)	587		208		177			
C (m) (veh/h)	297		0		457			
v/c	1.98				0.39			
95% queue length	41.55				1.80			
Control Delay (s/veh)	479.8				17.8			
LOS	F		F		C			
Approach Delay (s/veh)	--	--						
Approach LOS	--	--						

TWO-WAY STOP CONTROL SUMMARY

General Information

Analyst	SKB
Agency/Co.	TDOT / Long Engineering
Date Performed	$05 / 04 / 2009$
Analysis Time Period	AM Peak Period
Project	

Project Description Existing System With Slip Ramp
East/West Street: APD-40 EB Off-Ramp
Intersection Orientation: North-South
Vehicle Volumes and Adjustments

Major Street	Northbound			Southbound		
Movement	1	2	3	4	5	6
	L	T	R	L	T	R
Volume (veh/h)		538	44	156	789	
Peak-Hour Factor, PHF	0.90	0.94	0.94	0.94	0.94	0.90
Hourly Flow Rate, HFR (veh/h)	0	572	46	165	839	0
Percent Heavy Vehicles	0	--	--	3	--	--
Median Type	Raised curb					
RT Channelized			0			0
Lanes	0	2	1	1	2	0
Configuration		T	R	L	T	
Upstream Signal		0			0	

Minor Street	Eastbound			Westbound		
Movement	7	8	9	10	11	12
	L	T	R	L	T	R
Volume (veh/h)	194		159			
Peak-Hour Factor, PHF	0.94	0.90	0.94	0.90	0.90	0.90
Hourly Flow Rate, HFR (veh/h)	206	0	169	0	0	0
Percent Heavy Vehicles	3	0	3	0	0	0
Percent Grade (\%)	0			0		
Flared Approach		Y			N	
Storage		2			0	
RT Channelized			0			0
Lanes	1	0	1	0	0	0
Configuration	L		R			

Delay, Queue Length, and Level of Service

Approach	Northbound	Southbound	Westbound			Eastbound		
Movement	1	4	7	8	9	10	11	12
Lane Configuration		L				L		R
v (veh/h)		165				206		169
C (m) (veh/h)		951				209		629
v/c		0.17				0.99		0.27
95% queue length		0.63				8.60		1.08
Control Delay (s/veh)		9.6				106.5		12.8
LOS		A				F		B
Approach Delay (s/veh)	--	--				64.3	F	
Approach LOS	--	--						

TWO-WAY STOP CONTROL SUMMARY

General Information

Analyst	SKB
Agency/Co.	TDOT / Long Engineering
Date Performed	$05 / 04 / 2009$
Analysis Time Period	PM Peak Period
Project De	

Project Description Existing System With Slip Ramp
East/West Street: APD-40 EB Off-Ramp
Intersection Orientation: North-South
Vehicle Volumes and Adjustments

Major Street	Northbound			Southbound		
Movement	1	2	3	4	5	6
	L	T	R	L	T	R
Volume (veh/h)		980	78	316	754	
Peak-Hour Factor, PHF	0.90	0.94	0.94	0.94	0.94	0.90
Hourly Flow Rate, HFR (veh/h)	0	1042	82	336	802	0
Percent Heavy Vehicles	0	--	--	3	--	--
Median Type	Raised curb					
RT Channelized			0			0
Lanes	0	2	1	1	2	0
Configuration		T	R	L	T	
Upstream Signal		0			0	

Minor Street	Eastbound			Westbound		
Movement	7	8	9	10	11	12
	L	T	R	L	T	R
Volume (veh/h)	157		84			
Peak-Hour Factor, PHF	0.94	0.90	0.94	0.90	0.90	0.90
Hourly Flow Rate, HFR (veh/h)	167	0	89	0	0	0
Percent Heavy Vehicles	3	0	3	0	0	0
Percent Grade (\%)	0			0		
Flared Approach		Y			N	
Storage		2			0	
RT Channelized			0			0
Lanes	1	0	1	0	0	0
Configuration	L		R			

Delay, Queue Length, and Level of Service

Approach	Northbound	Southbound	Westbound		Eastbound			
Movement	1	4	7	8	9	10	11	12
Lane Configuration		L				L		R
v (veh/h)		336				167		89
C (m) (veh/h)		611				78		644
v/c		0.55				2.14		0.14
95% queue length		3.34				15.24		0.48
Control Delay (s/veh)		17.9				640.1		11.5
LOS	C			F		B		
Approach Delay (s/veh)	--	--				421.6		
Approach LOS	--				F			

TWO-WAY STOP CONTROL SUMMARY

General Information

Analyst	SKB
Agency/Co.	TDOT / Long Engineering
Date Performed	$05 / 04 / 2009$
Analysis Time Period	AM Peak Period
Project	

Project Description Existing System With Slip Ramp
East/West Street: APD-40 EB Off-Ramp
Intersection Orientation: North-South
Vehicle Volumes and Adjustments

Major Street	Northbound			Southbound		
Movement	1	2	3	4	5	6
	L	T	R	L	T	R
Volume (veh/h)		841	69	244	1232	
Peak-Hour Factor, PHF	0.90	0.94	0.94	0.94	0.94	0.90
Hourly Flow Rate, HFR (veh/h)	0	894	73	259	1310	0
Percent Heavy Vehicles	0	--	--	3	--	--
Median Type	Raised curb					
RT Channelized			0			0
Lanes	0	2	1	1	2	0
Configuration		T	R	L	T	
Upstream Signal		0			0	

Minor Street	Eastbound			Westbound		
Movement	7	8	9	10	11	12
	L	T	R	L	T	R
Volume (veh/h)	303		258			
Peak-Hour Factor, PHF	0.94	0.90	0.94	0.90	0.90	0.90
$\begin{array}{l}\text { Hourly Flow Rate, HFR } \\ \text { (veh/h) }\end{array}$	322	0	274	0	0	0
Percent Heavy Vehicles	3	0	3	0	0	0
Percent Grade (\%)	0			0		
Flared Approach		Y			N	
Storage		2			0	
RT Channelized			0			0
Lanes	1	0	1	0	0	0
Configuration	L		R			

Delay, Queue Length, and Level of Service

Approach	Northbound	Southbound	Westbound			Eastbound		
Movement	1	4	7	8	9	10	11	12
Lane Configuration		L				L		R
v (veh/h)		259				322		274
C (m) (veh/h)		702				70		461
v/c		0.37				4.60		0.59
95\% queue length		1.70				34.95		3.78
Control Delay (s/veh)		13.1				1740		23.6
LOS		B				F		C
Approach Delay (s/veh)	--	--				950.7		
Approach LOS	--	--				F		

TWO-WAY STOP CONTROL SUMMARY

General Information

Analyst	SKB
Agency/Co.	TDOT / Long Engineering
Date Performed	$05 / 04 / 2009$
Analysis Time Period	PM Peak Period

Intersection	APD-40 EB @ S. Lee Hwy.
Jurisdiction	Cleveland, TN
Analysis Year	2033

North/South Street: S. Lee Hwy.
Study Period (hrs): 0.25

Vehicle Volumes and Adjustments

Major Street	Northbound			Southbound		
Movement	1	2	3	4	5	6
	L	T	R	L	T	R
Volume (veh/h)		1543	113	454	1198	
Peak-Hour Factor, PHF	0.90	0.94	0.94	0.94	0.94	0.90
Hourly Flow Rate, HFR (veh/h)	0	1641	120	482	1274	0
Percent Heavy Vehicles	0	--	--	3	--	--
Median Type	Raised curb					
RT Channelized			0			0
Lanes	0	2	1	1	2	0
Configuration		T	R	L	T	
Upstream Signal		0			0	

Minor Street	Eastbound			Westbound		
Movement	7	8	9	10	11	12
	L	T	R	L	T	R
Volume (veh/h)	255		141			
Peak-Hour Factor, PHF	0.94	0.90	0.94	0.90	0.90	0.90
Hourly Flow Rate, HFR (veh/h)	271	0	150	0	0	0
Percent Heavy Vehicles	3	0	3	0	0	0
Percent Grade (\%)	0			0		
Flared Approach		Y			N	
Storage		2			0	
RT Channelized			0			0
Lanes	1	0	1	0	0	0
Configuration	L		R			

Delay, Queue Length, and Level of Service

Approach	Northbound	Southbound	Westbound			Eastbound		
Movement	1	4	7	8	9	10	11	12
Lane Configuration		L				L		R
v (veh/h)		482				271		150
C (m) (veh/h)		347				0		473
v/c		1.39						0.32
95\% queue length		24.31						1.35
Control Delay (s/veh)		221.9						16.1
LOS		F				F		C
Approach Delay (s/veh)	--	--						
Approach LOS	--	--						

TWO-WAY STOP CONTROL SUMMARY

General Information

Analyst	SKB
Agency/Co.	TDOT / Long Engineering
Date Performed	$05 / 04 / 2009$
Analysis Time Period	AM Peak Period

Project Description Existing/Proposed System With Slip Ramp
East/West Street: Slip Ramp
Intersection Orientation: North-South

Site Information

Intersection	Slip Ramp @ Stone Lake Road
Jurisdiction	Cleveland, TN
Analysis Year	2013

North/South Street: Stone Lake Road
Study Period (hrs): 0.25

Vehicle Volumes and Adjustments

Major Street	Northbound			Southbound		
Movement	1	2	3	4	5	6
	L	T	R	L	T	R
Volume (veh/h)		272			1429	
Peak-Hour Factor, PHF	0.90	0.94	0.90	0.90	0.94	0.90
Hourly Flow Rate, HFR (veh/h)	0	289	0	0	1520	0
Percent Heavy Vehicles	0	--	--	3	--	--
Median Type	Raised curb					
RT Channelized			0			0
Lanes	0	1	0	0	1	0
Configuration		T			T	
Upstream Signal		0			0	
Minor Street	Eastbound			Westbound		
Movement	7	8	9	10	11	12
	L	T	R	L	T	R
Volume (veh/h)	55		112			
Peak-Hour Factor, PHF	0.94	0.90	0.94	0.90	0.90	0.90
\qquad (veh/h)	58	0	119	0	0	0
Percent Heavy Vehicles	5	0	5	0	0	0
Percent Grade (\%)	0			0		
Flared Approach		Y			N	
Storage		2			0	
RT Channelized			0			0
Lanes	1	0	1	0	0	0
Configuration	L		R			

Delay, Queue Length, and Level of Service

Approach	Northbound	Southbound	Westbound			Eastbound		
Movement	1	4	7	8	9	10	11	12
Lane Configuration						L		R
v (veh/h)						58		119
C (m) (veh/h)						193		144
v/c						0.30		0.83
$95 \% ~ q u e u e ~ l e n g t h ~$						1.20		5.30
Control Delay (s/veh)						31.5		95.0
LOS						D		F
Approach Delay (s/veh)	--	--				74.2	F	
Approach LOS	--	--						

TWO-WAY STOP CONTROL SUMMARY

General Information

Analyst	SKB
Agency/Co.	TDOT / Long Engineering
Date Performed	O5/04/2009
Analysis Time Period	PM Peak Period

Project Description Existing/Proposed System With Slip Ramp
East/West Street: Slip Ramp
Intersection Orientation: North-South

Site Information

Intersection	Slip Ramp @ Stone Lake Road
Jurisdiction	Cleveland, TN
Analysis Year	2013

North/South Street: Stone Lake Road
Study Period (hrs): 0.25

Vehicle Volumes and Adjustments

Major Street	Northbound			Southbound		
Movement	1	2	3	4	5	6
	L	T	R	L	T	R
Volume (veh/h)		1532			295	
Peak-Hour Factor, PHF	0.90	0.94	0.90	0.90	0.94	0.90
Hourly Flow Rate, HFR (veh/h)	0	1629	0	0	313	0
Percent Heavy Vehicles	0	--	--	3	--	--
Median Type	Raised curb					
RT Channelized			0			0
Lanes	0	1	0	0	1	0
Configuration		T			T	
Upstream Signal		0			0	
Minor Street	Eastbound			Westbound		
Movement	7	8	9	10	11	12
	L	T	R	L	T	R
Volume (veh/h)	41		82			
Peak-Hour Factor, PHF	0.94	0.90	0.94	0.90	0.90	0.90
Hourly Flow Rate, HFR (veh/h)	43	0	87	0	0	0
Percent Heavy Vehicles	5	0	5	0	0	0
Percent Grade (\%)	0			0		
Flared Approach		Y			N	
Storage		2			0	
RT Channelized			0			0
Lanes	1	0	1	0	0	0
Configuration	L		R			

Delay, Queue Length, and Level of Service

Approach	Northbound	Southbound	Westbound			Eastbound		
Movement	1	4	7	8	9	10	11	12
Lane Configuration						L		R
v (veh/h)						43		87
C (m) (veh/h)						171		720
v/c						0.25		0.12
95% queue length						0.95		0.41
Control Delay (s/veh)						33.0		10.7
LOS						D		B
Approach Delay (s/veh)	--	--				18.1	C	
Approach LOS	--	--						

TWO-WAY STOP CONTROL SUMMARY

General Information

Analyst	SKB
Agency/Co.	TDOT / Long Engineering
Date Performed	$05 / 04 / 2009$
Analysis Time Period	AM Peak Period

Project Description Existing/Proposed System With Slip Ramp
East/West Street: Slip Ramp
Intersection Orientation: North-South

Site Information

Intersection	Slip Ramp @ Stone Lake Road
Jurisdiction	Cleveland, TN
Analysis Year	2033

North/South Street: Stone Lake Road
Study Period (hrs): 0.25

Vehicle Volumes and Adjustments

Major Street	Northbound			Southbound		
Movement	1	2	3	4	5	6
	L	T	R	L	T	R
Volume (veh/h)		462			2409	
Peak-Hour Factor, PHF	0.90	0.94	0.90	0.90	0.94	0.90
Hourly Flow Rate, HFR (veh/h)	0	491	0	0	2562	0
Percent Heavy Vehicles	0	--	--	3	--	--
Median Type	Raised curb					
RT Channelized			0			0
Lanes	0	1	0	0	1	0
Configuration		T			T	
Upstream Signal		0			0	
Minor Street	Eastbound			Westbound		
Movement	7	8	9	10	11	12
	L	T	R	L	T	R
Volume (veh/h)	83		169			
Peak-Hour Factor, PHF	0.94	0.90	0.94	0.90	0.90	0.90
\qquad (veh/h)	88	0	179	0	0	0
Percent Heavy Vehicles	5	0	5	0	0	0
Percent Grade (\%)	0			0		
Flared Approach		Y			N	
Storage		2			0	
RT Channelized			0			0
Lanes	1	0	1	0	0	0
Configuration	L		R			

Delay, Queue Length, and Level of Service

Approach	Northbound	Southbound	Westbound			Eastbound		
Movement	1	4	7	8	9	10	11	12
Lane Configuration						L		R
v (veh/h)						88		179
C (m) (veh/h)						57		33
v/c						1.54		5.42
95\% queue length						8.00		21.39
Control Delay (s/veh)						433.1		2231
LOS						F		F
Approach Delay (s/veh)	--	--					638	
Approach LOS	--	--					F	

TWO-WAY STOP CONTROL SUMMARY

General Information

Analyst	SKB
Agency/Co.	TDOT / Long Engineering
Date Performed	O5/04/2009
Analysis Time Period	PM Peak Period

Project Description Existing/Proposed System With Slip Ramp
East/West Street: Slip Ramp
Intersection Orientation: North-South

Site Information

Intersection	Slip Ramp @ Stone Lake Road
Jurisdiction	Cleveland, TN
Analysis Year	2033

North/South Street: Stone Lake Road
Study Period (hrs): 0.25

Vehicle Volumes and Adjustments

Major Street	Northbound			Southbound		
Movement	1	2	3	4	5	6
	L	T	R	L	T	R
Volume (veh/h)		2559			509	
Peak-Hour Factor, PHF	0.90	0.94	0.90	0.90	0.94	0.90
Hourly Flow Rate, HFR (veh/h)	0	2722	0	0	541	0
Percent Heavy Vehicles	0	--	--	3	--	--
Median Type	Raised curb					
RT Channelized			0			0
Lanes	0	1	0	0	1	0
Configuration		T			T	
Upstream Signal		0			0	
Minor Street	Eastbound			Westbound		
Movement	7	8	9	10	11	12
	L	T	R	L	T	R
Volume (veh/h)	62		126			
Peak-Hour Factor, PHF	0.94	0.90	0.94	0.90	0.90	0.90
$\begin{array}{l}\text { Hourly Flow Rate, HFR } \\ \text { (veh/h) }\end{array}$	65	0	134	0	0	0
Percent Heavy Vehicles	5	0	5	0	0	0
Percent Grade (\%)	0			0		
Flared Approach		Y			N	
Storage		2			0	
RT Channelized			0			0
Lanes	1	0	1	0	0	0
Configuration	L		R			

Delay, Queue Length, and Level of Service

Approach	Northbound	Southbound	Westbound			Eastbound		
Movement	1	4	7	8	9	10	11	12
Lane Configuration						L		R
v (veh/h)						65		134
C (m) (veh/h)						46		535
v/c						1.41		0.25
95\% queue length						6.27		0.98
Control Delay (s/veh)						417.9		14.0
LOS						F		B
Approach Delay (s/veh)	--	--					45.9	
Approach LOS	--	--					F	

TWO-WAY STOP CONTROL SUMMARY

General Information

Analyst	SKB
Agency/Co.	TDOT / Long Engineering
Date Performed	$05 / 04 / 2009$
Analysis Time Period	AM Peak Period

Intersection	In
Jurisdiction	Cl
Analysis Year	20

APD-40 EB @ Prop
Interchange
:---
2013

North/South Street: Proposed Interchange
Study Period (hrs): 0.25

Vehicle Volumes and Adjustments

Major Street	Northbound			Southbound		
Movement	1	2	3	4	5	6
	L	T	R	L	T	R
Volume (veh/h)		235	61	79	231	
Peak-Hour Factor, PHF	0.90	0.94	0.94	0.94	0.94	0.90
Hourly Flow Rate, HFR (veh/h)	0	250	64	84	245	0
Percent Heavy Vehicles	0	--	--	5	--	--
Median Type	Raised curb					
RT Channelized			0			0
Lanes	0	2	1	1	2	0
Configuration		T	R	L	T	
Upstream Signal		0			0	
Minor Street	Eastbound			Westbound		
Movement	7	8	9	10	11	12
	L	T	R	L	T	R
Volume (veh/h)	264		285			
Peak-Hour Factor, PHF	0.94	0.90	0.94	0.90	0.90	0.90
Hourly Flow Rate, HFR (veh/h)	280	0	303	0	0	0
Percent Heavy Vehicles	5	0	5	0	0	0
Percent Grade (\%)	0			0		
Flared Approach		Y			N	
Storage		2			0	
RT Channelized			0			0
Lanes	1	0	1	0	0	0
Configuration	L		R			

Delay, Queue Length, and Level of Service

Approach	Northbound	Southbound	Westbound			Eastbound		
Movement	1	4	7	8	9	10	11	12
Lane Configuration		L				L		R
v (veh/h)		84				280		303
C (m) (veh/h)		1222				576		918
v/c		0.07				0.49		0.33
95\% queue length		0.22				2.65		1.45
Control Delay (s/veh)		8.2				17.0		10.8
LOS		A				C		B
Approach Delay (s/veh)	--	--					13.8	
Approach LOS	--	--					B	

TWO-WAY STOP CONTROL SUMMARY

General Information

Analyst	SKB
Agency/Co.	TDOT / Long Engineering
Date Performed	$05 / 04 / 2009$
Analysis Time Period	PM Peak Period

Intersection	Int
Jurisdiction	Cle
Analysis Year	20

APD-40 EB @ Prop.
Interchange
Cleveland, TN
2013

North/South Street: Proposed Interchange
Study Period (hrs): 0.25

Vehicle Volumes and Adjustments

Major Street	Northbound			Southbound		
Movement	1	2	3	4	5	6
	L	T	R	L	T	R
Volume (veh/h)		447	47	186	61	
Peak-Hour Factor, PHF	0.90	0.94	0.94	0.94	0.94	0.90
Hourly Flow Rate, HFR (veh/h)	0	475	50	197	64	0
Percent Heavy Vehicles	0	--	--	5	--	--
Median Type	Raised curb					
RT Channelized			0			0
Lanes	0	2	1	1	2	0
Configuration		T	R	L	T	
Upstream Signal		0			0	
Minor Street	Eastbound			Westbound		
Movement	7	8	9	10	11	12
	L	T	R	L	T	R
Volume (veh/h)	84		180			
Peak-Hour Factor, PHF	0.94	0.90	0.94	0.90	0.90	0.90
Hourly Flow Rate, HFR (veh/h)	89	0	191	0	0	0
Percent Heavy Vehicles	5	0	5	0	0	0
Percent Grade (\%)	0			0		
Flared Approach		Y			N	
Storage		2			0	
RT Channelized			0			0
Lanes	1	0	1	0	0	0
Configuration	L		R			

Delay, Queue Length, and Level of Service

Approach	Northbound	Southbound	Westbound		Eastbound			
Movement	1	4	7	8	9	10	11	12
Lane Configuration		L				L		R
v (veh/h)		197				89		191
C (m) (veh/h)		1017				468		1031
v/c		0.19				0.19		0.19
95% queue length		0.72				0.69		0.68
Control Delay (s/veh)		9.4				14.5		9.3
LOS					B		A	
Approach Delay (s/veh)	--	--				10.9	B	
Approach LOS	--					B		

TWO-WAY STOP CONTROL SUMMARY

General Information

Analyst	SKB
Agency/Co.	TDOT / Long Engineering
Date Performed	$05 / 04 / 2009$
Analysis Time Period	AM Peak Period

Intersection	APD-40 EB Interchange				
\|urisdiction	Cleveland,	$	$	Analysis Year	2033
:---	:---				
	North/South Street: Proposed Interchange				
Study Period (hrs): 0.25					

Project Description Proposed System Without Slip Ramp

East/West Street: APD-40 EB Off-Ramp
Intersection Orientation: North-South

Study Period (hrs): 0.25

Vehicle Volumes and Adjustments

Major Street	Northbound			Southbound		
Movement	1	2	3	4	5	6
	L	T	R	L	T	R
Volume (veh/h)		372	96	123	371	
Peak-Hour Factor, PHF	0.90	0.94	0.94	0.94	0.94	0.90
Hourly Flow Rate, HFR (veh/h)	0	395	102	130	394	0
Percent Heavy Vehicles	0	--	--	5	--	--
Median Type	Raised curb					
RT Channelized			0			0
Lanes	0	2	1	1	2	0
Configuration		T	R	L	T	
Upstream Signal		0			0	
Minor Street	Eastbound			Westbound		
Movement	7	8	9	10	11	12
	L	T	R	L	T	R
Volume (veh/h)	412		446			
Peak-Hour Factor, PHF	0.94	0.90	0.94	0.90	0.90	0.90
\qquad (veh/h)	438	0	474	0	0	0
Percent Heavy Vehicles	5	0	5	0	0	0
Percent Grade (\%)	0			0		
Flared Approach		Y			N	
Storage		2			0	
RT Channelized			0			0
Lanes	1	0	1	0	0	0
Configuration	L		R			

Delay, Queue Length, and Level of Service

Approach	Northbound	Southbound	Westbound			Eastbound		
Movement	1	4	7	8	9	10	11	12
Lane Configuration		L				L		R
v (veh/h)		130				438		474
C (m) (veh/h)		1042				406		833
v/c		0.12				1.08		0.57
95\% queue length		0.43				14.97		3.66
Control Delay (s/veh)		8.9				99.6		14.9
LOS		A				F		B
Approach Delay (s/veh)	--	--					5.5	
Approach LOS	--	--					F	

TWO-WAY STOP CONTROL SUMMARY

General Information

Analyst	SKB
Agency/Co.	TDOT / Long Engineering
Date Performed	$05 / 04 / 2009$
Analysis Time Period	PM Peak Period

Intersection	Int
Jurisdiction	C
Analysis Year	20

APD-40 EB @ Prop.
Interchange
Cleveland, TN
2033

North/South Street: Proposed Interchange
Study Period (hrs): 0.25

Vehicle Volumes and Adjustments

Major Street	Northbound			Southbound		
Movement	1	2	3	4	5	6
	L	T	R	L	T	R
Volume (veh/h)		708	74	291	101	
Peak-Hour Factor, PHF	0.90	0.94	0.94	0.94	0.94	0.90
Hourly Flow Rate, HFR (veh/h)	0	753	78	309	107	0
Percent Heavy Vehicles	0	--	--	5	--	--
Median Type	Raised curb					
RT Channelized			0			0
Lanes	0	2	1	1	2	0
Configuration		T	R	L	T	
Upstream Signal		0			0	
Minor Street	Eastbound			Westbound		
Movement	7	8	9	10	11	12
	L	T	R	L	T	R
Volume (veh/h)	131		281			
Peak-Hour Factor, PHF	0.94	0.90	0.94	0.90	0.90	0.90
\qquad (veh/h)	139	0	298	0	0	0
Percent Heavy Vehicles	5	0	5	0	0	0
Percent Grade (\%)	0			0		
Flared Approach		Y			N	
Storage		2			0	
RT Channelized			0			0
Lanes	1	0	1	0	0	0
Configuration	L		R			

Delay, Queue Length, and Level of Service

Approach	Northbound	Southbound	Westbound			Eastbound		
Movement	1	4	7	8	9	10	11	12
Lane Configuration		L				L		R
v (veh/h)		309				139		298
C (m) (veh/h)		778				254		1002
v/c		0.40				0.55		0.30
95\% queue length		1.91				3.00		1.25
Control Delay (s/veh)		12.6				35.1		10.1
LOS		B				E		B
Approach Delay (s/veh)	--	--				18.0		
Approach LOS	--	--					C	

TWO-WAY STOP CONTROL SUMMARY

General Information

Analyst	SKB
Agency/Co.	TDOT / Long Engineering
Date Performed	$05 / 04 / 2009$
Analysis Time Period	AM Peak Period

Intersection	Int
lurisdiction	Cl
Analysis Year	20

APD-40 WB @ Prop.
Interchange
Cleveland, TN
2013

North/South Street: Proposed Interchange
Study Period (hrs): 0.25

Vehicle Volumes and Adjustments

Major Street	Northbound			Southbound		
Movement	1	2	3	4	5	6
	L	T	R	L	T	R
Volume (veh/h)	113	386			174	102
Peak-Hour Factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90
Hourly Flow Rate, HFR (veh/h)	125	428	0	0	193	113
Percent Heavy Vehicles	3	--	--	3	--	--
Median Type	Raised curb					
RT Channelized			0			0
Lanes	1	2	0	0	2	1
Configuration	L	T			T	R
Upstream Signal		0			0	
Minor Street	Eastbound			Westbound		
Movement	7	8	9	10	11	12
	L	T	R	L	T	R
Volume (veh/h)				136		97
Peak-Hour Factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90
Hourly Flow Rate, HFR (veh/h)	0	0	0	151	0	107
Percent Heavy Vehicles	3	0	3	3	0	3
Percent Grade (\%)	0			0		
Flared Approach		Y			N	
Storage		2			0	
RT Channelized			0			0
Lanes	0	0	0	1	0	1
Configuration				L		R

Delay, Queue Length, and Level of Service

Approach	Northbound	Southbound	Westbound			Eastbound		
Movement	1	4	7	8	9	10	11	12
Lane Configuration	L		L		R			
v (veh/h)	125		151		107			
C (m) (veh/h)	1244		410		821			
v/c	0.10		0.37		0.13			
95\% queue length	0.33		1.66		0.45			
Control Delay (s/veh)	8.2		18.8		10.0			
LOS	A		C		B			
Approach Delay (s/veh)	--	--	15.2					
Approach LOS	--	--	C					

TWO-WAY STOP CONTROL SUMMARY

General Information

Analyst	SKB
Agency/Co.	TDOT / Long Engineering
Date Performed	$05 / 04 / 2009$
Analysis Time Period	PM Peak Period

Intersection	Int
lurisdiction	Cl
Analysis Year	20

APD-40 WB @ Prop.
Interchange
Cleveland, TN
2013

North/South Street: Proposed Interchange
Study Period (hrs): 0.25

Vehicle Volumes and Adjustments

Major Street	Northbound			Southbound		
Movement	1	2	3	4	5	6
	L	T	R	L	T	R
Volume (veh/h)	314	217			203	333
Peak-Hour Factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90
Hourly Flow Rate, HFR (veh/h)	348	241	0	0	225	370
Percent Heavy Vehicles	3	--	--	3	--	--
Median Type	Raised curb					
RT Channelized			0			0
Lanes	1	2	0	0	2	1
Configuration	L	T			T	R
Upstream Signal		0			0	
Minor Street	Eastbound			Westbound		
Movement	7	8	9	10	11	12
	L	T	R	L	T	R
Volume (veh/h)				44		34
Peak-Hour Factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90
Hourly Flow Rate, HFR (veh/h)	0	0	0	48	0	37
Percent Heavy Vehicles	3	0	3	3	0	3
Percent Grade (\%)	0			0		
Flared Approach		Y			N	
Storage		2			0	
RT Channelized			0			0
Lanes	0	0	0	1	0	1
Configuration				L		R

Delay, Queue Length, and Level of Service

Approach	Northbound	Southbound	Westbound			Eastbound		
Movement	1	4	7	8	9	10	11	12
Lane Configuration	L		L		R			
v (veh/h)	348		48		37			
C (m) (veh/h)	970		214		927			
v/c	0.36		0.22		0.04			
95% queue length	1.64		0.83		0.12			
Control Delay (s/veh)	10.8			26.6		9.0		
LOS	B	D		A				
Approach Delay (s/veh)	--	--		19.0				
Approach LOS	--							

TWO-WAY STOP CONTROL SUMMARY

General Information

Analyst	SKB
Agency/Co.	TDOT / Long Engineering
Date Performed	$05 / 04 / 2009$
Analysis Time Period	AM Peak Period
Project Description Proposed System Without Slip Ramp	

Project Description Proposed System Without Slip Ramp
East/West Street: APD-40 WB Off-Ramp
Intersection Orientation: North-South
Vehicle Volumes and Adjustments

Major Street	Northbound			Southbound		
Movement	1	2	3	4	5	6
	L	T	R	L	T	R
Volume (veh/h)	176	608			282	167
Peak-Hour Factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90
Hourly Flow Rate, HFR (veh/h)	195	675	0	0	313	185
Percent Heavy Vehicles	3	--	--	3	--	--
Median Type	Raised curb					
RT Channelized			0			0
Lanes	1	2	0	0	2	1
Configuration	L	T			T	R
Upstream Signal		0			0	
Minor Street	Eastbound			Westbound		
Movement	7	8	9	10	11	12
	L	T	R	L	T	R
Volume (veh/h)				212		144
Peak-Hour Factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90
$\begin{array}{l}\text { Hourly Flow Rate, HFR } \\ \text { (veh/h) }\end{array}$	0	0	0	235	0	160
Percent Heavy Vehicles	3	0	3	3	0	3
Percent Grade (\%)	0			0		
Flared Approach		Y			N	
Storage		2			0	
RT Channelized			0			0
Lanes	0	0	0	1	0	1
Configuration				L		R

Delay, Queue Length, and Level of Service

Approach	Northbound	Southbound	Westbound		Eastbound			
Movement	1	4	7	8	9	10	11	12
Lane Configuration	L		L		R			
v (veh/h)	195		235		160			
C (m) (veh/h)	1055		233		699			
v/c	0.18		1.01		0.23			
95% queue length	0.68		9.51		0.88			
Control Delay (s/veh)	9.2		106.1		11.7			
LOS			F		B			
Approach Delay (s/veh)	--	--		67.9				
Approach LOS	--			F				

TWO-WAY STOP CONTROL SUMMARY

General Information

Analyst	SKB
Agency/Co.	TDOT / Long Engineering
Date Performed	$05 / 04 / 2009$
Analysis Time Period	PM Peak Period

Intersection	APD-40 WB @ Prop. Interchange
Jurisdiction	Cleveland, TN
Analysis Year	2033

2033

Project Description Proposed System Without Slip Ramp

East/West Street: APD-40 WB Off-Ramp
Intersection Orientation: North-South

North/South Street: Proposed Interchange
Study Period (hrs): 0.25

Vehicle Volumes and Adjustments

Major Street	Northbound			Southbound		
Movement	1	2	3	4	5	6
	L	T	R	L	T	R
Volume (veh/h)	490	349			324	543
Peak-Hour Factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90
Hourly Flow Rate, HFR (veh/h)	544	387	0	0	360	603
Percent Heavy Vehicles	3	--	--	3	--	--
Median Type	Raised curb					
RT Channelized			0			0
Lanes	1	2	0	0	2	1
Configuration	L	T			T	R
Upstream Signal		0			0	
Minor Street	Eastbound			Westbound		
Movement	7	8	9	10	11	12
	L	T	R	L	T	R
Volume (veh/h)				68		53
Peak-Hour Factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90
Hourly Flow Rate, HFR (veh/h)	0	0	0	75	0	58
Percent Heavy Vehicles	3	0	3	3	0	3
Percent Grade (\%)	0			0		
Flared Approach		Y			N	
Storage		2			0	
RT Channelized			0			0
Lanes	0	0	0	1	0	1
Configuration				L		R

Delay, Queue Length, and Level of Service

TWO-WAY STOP CONTROL SUMMARY

General Information

Analyst	SKB
Agency/Co.	TDOT / Long Engineering
Date Performed	$05 / 04 / 2009$
Analysis Time Period	AM Peak Period
Project	

Project Description Proposed System Without Slip Ramp East/West Street: APD-40 EB Off-Ramp
Intersection Orientation: North-South
Vehicle Volumes and Adjustments

Major Street	Northbound			Southbound		
Movement	1	2	3	4	5	6
	L	T	R	L	T	R
Volume (veh/h)		392	56	194	684	
Peak-Hour Factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90
Hourly Flow Rate, HFR (veh/h)	0	435	62	215	760	0
Percent Heavy Vehicles	0	--	--	3	--	--
Median Type	Raised curb					
RT Channelized			0			0
Lanes	0	2	1	1	2	0
Configuration		T	R	L	T	
Upstream Signal		0			0	

Minor Street	Eastbound			Westbound		
Movement	7	8	9	10	11	12
	L	T	R	L	T	R
Volume (veh/h)	162		92			
Peak-Hour Factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90
Hourly Flow Rate, HFR (veh/h)	180	0	102	0	0	0
Percent Heavy Vehicles	3	0	3	0	0	0
Percent Grade (\%)	0			0		
Flared Approach		Y			N	
Storage		2			0	
RT Channelized			0			0
Lanes	1	0	1	0	0	0
Configuration	L		R			

Delay, Queue Length, and Level of Service

Approach	Northbound	Southbound	Westbound			Eastbound		
Movement	1	4	7	8	9	10	11	12
Lane Configuration		L				L		R
v (veh/h)		215				180		102
C (m) (veh/h)		1056				195		662
v/c		0.20				0.92		0.15
95% queue length		0.76				7.33		0.54
Control Delay (s/veh)		9.3				95.4		11.4
LOS		A				F		B
Approach Delay (s/veh)	--	--				65.0		
Approach LOS	--	--						

TWO-WAY STOP CONTROL SUMMARY

General Information

Analyst	SKB
Agency/Co.	TDOT/Long Engineering
Date Performed	$05 / 04 / 2009$
Analysis Time Period	PM Peak Period

Site Information

Intersection	APD-40 EB @ S. Lee Hwy.
Jurisdiction	Cleveland, TN
Analysis Year	2013

North/South Street: S. Lee Hwy.
Study Period (hrs): 0.25

Vehicle Volumes and Adjustments

Major Street	Northbound			Southbound		
Movement	1	2	3	4	5	6
	L	T	R	L	T	R
Volume (veh/h)		972	149	386	654	
Peak-Hour Factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90
Hourly Flow Rate, HFR (veh/h)	0	1080	165	428	726	0
Percent Heavy Vehicles	0	--	--	3	--	--
Median Type	Raised curb					
RT Channelized			0			0
Lanes	0	2	1	1	2	0
Configuration		T	R	L	T	
Upstream Signal		0			0	

Minor Street	Eastbound			Westbound		
Movement	7	8	9	10	11	12
	L	T	R	L	T	R
Volume (veh/h)	187		123			
Peak-Hour Factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90
Hourly Flow Rate, HFR (veh/h)	207	0	136	0	0	0
Percent Heavy Vehicles	3	0	3	0	0	0
Percent Grade (\%)	0			O 0		
Flared Approach		Y			N	
Storage		2			0	
RT Channelized			0			0
Lanes	1	0	1	0	0	0
Configuration	L		R			

Delay, Queue Length, and Level of Service

Approach	Northbound	Southbound	Westbound			Eastbound		
Movement	1	4	7	8	9	10	11	12
Lane Configuration		L				L		R
v (veh/h)		428				207		136
C (m) (veh/h)		549				34		677
v/c		0.78				6.09		0.20
95% queue length		7.19				24.76		0.75
Control Delay (s/veh)		31.0				2521		11.6
LOS	D				F		B	
Approach Delay (s/veh)	--	--				1526	F	
Approach LOS	--	--						

TWO-WAY STOP CONTROL SUMMARY

General Information

Analyst	SKB
Agency/Co.	TDOT / Long Engineering
Date Performed	$05 / 04 / 2009$
Analysis Time Period	AM Peak Period
Project D D	

Project Description Proposed System Without Slip Ramp East/West Street: APD-40 EB Off-Ramp
Intersection Orientation: North-South
Vehicle Volumes and Adjustments

Major Street	Northbound			Southbound		
Movement	1	2	3	4	5	6
	L	T	R	L	T	R
Volume (veh/h)		623	87	320	1101	
Peak-Hour Factor, PHF	0.90	0.94	0.94	0.94	0.94	0.90
Hourly Flow Rate, HFR (veh/h)	0	662	92	340	1171	0
Percent Heavy Vehicles	0	--	--	3	--	--
Median Type	Raised curb					
RT Channelized			0			0
Lanes	0	2	1	1	2	0
Configuration		T	R	L	T	
Upstream Signal		0			0	

Minor Street	Eastbound			Westbound		
Movement	7	8	9	10	11	12
	L	T	R	L	T	R
Volume (veh/h)	245		144			
Peak-Hour Factor, PHF	0.94	0.90	0.94	0.90	0.90	0.90
Hourly Flow Rate, HFR (veh/h)	260	0	153	0	0	0
Percent Heavy Vehicles	3	0	3	0	0	0
Percent Grade (\%)	0			0		
Flared Approach		Y			N	
Storage		2			0	
RT Channelized			0			0
Lanes	1	0	1	0	0	0
Configuration	L		R			

Delay, Queue Length, and Level of Service

Approach	Northbound	Southbound	Westbound			Eastbound		
Movement	1	4	7	8	9	10	11	12
Lane Configuration		L				L		R
v (veh/h)		340				260		153
C (m) (veh/h)		845				64		505
v/c		0.40				4.06		0.30
95% queue length		1.96				27.98		1.27
Control Delay (s/veh)		12.1				1510		15.2
LOS	B				F		C	
Approach Delay (s/veh)	--	--				956.4		
Approach LOS	--	--						

TWO-WAY STOP CONTROL SUMMARY

General Information

Analyst	SKB
Agency/Co.	TDOT / Long Engineering
Date Performed	$05 / 04 / 2009$
Analysis Time Period	PM Peak Period
Project D.	

Project Description Proposed System Without Slip Ramp East/West Street: APD-40 EB Off-Ramp
Intersection Orientation: North-South
Vehicle Volumes and Adjustments

Major Street	Northbound			Southbound		
Movement	1	2	3	4	5	6
	L	T	R	L	T	R
Volume (veh/h)		1532	252	605	1073	
Peak-Hour Factor, PHF	0.90	0.94	0.94	0.94	0.94	0.90
Hourly Flow Rate, HFR (veh/h)	0	1629	268	643	1141	0
Percent Heavy Vehicles	0	--	--	3	--	--
Median Type	Raised curb					
RT Channelized			0			0
Lanes	0	2	1	1	2	0
Configuration		T	R	L	T	
Upstream Signal		0			0	

Minor Street	Eastbound			Westbound		
Movement	7	8	9	10	11	12
	L	T	R	L	T	R
Volume (veh/h)	293		174			
Peak-Hour Factor, PHF	0.94	0.90	0.94	0.90	0.90	0.90
Hourly Flow Rate, HFR (veh/h)	311	0	185	0	0	0
Percent Heavy Vehicles	3	0	3	0	0	0
Percent Grade (\%)	0			0		
Flared Approach		Y			N	
Storage		2			0	
RT Channelized			0			0
Lanes	1	0	1	0	0	0
Configuration	L		R			

Delay, Queue Length, and Level of Service

Approach	Northbound	Southbound	Westbound			Eastbound		
Movement	1	4	7	8	9	10	11	12
Lane Configuration		L				L		R
v (veh/h)		643				311		185
C (m) (veh/h)		307				0		516
v/c		2.09						0.36
95\% queue length		47.12						1.61
Control Delay (s/veh)		530.7						15.8
LOS		F				F		C
Approach Delay (s/veh)	--	--						
Approach LOS	--	--						

TWO-WAY STOP CONTROL SUMMARY
General Information

Analyst	SKB
Agency/Co.	TDOT / Long Engineering
Date Performed	O5/04/2009
Analysis Time Period	AM Peak Period
Project Description Proposed System Without Slip Ramp	

Project Description Proposed System Without Slip Ramp
East/West Street: APD-40 WB Off-Ramp
Intersection Orientation: North-South
Vehicle Volumes and Adjustments

Major Street	Northbound			Southbound		
Movement	1	2	3	4	5	6
	L	T	R	L	T	R
Volume (veh/h)	63	491			730	155
Peak-Hour Factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90
Hourly Flow Rate, HFR (veh/h)	70	545	0	0	811	172
Percent Heavy Vehicles	3	--	--	3	--	--
Median Type	Raised curb					
RT Channelized			0			0
Lanes	1	2	0	0	2	1
Configuration	L	T			T	R
Upstream Signal		0			0	

Minor Street	Eastbound			Westbound		
Movement	7	8	9	10	11	12
	L	T	R	L	T	R
Volume (veh/h)				148		252
Peak-Hour Factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90
Hourly Flow Rate, HFR (veh/h)	0	0	0	164	0	280
Percent Heavy Vehicles	3	0	3	3	0	3
Percent Grade (\%)	0			0		
Flared Approach		Y			N	
Storage		2			0	
RT Channelized			0			0
Lanes	0	0	0	1	0	1
Configuration				L		R

Delay, Queue Length, and Level of Service

Approach	Northbound	Southbound	Westbound			Eastbound		
Movement	1	4	7	8	9	10	11	12
Lane Configuration	L		L		R			
v (veh/h)	70		164		280			
C (m) (veh/h)	692		404		762			
v/c	0.10		0.41		0.37			
95% queue length	0.34		1.93		1.70			
Control Delay (s/veh)	10.8		19.9		12.4			
LOS	B		C		B			
Approach Delay (s/veh)	--	--	15.2					
Approach LOS	--	--	C					

TWO-WAY STOP CONTROL SUMMARY

General Information

Analyst	SKB
Agency/Co.	TDOT / Long Engineering
Date Performed	O5/04/2009
Analysis Time Period	PM Peak Period
Projec\|	

Site Information

Intersection	APD-40 WB @ S. Lee Hwy.
Jurisdiction	Cleveland, TN
Analysis Year	2013

North/South Street: S. Lee Hwy.
Study Period (hrs): 0.25

Vehicle Volumes and Adjustments

Major Street	Northbound			Southbound		
Movement	1	2	3	4	5	6
	L	T	R	L	T	R
Volume (veh/h)	152	1007			875	246
Peak-Hour Factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90
Hourly Flow Rate, HFR (veh/h)	168	1118	0	0	972	273
Percent Heavy Vehicles	3	--	--	3	--	--
Median Type	Raised curb					
RT Channelized			0			0
Lanes	1	2	0	0	2	1
Configuration	L	T			T	R
Upstream Signal		0			0	

Minor Street	Eastbound			Westbound		
Movement	7	8	9	10	11	12
	L	T	R	L	T	R
Volume (veh/h)				165		220
Peak-Hour Factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90
Hourly Flow Rate, HFR (veh/h)	0	0	0	183	0	244
Percent Heavy Vehicles	3	0	3	3	0	3
Percent Grade (\%)	0			0		
Flared Approach		Y			N	
Storage		2			0	
RT Channelized			0			0
Lanes	0	0	0	1	0	1
Configuration				L		R

Delay, Queue Length, and Level of Service

Approach	Northbound	Southbound	Westbound			Eastbound		
Movement	1	4	7	8	9	10	11	12
Lane Configuration	L		L		R			
v (veh/h)	168		183		244			
C (m) (veh/h)	549		122		524			
v/c	0.31		1.50		0.47			
95\% queue length	1.29		12.93		2.44			
Control Delay (s/veh)	14.4		327.5		17.7			
LOS	B		F		C			
Approach Delay (s/veh)	--	--	150.5					
Approach LOS	--	--	F					

TWO-WAY STOP CONTROL SUMMARY

General Information

Analyst	SKB
Agency/Co.	TDOT / Long Engineering
Date Performed	$05 / 04 / 2009$
Analysis Time Period	AM Peak Period
Project Description Proposed System Without Slip Ramp	

Project Description Proposed System Without Slip Ramp
East/West Street: APD-40 WB Off-Ramp
Intersection Orientation: North-South
Vehicle Volumes and Adjustments

Major Street	Northbound			Southbound		
Movement	1	2	3	4	5	6
	L	T	R	L	T	R
Volume (veh/h)	99	769			1189	219
Peak-Hour Factor, PHF	0.94	0.94	0.90	0.90	0.94	0.94
Hourly Flow Rate, HFR (veh/h)	105	818	0	0	1264	232
Percent Heavy Vehicles	3	--	--	3	--	--
Median Type	Raised curb					
RT Channelized			0			0
Lanes	1	2	0	0	2	1
Configuration	L	T			T	R
Upstream Signal		0			0	

Minor Street	Eastbound			Westbound		
Movement	7	8	9	10	11	12
	L	T	R	L	T	R
Volume (veh/h)				232		419
Peak-Hour Factor, PHF	0.90	0.90	0.90	0.94	0.90	0.94
Hourly Flow Rate, HFR (veh/h)	0	0	0	246	0	445
Percent Heavy Vehicles	3	0	3	3	0	3
Percent Grade (\%)	0			0		
Flared Approach		Y			N	
Storage		2			0	
RT Channelized			0			0
Lanes	0	0	0	1	0	1
Configuration				L		R

Delay, Queue Length, and Level of Service

Approach	Northbound	Southbound	Westbound					
Movement	1	4	7	8	9	10	11	
Lane Configuration	L		L		R			
v (veh/h)	105		246		445			
C (m) (veh/h)	440		226		638			
v/c	0.24		1.09		0.70			
95% queue length	0.92		10.94		5.61			
Control Delay (s/veh)	15.7	C	131.4		22.6			
LOS			F		C			
Approach Delay (s/veh)	--	--		61.3				
Approach LOS	--			F				

TWO-WAY STOP CONTROL SUMMARY

General Information

Analyst
Agency/Co.
Date Performed
Analysis Time Period

SKB
TDOT / Long Engineering 05/04/2009 PM Peak Period

Site Information

Intersection	APD-40 WB @ S. Lee Hwy.
Jurisdiction	Cleveland, TN
Analysis Year	2033

North/South Street: S. Lee Hwy.
Study Period (hrs): 0.25

Vehicle Volumes and Adjustments

Major Street	Northbound			Southbound		
Movement	1	2	3	4	5	6
	L	T	R	L	T	R
Volume (veh/h)	238	1587			1419	364
Peak-Hour Factor, PHF	0.94	0.94	0.90	0.90	0.94	0.94
Hourly Flow Rate, HFR (veh/h)	253	1688	0	0	1509	387
Percent Heavy Vehicles	3	--	--	3	--	--
Median Type	Raised curb					
RT Channelized			0			0
Lanes	1	2	0	0	2	1
Configuration	L	T			T	R
Upstream Signal		0			0	

Minor Street	Eastbound			Westbound		
Movement	7	8	9	10	11	12
	L	T	R	L	T	R
Volume (veh/h)				259		364
Peak-Hour Factor, PHF	0.90	0.90	0.90	0.94	0.90	0.94
Hourly Flow Rate, HFR (veh/h)	0	0	0	275	0	387
Percent Heavy Vehicles	3	0	3	3	0	3
Percent Grade (\%)	0			0		
Flared Approach		Y			N	
Storage		2			0	
RT Channelized			0			0
Lanes	0	0	0	1	0	1
Configuration				L		R

Delay, Queue Length, and Level of Service

Approach	Northbound	Southbound	Westbound		Eastbound			
Movement	1	4	7	8	9	10	11	
Lane Configuration	L		L		R			
v (veh/h)	253		275		387			
C (m) (veh/h)	307		12		359			
v/c	0.82		22.92		1.08			
95% queue length	6.93		35.76		13.92			
Control Delay (s/veh)	54.1	F	10472		104.5			
LOS	--	F		F				
Approach Delay (s/veh)	--			4411				
Approach LOS								

TWO-WAY STOP CONTROL SUMMARY

General Information

Analyst	SKB
Agency/Co.	TDOT / Long Engineering
Date Performed	$05 / 04 / 2009$
Analysis Time Period	AM Peak Period
Project Description Proposed System With Slip Ramp	

Project Description Proposed System With Slip Ramp
East/West Street: APD-40 EB Off-Ramp
Intersection Orientation: North-South

Site Information
Intersection
Jurisdiction
Analysis Year

APD-40 EB @ Prop

APD-40 EB @ Prop
Interchange
Cleveland, TN
2013

Vehicle Volumes and Adjustments

Major Street	Northbound			Southbound		
Movement	1	2	3	4	5	6
	L	T	R	L	T	R
Volume (veh/h)		235	61	79	231	
Peak-Hour Factor, PHF	0.90	0.94	0.94	0.94	0.94	0.90
Hourly Flow Rate, HFR (veh/h)	0	250	64	84	245	0
Percent Heavy Vehicles	0	--	--	5	--	--
Median Type	Raised curb					
RT Channelized			0			0
Lanes	0	2	1	1	2	0
Configuration		T	R	L	T	
Upstream Signal		0			0	
Minor Street	Eastbound			Westbound		
Movement	7	8	9	10	11	12
	L	T	R	L	T	R
Volume (veh/h)	264		118			
Peak-Hour Factor, PHF	0.94	0.90	0.94	0.90	0.90	0.90
Hourly Flow Rate, HFR (veh/h)	280	0	125	0	0	0
Percent Heavy Vehicles	5	0	5	0	0	0
Percent Grade (\%)	0			0		
Flared Approach		Y			N	
Storage		2			0	
RT Channelized			0			0
Lanes	1	0	1	0	0	0
Configuration	L		R			

Delay, Queue Length, and Level of Service

Approach	Northbound	Southbound	Westbound			Eastbound		
Movement	1	4	7	8	9	10	11	12
Lane Configuration		L				L		R
v (veh/h)		84				280		125
C (m) (veh/h)		1222				576		918
v/c		0.07				0.49		0.14
95\% queue length		0.22				2.65		0.47
Control Delay (s/veh)		8.2				17.0		9.5
LOS		A				C		A
Approach Delay (s/veh)	--	--					4.7	
Approach LOS	--	--					B	

TWO-WAY STOP CONTROL SUMMARY

General Information

Analyst	SKB
Agency/Co.	TDOT / Long Engineering
Date Performed	$05 / 04 / 2009$
Analysis Time Period	PM Peak Period

Intersection	In
Jurisdiction	C
Analysis Year	201

APD-40 EB @ Prop.
Interchange
Cleveland, TN
2013

North/South Street: Proposed Interchange
Study Period (hrs): 0.25

Vehicle Volumes and Adjustments

Major Street	Northbound			Southbound		
Movement	1	2	3	4	5	6
	L	T	R	L	T	R
Volume (veh/h)		447	47	186	61	
Peak-Hour Factor, PHF	0.90	0.94	0.94	0.94	0.94	0.90
Hourly Flow Rate, HFR (veh/h)	0	475	50	197	64	0
Percent Heavy Vehicles	0	--	--	5	--	--
Median Type	Raised curb					
RT Channelized			0			0
Lanes	0	2	1	1	2	0
Configuration		T	R	L	T	
Upstream Signal		0			0	
Minor Street	Eastbound			Westbound		
Movement	7	8	9	10	11	12
	L	T	R	L	T	R
Volume (veh/h)	84		57			
Peak-Hour Factor, PHF	0.94	0.90	0.94	0.90	0.90	0.90
Hourly Flow Rate, HFR (veh/h)	89	0	60	0	0	0
Percent Heavy Vehicles	5	0	5	0	0	0
Percent Grade (\%)	0			0		
Flared Approach		Y			N	
Storage		2			0	
RT Channelized			0			0
Lanes	1	0	1	0	0	0
Configuration	L		R			

Delay, Queue Length, and Level of Service

Approach	Northbound	Southbound	Westbound			Eastbound		
Movement	1	4	7	8	9	10	11	12
Lane Configuration		L				L		R
v (veh/h)		197				89		60
C (m) (veh/h)		1017				468		1031
v/c		0.19				0.19		0.06
95\% queue length		0.72				0.69		0.19
Control Delay (s/veh)		9.4				14.5		8.7
LOS		A				B		A
Approach Delay (s/veh)	--	--				12.2		
Approach LOS	--	--				B		

TWO-WAY STOP CONTROL SUMMARY

General Information

Analyst	SKB
Agency/Co.	TDOT / Long Engineering
Date Performed	$05 / 04 / 2009$
Analysis Time Period	AM Peak Period
Project Description Proposed System With Slip Ramp	

Project Description Proposed System With Slip Ramp
East/West Street: APD-40 EB Off-Ramp
Intersection Orientation: North-South

Site Information
Intersection
Jurisdiction
Analysis Year

APD-40 EB @ Prop.

APD-40 EB @ Prop.
Interchange
Cleveland, TN
2033

Vehicle Volumes and Adjustments

Major Street	Northbound			Southbound		
Movement	1	2	3	4	5	6
	L	T	R	L	T	R
Volume (veh/h)		372	96	123	371	
Peak-Hour Factor, PHF	0.90	0.94	0.94	0.94	0.94	0.90
Hourly Flow Rate, HFR (veh/h)	0	395	102	130	394	0
Percent Heavy Vehicles	0	--	--	5	--	--
Median Type	Raised curb					
RT Channelized			0			0
Lanes	0	2	1	1	2	0
Configuration		T	R	L	T	
Upstream Signal		0			0	
Minor Street	Eastbound			Westbound		
Movement	7	8	9	10	11	12
	L	T	R	L	T	R
Volume (veh/h)	412		194			
Peak-Hour Factor, PHF	0.94	0.90	0.94	0.90	0.90	0.90
Hourly Flow Rate, HFR (veh/h)	438	0	206	0	0	0
Percent Heavy Vehicles	5	0	5	0	0	0
Percent Grade (\%)	0			0		
Flared Approach		Y			N	
Storage		2			0	
RT Channelized			0			0
Lanes	1	0	1	0	0	0
Configuration	L		R			

Delay, Queue Length, and Level of Service

Approach	Northbound	Southbound	Westbound		Eastbound			
Movement	1	4	7	8	9	10	11	12
Lane Configuration		L				L		R
v (veh/h)		130				438		
C (m) (veh/h)		1042				206		
v/c		0.12				406		833
95% queue length		0.43				1.08		0.25
Control Delay (s/veh)		8.9				14.97		0.97
LOS		A			99.6		10.7	
Approach Delay (s/veh)	--	--			F			
Approach LOS	--					71.2		

TWO-WAY STOP CONTROL SUMMARY

General Information

Analyst	SKB
Agency/Co.	TDOT / Long Engineering
Date Performed	$05 / 04 / 2009$
Analysis Time Period	PM Peak Period

Intersection	In
Jurisdiction	C
Analysis Year	203

APD-40 EB @ Prop.
Interchange
Cleveland, TN
2033

North/South Street: Proposed Interchange
Study Period (hrs): 0.25

Vehicle Volumes and Adjustments

Major Street	Northbound			Southbound		
Movement	1	2	3	4	5	6
	L	T	R	L	T	R
Volume (veh/h)		708	74	291	101	
Peak-Hour Factor, PHF	0.90	0.94	0.94	0.94	0.94	0.90
Hourly Flow Rate, HFR (veh/h)	0	753	78	309	107	0
Percent Heavy Vehicles	0	--	--	5	--	--
Median Type	Raised curb					
RT Channelized			0			0
Lanes	0	2	1	1	2	0
Configuration		T	R	L	T	
Upstream Signal		0			0	
Minor Street	Eastbound			Westbound		
Movement	7	8	9	10	11	12
	L	T	R	L	T	R
Volume (veh/h)	131		93			
Peak-Hour Factor, PHF	0.94	0.90	0.94	0.90	0.90	0.90
\qquad (veh/h)	139	0	98	0	0	0
Percent Heavy Vehicles	5	0	5	0	0	0
Percent Grade (\%)	0			0		
Flared Approach		Y			N	
Storage		2			0	
RT Channelized			0			0
Lanes	1	0	1	0	0	0
Configuration	L		R			

Delay, Queue Length, and Level of Service

Approach	Northbound	Southbound	Westbound			Eastbound		
Movement	1	4	7	8	9	10	11	12
Lane Configuration		L				L		R
v (veh/h)		309				139		98
C (m) (veh/h)		778				254		1002
v/c		0.40				0.55		0.10
95% queue length		1.91				3.00		0.32
Control Delay (s/veh)		12.6				35.1		9.0
LOS		B				E		A
Approach Delay (s/veh)	--	--				24.3	C	
Approach LOS	--	--						

Ramp Terminal Signalized Intersections

Highway Capacity Software Computer Printouts

SHORT REPORT

General Information

Analyst
SKB
Agency or Co. TDOT / Long Engineering
Date Performed 05/04/2009
Time Period AM Peak Period

Site Information
Intersection
APD-40 EB @ South Lee
Hwy.
Area Type All other areas
Jurisdiction Cleveland, TN
Analysis Year 2013

Volume and Timing Input

		EB			WB			NB			SB		
		LT	TH	RT									
Number of Lanes		1		1					2	1	1	2	
Lane Group		L		R					T	R	L	T	
Volume (vph)		194		326					538	44	156	789	
\% Heavy Vehicles		3		3					3	3	3	3	
PHF		0.94		0.94					0.94	0.94	0.94	0.94	
Pretimed/Actuated (P/A)		A		A					A	A	A	A	
Startup Lost Time		2.0		2.0					2.0	2.0	2.0	2.0	
Extension of Effective Green		2.0		2.0					2.0	2.0	2.0	2.0	
Arrival Type		3		3					3	3	3	3	
Unit Extension		3.0		3.0					3.0	3.0	3.0	3.0	
Ped/Bike/RTOR Volume		0	0	0	0	0		0	0	0	0	0	
Lane Width		12.0		12.0					12.0	12.0	12.0	12.0	
Parking/Grade/Parking		N	0	N	N	0	N	N	0	N	N	0	N
Parking/Hour													
Bus Stops/Hour		0		0					0	0	0	0	
Minimum Pedestrian Time			3.2			3.2			3.2			3.2	
Phasing	EB Only	02	03		04		SB Only		NS Perm		07	08	
Timing	G = 30.0	$\mathrm{G}=0.0$	$\mathrm{G}=0.0$		$\mathrm{G}=0.0$		G = 5.0		G = 31.0		$\mathrm{G}=0.0$	$\mathrm{G}=0.0$	
	$\mathrm{Y}=5$	$Y=0$	$\mathrm{Y}=0$		$Y=0$		$\mathrm{Y}=4$		$\mathrm{Y}=5$		$Y=0$	$Y=0$	
Duration of Analysis (hrs) $=0.25$									Cycle Len	gth C	80.0		

Lane Group Capacity, Control Delay, and LOS Determination

	EB			WB			NB			SB		
Adjusted Flow Rate	206		347					572	47	166	839	
Lane Group Capacity	657		588					1361	608	374	1756	
v/c Ratio	0.31		0.59					0.42	0.08	0.44	0.48	
Green Ratio	0.38		0.38					0.39	0.39	0.51	0.50	
Uniform Delay d_{1}	17.7		20.1					17.9	15.5	11.3	13.1	
Delay Factor k	0.11		0.18					0.11	0.11	0.11	0.11	
Incremental Delay d2	0.3		1.6					0.2	0.1	0.8	0.2	
PF Factor	1.000		1.000					1.000	1.000	1.000	1.000	
Control Delay	18.0		21.6					18.1	15.5	12.1	13.3	
Lane Group LOS	B		C					B	B	B	B	
Approach Delay	20.3						17.9			13.1		
Approach LOS	C						B			B		
Intersection Delay	16.3			Intersection LOS						B		

BACK-OF-QUEUE WORKSHEET

General Information

Project Description Existing System W/O Slip Ramp
Average Back of Queue

	EB			WB			NB			SB		
	LT	TH	RT									
Lane Group	L		R					T	R	L	T	
Initial Queue/Lane	0.0		0.0					0.0	0.0	0.0	0.0	
Flow Rate/Lane Group	206		347					572	47	166	839	
Satflow/Lane	1752		1568					1844	1568	729	1844	
Capacity/Lane Group	657		588					1361	608	374	1756	
Flow Ratio	0.1		0.2					0.2	0.0	0.2	0.2	
v/c Ratio	0.31		0.59					0.42	0.08	0.44	0.48	
I Factor	1.000		1.000					1.000	1.000	1.000	1.000	
Arrival Type	3		3					3	3	3	3	
Platoon Ratio	1.00		1.00					1.00	1.00	1.00	1.00	
PF Factor	1.00		1.00					1.00	1.00	1.00	1.00	
Q1	3.2		6.2					4.9	0.7	1.8	6.4	
kB	0.5		0.5					0.5	0.5	0.4	0.6	
Q2	0.2		0.7					0.4	0.0	0.3	0.6	
Q Average	3.5		6.8					5.3	0.7	2.1	7.0	

Percentile Back of Queue (95th percentile)

$\mathrm{fB} \%$	2.0		1.9					1.9	2.1	2.0	1.9	
Back of Queue	6.9		13.1					10.2	1.5	4.3	13.3	

Queue Storage Ratio

Queue Spacing	25.0		25.0					25.0	25.0	25.0	25.0		
Queue Storage	0		0					0	0	0	0		
Average Queue Storage Ratio													
95% Queue Storage Ratio													Generated: 5/13/2009 10:08 AM
:---													

SHORT REPORT

General Information
Analyst
SKB
Agency or Co. TDOT / Long Engineering
Date Performed 05/04/2009
Time Period PM Peak Period

Site Information
Intersection
APD-40 EB @ South Lee
Hwy.
Area Type All other areas
Jurisdiction Cleveland, TN
Analysis Year 2013

Volume and Timing Input

		EB			WB			NB			SB		
		LT	TH	RT									
Number of Lanes		1		1					2	1	1	2	
Lane Group		L		R					T	R	L	T	
Volume (vph)		157		326					980	78	316	754	
\% Heavy Vehicles		3		3					3	3	3	3	
PHF		0.94		0.94					0.94	0.94	0.94	0.94	
Pretimed/Actuated (P/A)		A		A					A	A	A	A	
Startup Lost Time		2.0		2.0					2.0	2.0	2.0	2.0	
Extension of Effective Green		2.0		2.0					2.0	2.0	2.0	2.0	
Arrival Type		3		3					3	3	3	3	
Unit Extension		3.0		3.0					3.0	3.0	3.0	3.0	
Ped/Bike/RTOR Volume		0	0	0	0	0		0	0	0	0	0	
Lane Width		12.0		12.0					12.0	12.0	晟 12.0	12.0	
Parking/Grade/Parking		N	0	N	N	0	N	N	0	N	N	0	N
Parking/Hour													
Bus Stops/Hour		0		0					0	0	0	0	
Minimum Pedestrian Time			3.2			3.2			3.2			3.2	
Phasing	EB Only	02	03		04		SB Only		Thru \& RT		07		
Timing	$\mathrm{G}=25.0$	$\mathrm{G}=0.0$	$\mathrm{G}=0.0$		$\mathrm{G}=0.0$		$\mathrm{G}=22.0$		$\mathrm{G}=29.0$		$\mathrm{G}=0.0$	$\mathrm{G}=0.0$	
	Y $=5$	$Y=0$	$\mathrm{Y}=0$		$Y=0$		$Y=4$		$\mathrm{Y}=5$		$Y=0$	$\mathrm{Y}=0$	
Duration of Analysis (hrs) $=0.25$									Cycle L	gth C	= 90.0		

Lane Group Capacity, Control Delay, and LOS Determination

BACK-OF-QUEUE WORKSHEET

General Information

Project Description Existing System W/O Slip Ramp
Average Back of Queue

	EB			WB			NB			SB		
	LT	TH	RT									
Lane Group	L		R					T	R	L	T	
Initial Queue/Lane	0.0		0.0					0.0	0.0	0.0	0.0	
Flow Rate/Lane Group	167		347					1043	83	336	802	
Satflow/Lane	1752		1568					1844	1568	1752	1844	
Capacity/Lane Group	487		436					1132	505	428	2146	
Flow Ratio	0.1		0.2					0.3	0.1	0.2	0.2	
v/c Ratio	0.34		0.80					0.92	0.16	0.79	0.37	
I Factor	1.000		1.000					1.000	1.000	1.000	1.000	
Arrival Type	3		3					3	3	3	3	
Platoon Ratio	1.00		1.00					1.00	1.00	1.00	1.00	
PF Factor	1.00		1.00					1.00	1.00	1.00	1.00	
Q1	3.3		8.0					13.2	1.5	7.9	5.3	
kB	0.4		0.4					0.5	0.5	0.4	0.7	
Q2	0.2		1.4					3.6	0.1	1.4	0.4	
Q Average	3.6		9.5					16.8	1.6	9.2	5.7	

Percentile Back of Queue (95th percentile)

$\mathrm{fB} \%$	2.0		1.9					1.7	2.0	1.9	1.9	
Back of Queue	7.1		17.6					29.2	3.2	17.1	11.1	

Queue Storage Ratio

Queue Spacing	25.0		25.0					25.0	25.0	25.0	25.0	
Queue Storage	0		0					0	0	0	0	
Average Queue Storage Ratio												
95% Queue Storage Ratio												

SHORT REPORT

General Information

Analyst
SKB
Agency or Co. TDOT / Long Engineering
Date Performed 05/04/2009
Time Period AM Peak Period

Site Information
Intersection
APD-40 EB @ South Lee
Hwy.
Area Type All other areas
Jurisdiction Cleveland, TN
Analysis Year 2033

Volume and Timing Input

Lane Group Capacity, Control Delay, and LOS Determination

	EB			WB		NB			SB		
Adjusted Flow Rate	322	543					895	73	260	1311	
Lane Group Capacity	701	627					1093	488	316	1717	
v/c Ratio	0.46	0.87					0.82	0.15	0.82	0.76	
Green Ratio	0.40	0.40					0.31	0.31	0.50	0.49	
Uniform Delay d ${ }_{1}$	19.8	24.8					28.7	22.4	20.2	18.8	
Delay Factor k	0.11	0.40					0.36	0.11	0.36	0.32	
Incremental Delay d ${ }_{2}$	0.5	12.2					5.0	0.1	15.9	2.1	
PF Factor	1.000	1.000					1.000	1.000	1.000	1.000	
Control Delay	20.3	37.0					33.7	22.5	36.2	20.9	
Lane Group LOS	C	D					C	C	D	C	
Approach Delay	30.8					32.8			23.4		
Approach LOS	C					C			C		
Intersection Delay	28.0			Intersection LOS					C		

BACK-OF-QUEUE WORKSHEET

General Information

Project Description Existing System W/O Slip Ramp
Average Back of Queue

	EB			WB			NB			SB		
	LT	TH	RT									
Lane Group	L		R					T	R	L	T	
Initial Queue/Lane	0.0		0.0					0.0	0.0	0.0	0.0	
Flow Rate/Lane Group	322		543					895	73	260	1311	
Satflow/Lane	1752		1568					1844	1568	631	1844	
Capacity/Lane Group	701		627					1093	488	316	1717	
Flow Ratio	0.2		0.3					0.3	0.0	0.4	0.4	
v/c Ratio	0.46		0.87					0.82	0.15	0.82	0.76	
I Factor	1.000		1.000					1.000	1.000	1.000	1.000	
Arrival Type	3		3					3	3	3	3	
Platoon Ratio	1.00		1.00					1.00	1.00	1.00	1.00	
PF Factor	1.00		1.00					1.00	1.00	1.00	1.00	
Q1	5.9		12.5					10.9	1.3	3.7	14.0	
kB	0.6		0.5					0.5	0.4	0.3	0.6	
Q2	0.5		2.7					1.9	0.1	1.3	2.0	
Q Average	6.4		15.1					12.8	1.4	5.0	16.0	

Percentile Back of Queue (95th percentile)

$\mathrm{fB} \%$	1.9		1.8					1.8	2.1	2.0	1.7	
Back of Queue	12.3		26.6					23.0	2.9	9.7	27.9	

Queue Storage Ratio

Queue Spacing	25.0		25.0					25.0	25.0	25.0	25.0	
Queue Storage	0		0					0	0	0	0	
Average Queue Storage Ratio												
95% Queue Storage Ratio												

SHORT REPORT

General Information

Analyst
SKB
Agency or Co. TDOT / Long Engineering
Date Performed 05/04/2009
Time Period AM Peak Period

Site Information
Intersection
APD-40 EB @ South Lee
Hwy.
Area Type All other areas
Jurisdiction Cleveland, TN
Analysis Year 2033

Volume and Timing Input

Lane Group Capacity, Control Delay, and LOS Determination

	EB			WB		NB			SB		
Adjusted Flow Rate	322	543					895	73	260	1311	
Lane Group Capacity	701	627					1093	488	454	1717	
v/c Ratio	0.46	0.87					0.82	0.15	0.57	0.76	
Green Ratio	0.40	0.40					0.31	0.31	0.13	0.49	
Uniform Delay d ${ }_{1}$	19.8	24.8					28.7	22.4	36.6	18.8	
Delay Factor k	0.11	0.40					0.36	0.11	0.17	0.32	
Incremental Delay d 2	0.5	12.2					5.0	0.1	1.8	2.1	
PF Factor	1.000	1.000					1.000	1.000	1.000	1.000	
Control Delay	20.3	37.0					33.7	22.5	38.3	20.9	
Lane Group LOS	C	D					C	C	D	C	
Approach Delay	30.8					32.8			23.7		
Approach LOS	C					C			C		
Intersection Delay	28.1			Intersection LOS					C		

BACK-OF-QUEUE WORKSHEET

General Information

Project Description Existing System W/O Slip Ramp
Average Back of Queue

Percentile Back of Queue (95th percentile)

$\mathrm{fB} \%$	1.9		1.8					1.8	2.1	2.0	1.7	
Back of Queue	12.3		26.6					23.0	2.9	7.0	27.9	

Queue Storage Ratio

Queue Spacing	25.0		25.0					25.0	25.0	25.0	25.0	
Queue Storage	0		0					0	0	0	0	
Average Queue Storage Ratio												
95% Queue Storage Ratio												

SHORT REPORT

General Information

Analyst
SKB
Agency or Co. TDOT / Long Engineering
Date Performed 05/04/2009
Time Period PM Peak Period

Site Information
Intersection
APD-40 EB @ South Lee
Hwy.
Area Type All other areas
Jurisdiction Cleveland, TN
Analysis Year 2033

Volume and Timing Input

Lane Group Capacity, Control Delay, and LOS Determination

	EB			WB		NB			SB		
Adjusted Flow Rate	271	350					1641	120	483	1274	
Lane Group Capacity	394	353					1493	666	471	2429	
v/c Ratio	0.69	0.99					1.10	0.18	1.03	0.52	
Green Ratio	0.22	0.22					0.43	0.43	0.70	0.69	
Uniform Delay d ${ }_{1}$	42.6	46.4					34.5	21.5	39.2	9.0	
Delay Factor k	0.26	0.49					0.50	0.11	0.50	0.13	
Incremental Delay d 2	5.0	45.5					55.4	0.1	48.1	0.2	
PF Factor	1.000	1.000					1.000	1.000	1.000	1.000	
Control Delay	47.6	91.9					89.9	21.6	87.3	9.2	
Lane Group LOS	D	F					F	C	F	A	
Approach Delay	72.6					85.2			30.7		
Approach LOS	E					F			C		
Intersection Delay	60.2			Intersection LOS					E		

BACK-OF-QUEUE WORKSHEET

General Information

Project Description Existing System W/O Slip Ramp
Average Back of Queue

Percentile Back of Queue (95th percentile)

$\mathrm{fB} \%$	1.9		1.7					1.6	2.0	1.8	1.8	
Back of Queue	17.2		27.7					67.6	5.3	22.8	21.4	

Queue Storage Ratio

Queue Spacing	25.0		25.0					25.0	25.0	25.0	25.0	
Queue Storage	0		0					0	0	0	0	
Average Queue Storage Ratio												
95% Queue Storage Ratio												

SHORT REPORT

General Information

Analyst
SKB
Agency or Co. TDOT / Long Engineering
Date Performed 05/04/2009
Time Period PM Peak Period

Site Information
Intersection
APD-40 EB @ South Lee
Hwy.
Area Type All other areas
Jurisdiction Cleveland, TN
Analysis Year 2033

Volume and Timing Input

Lane Group Capacity, Control Delay, and LOS Determination

	EB			WB		NB			SB		
Adjusted Flow Rate	271	350					1641	120	483	1274	
Lane Group Capacity	446	399					1596	713	557	2299	
v/c Ratio	0.61	0.88					1.03	0.17	0.87	0.55	
Green Ratio	0.25	0.25					0.45	0.45	0.16	0.65	
Uniform Delay d ${ }_{1}$	36.2	39.3					30.0	17.7	44.8	10.3	
Delay Factor k	0.19	0.40					0.50	0.11	0.40	0.15	
Incremental Delay d 2	2.4	19.3					30.1	0.1	13.6	0.3	
PF Factor	1.000	1.000					1.000	1.000	1.000	1.000	
Control Delay	38.5	58.7					60.1	17.8	58.5	10.6	
Lane Group LOS	D	E					E	B	E	B	
Approach Delay	49.9					57.2			23.8		
Approach LOS	D					E			C		
Intersection Delay	41.9			Intersection LOS					D		

BACK-OF-QUEUE WORKSHEET

General Information

Project Description Existing System W/O Slip Ramp
Average Back of Queue

Percentile Back of Queue (95th percentile)

fB\%	1.9		1.8					1.6	2.0	1.9	1.8	
Back of Queue	15.1		22.6					57.7	4.7	17.0	21.9	

Queue Storage Ratio

Queue Spacing	25.0		25.0					25.0	25.0	25.0	25.0	
Queue Storage	0		0					0	0	0	0	
Average Queue Storage Ratio												
95% Queue Storage Ratio												

SHORT REPORT

General Information
Analyst
SKB
Agency or Co. TDOT / Long Engineering
Date Performed 05/04/2009
Time Period AM Peak Period

Site Information
Intersection APD-40 WB @ South Lee
Hwy.
Area Type All other areas
Jurisdiction Cleveland, TN
Analysis Year 2013

Volume and Timing Input

		EB			WB			NB			SB		
		LT	TH	H ${ }^{\text {PT }}$	LT	TH	RT	LT	TH	RT	LT	TH	RT
Number of Lanes					1		1	1	2			2	1
Lane Group					L		R	L	T			T	R
Volume (vph)					142		129	211	521			803	154
\% Heavy Vehicles					3		3	3	3			3	3
PHF					0.94		0.94	0.94	0.94			0.94	0.94
Pretimed/Actuated (P/A)					A		A	A	A			A	A
Startup Lost Time					2.0		2.0	2.0	2.0			2.0	2.0
Extension of Effective Green					2.0		2.0	2.0	2.0			2.0	2.0
Arrival Type					3		3	3	3			3	3
Unit Extension					3.0		3.0	3.0	3.0			3.0	3.0
Ped/Bike/RTOR Volume		0	0		0	0	0	0	0		0	0	0
Lane Width					12.0		12.0	12.0	12.0			12.0	12.0
Parking/Grade/Parking		N	0	N	N	0	N	N	0	N	N	0	N
Parking/Hour													
Bus Stops/Hour					0		0	0	0			0	0
Minimum Pedestrian Time			3.2			3.2			3.2			3.2	
Phasing	WB Only	02		03			NB O		NS Perm		07		08
Timing	$\mathrm{G}=27.0$	$\mathrm{G}=0.0$		$\mathrm{G}=0.0$	G =		G = 7		$\mathrm{G}=32.0$		0.0		0.0
	$\mathrm{Y}=5$	$Y=0$		$\mathrm{Y}=0$	$\mathrm{Y}=$		$\mathrm{Y}=4$		Y = 5	Y	0	Y	
Duration of Analysis (hrs) $=0.25$									Cycle Leng	Ch $\mathrm{C}=$	80.0		

Lane Group Capacity, Control Delay, and LOS Determination

	EB		WB			NB			SB	
Adjusted Flow Rate			151		137	224	554		854	164
Lane Group Capacity			591		529	314	1888		1405	627
v/c Ratio			0.26		0.26	0.71	0.29		0.61	0.26
Green Ratio			0.34		0.34	0.55	0.54		0.40	0.40
Uniform Delay d_{1}			19.2		19.2	11.8	10.2		19.0	16.1
Delay Factor k			0.11		0.11	0.28	0.11		0.19	0.11
Incremental Delay d2			0.2		0.3	7.5	0.1		0.8	0.2
PF Factor			1.000		1.000	1.000	1.000		1.000	1.000
Control Delay			19.4		19.5	19.2	10.2		19.8	16.3
Lane Group LOS			B		B	B	B		B	B
Approach Delay			19.5			12.8			19.2	
Approach LOS			B			B			B	
Intersection Delay	16.9		Intersection LOS						B	

BACK-OF-QUEUE WORKSHEET

General Information

Project Description Existing System W/O Slip Ramp
Average Back of Queue

Percentile Back of Queue (95th percentile)

$\mathrm{fB} \%$				2.0		2.0	2.0	2.0			1.9
Back of Queue				5.2		4.8	6.3	7.5			16.3

Queue Storage Ratio

Queue Spacing
Queue Storage
Average Queue Storage Ratio

SHORT REPORT

General Information
Analyst
SKB
Agency or Co. TDOT / Long Engineering
Date Performed 05/04/2009
Time Period PM Peak Period

Site Information
Intersection APD-40 WB @ South Lee
Hwy.
Area Type All other areas
Jurisdiction Cleveland, TN
Analysis Year 2013

Volume and Timing Input

		EB			WB			NB			SB		
		LT	TH	H ${ }^{\text {P/ }}$	LT	TH	RT	LT	TH	RT	LT	TH	RT
Number of Lanes					1		1	1	2			2	1
Lane Group					L		R	L	T			T	R
Volume (vph)					133		112	347	790			937	223
\% Heavy Vehicles					3		3	3	3			3	3
PHF					0.94		0.94	0.94	0.94			0.94	0.94
Pretimed/Actuated (P/A)					A		A	A	A			A	A
Startup Lost Time					2.0		2.0	2.0	2.0			2.0	2.0
Extension of Effective Green					2.0		2.0	2.0	2.0			2.0	2.0
Arrival Type					3		3	3	3			3	3
Unit Extension					3.0		3.0	3.0	3.0			3.0	3.0
Ped/Bike/RTOR Volume		0	0		0	0	0	0	0		0	0	0
Lane Width					12.0		12.0	12.0	12.0			12.0	12.0
Parking/Grade/Parking		N	0	N	N	0	N	N	0	N	N	0	N
Parking/Hour													
Bus Stops/Hour					0		0	0	0			0	0
Minimum Pedestrian Time			3.2			3.2			3.2			3.2	
Phasing	WB Only	02		03			NB O		NS Perm		07		
Timing	G = 19.0	$\mathrm{G}=0.0$		$\mathrm{G}=0.0$	G =		G = 18		G = 29.0		0.0	G =	
	$\mathrm{Y}=5$	$Y=0$		$\mathrm{Y}=0$	$Y=$		$Y=4$		Y = 5	Y	0	$Y=$	
Duration of Analysis (hrs) $=0.25$									Cycle Leng	Ch $\mathrm{C}=$	80.0		

Lane Group Capacity, Control Delay, and LOS Determination

BACK-OF-QUEUE WORKSHEET

General Information

Project Description Existing System W/O Slip Ramp
Average Back of Queue

Percentile Back of Queue (95th percentile)

$\mathrm{fB} \%$				2.0		2.0	2.0	2.0			1.8
Back of Queue				5.6		4.8	9.2	9.9			21.7

Queue Storage Ratio

Queue Spacing
Queue Storage
Average Queue Storage Ratio

SHORT REPORT

General Information
Analyst
SKB
Agency or Co. TDOT / Long Engineering
Date Performed 05/04/2009
Time Period AM Peak Period

Site Information
Intersection APD-40 WB @ South Lee
Hwy.
Area Type All other areas
Jurisdiction Cleveland, TN
Analysis Year 2033

Volume and Timing Input

		EB			WB			NB			SB		
		LT	TH	H ${ }^{\text {R }}$ RT	LT	TH	RT	LT	TH	RT	LT	TH	RT
Number of Lanes					1		1	1	2			2	1
Lane Group					L		R	L	T			T	R
Volume (vph)					222		201	329	815			1254	227
\% Heavy Vehicles					3		3	3	3			3	3
PHF					0.94		0.94	0.94	0.94			0.94	0.94
Pretimed/Actuated (P/A)					A		A	A	A			A	A
Startup Lost Time					2.0		2.0	2.0	2.0			2.0	2.0
Extension of Effective Green					2.0		2.0	2.0	2.0			2.0	2.0
Arrival Type					3		3	3	3			3	3
Unit Extension					3.0		3.0	3.0	3.0			3.0	3.0
Ped/Bike/RTOR Volume		0	0		0	0	0	0	0		0	0	0
Lane Width					12.0		12.0	12.0	12.0			12.0	12.0
Parking/Grade/Parking		N	0	N	N	0	N	N	0	N	N	0	N
Parking/Hour													
Bus Stops/Hour					0		0	0	0			0	0
Minimum Pedestrian Time			3.2			3.2			3.2			3.2	
Phasing	WB Only	02	03		04		NB Only		NS Perm	07		08	
Timing	G = 26.0	$\mathrm{G}=0.0$	$\mathrm{G}=0.0$		$\mathrm{G}=0.0$		$\mathrm{G}=24.0$		$\mathrm{G}=46.0$	$\mathrm{G}=0.0$		$\mathrm{G}=0.0$	
	Y $=5$	$\mathrm{Y}=0$		$Y=0$	$Y=0$		$Y=4$		$\mathrm{Y}=5$	$\mathrm{Y}=0$		$\mathrm{Y}=0$	
Duration of Analysis (hrs) $=0.25$									Cycle Leng	C $\mathrm{C}=$	110.0		

Lane Group Capacity, Control Delay, and LOS Determination

	EB	WB			NB			SB	
Adjusted Flow Rate		236		214	350	867		1334	241
Lane Group Capacity		414		371	449	2363		1469	656
v/c Ratio		0.57		0.58	0.78	0.37		0.91	0.37
Green Ratio		0.24		0.24	0.68	0.67		0.42	0.42
Uniform Delay d ${ }_{1}$		37.1		37.1	30.7	7.8		30.0	22.0
Delay Factor k		0.16		0.17	0.33	0.11		0.43	0.11
Incremental Delay d ${ }_{2}$		1.9		2.2	8.6	0.1		8.6	0.4
PF Factor		1.000		1.000	1.000	1.000		1.000	1.000
Control Delay		38.9		39.4	39.2	7.9		38.6	22.3
Lane Group LOS		D		D	D	A		D	C
Approach Delay		39.1			16.9			36.1	
Approach LOS		D			B			D	
Intersection Delay	29.3	Intersection LOS						C	

BACK-OF-QUEUE WORKSHEET

General Information

Project Description Existing System W/O Slip Ramp
Average Back of Queue

	EB			WB			NB			SB		
	LT	TH	RT									
Lane Group				L		R	L	T			T	R
Initial Queue/Lane				0.0		0.0	0.0	0.0			0.0	0.0
Flow Rate/Lane Group				236		214	350	867			1334	241
Satflow/Lane				1752		1568	659	1844			1844	1568
Capacity/Lane Group				414		371	449	2363			1469	656
Flow Ratio				0.1		0.1	0.5	0.2			0.4	0.2
v/c Ratio				0.57		0.58	0.78	0.37			0.91	0.37
I Factor				1.000		1.000	1.000	1.000			1.000	1.000
Arrival Type				3		3	3	3			3	3
Platoon Ratio				1.00		1.00	1.00	1.00			1.00	1.00
PF Factor				1.00		1.00	1.00	1.00			1.00	1.00
Q1				6.4		5.8	4.1	6.0			20.1	5.1
kB				0.5		0.4	0.5	0.9			0.7	0.6
Q2				0.6		0.6	1.5	0.5			4.4	0.3
Q Average				7.0		6.3	5.6	6.5			24.5	5.4

Percentile Back of Queue (95th percentile)

Queue Storage Ratio

Queue Spacing
Queue Storage
Average Queue Storage Ratio

SHORT REPORT

General Information
Analyst
SKB
Agency or Co. TDOT / Long Engineering
Date Performed 05/04/2009
Time Period AM Peak Period

Site Information
Intersection APD-40 WB @ South Lee
Hwy.
Area Type All other areas
Jurisdiction Cleveland, TN
Analysis Year 2033

Volume and Timing Input

		EB			WB			NB			SB		
		LT	TH	H ${ }^{\text {R }}$ RT	LT	TH	RT	LT	TH	RT	LT	TH	RT
Number of Lanes					1		1	2	2			2	1
Lane Group					L		R	L	T			T	R
Volume (vph)					222		201	329	815			1254	227
\% Heavy Vehicles					3		3	3	3			3	3
PHF					0.94		0.94	0.94	0.94			0.94	0.94
Pretimed/Actuated (P/A)					A		A	A	A			A	A
Startup Lost Time					2.0		2.0	2.0	2.0			2.0	2.0
Extension of Effective Green					2.0		2.0	2.0	2.0			2.0	2.0
Arrival Type					3		3	3	3			3	3
Unit Extension					3.0		3.0	3.0	3.0			3.0	3.0
Ped/Bike/RTOR Volume		0	0		0	0	0	0	0		0	0	0
Lane Width					12.0		12.0	12.0	12.0			12.0	12.0
Parking/Grade/Parking		N	0	N	N	0	N	N	0	N	N	0	N
Parking/Hour													
Bus Stops/Hour					0		0	0	0			0	0
Minimum Pedestrian Time			3.2			3.2			3.2			3.2	
Phasing	WB Only	02	03		04		NB Only		Thru \& RT	07		08	
Timing	G = 26.0	$\mathrm{G}=0.0$	$\mathrm{G}=0.0$		$\mathrm{G}=0.0$		G = 24.0		$\mathrm{G}=46.0$	$\mathrm{G}=0.0$		$\mathrm{G}=0.0$	
	Y $=5$	$\mathrm{Y}=0$		$Y=0$	$Y=0$		$Y=4$		$\mathrm{Y}=5$		$\mathrm{Y}=0$	$\mathrm{Y}=0$	
Duration of Analysis (hrs) $=0.25$									Cycle Leng	C $\mathrm{C}=$	110.0		

Lane Group Capacity, Control Delay, and LOS Determination

BACK-OF-QUEUE WORKSHEET

General Information

Project Description Existing System W/O Slip Ramp
Average Back of Queue

Percentile Back of Queue (95th percentile)

fB\%				1.9		1.9	2.0	1.9			1.7
Back of Queue				13.3		12.2	10.1	12.6			40.4

Queue Storage Ratio

Queue Spacing
Queue Storage
Average Queue Storage Ratio

SHORT REPORT

General Information
Analyst
SKB
Agency or Co. TDOT / Long Engineering
Date Performed 05/04/2009
Time Period PM Peak Period

Site Information
Intersection APD-40 WB @ South Lee
Hwy.
Area Type All other areas
Jurisdiction Cleveland, TN
Analysis Year 2033

Volume and Timing Input

		EB			WB			NB			SB		
		LT	TH	H ${ }^{\text {R }}$ RT	LT	TH	RT	LT	TH	RT	LT	TH	RT
Number of Lanes					1		1	1	2			2	1
Lane Group					L		R	L	T			T	R
Volume (vph)					196		167	552	1246			1456	362
\% Heavy Vehicles					3		3	3	3			3	3
PHF					0.94		0.94	0.94	0.94			0.94	0.94
Pretimed/Actuated (P/A)					A		A	A	A			A	A
Startup Lost Time					2.0		2.0	2.0	2.0			2.0	2.0
Extension of Effective Green					2.0		2.0	2.0	2.0			2.0	2.0
Arrival Type					3		3	3	3			3	3
Unit Extension					3.0		3.0	3.0	3.0			3.0	3.0
Ped/Bike/RTOR Volume		0	0		0	0	0	0	0		0	0	0
Lane Width					12.0		12.0	12.0	12.0			12.0	12.0
Parking/Grade/Parking		N	0	N	N	0	N	N	0	N	N	0	N
Parking/Hour													
Bus Stops/Hour					0		0	0	0			0	0
Minimum Pedestrian Time			3.2			3.2			3.2			3.2	
Phasing	WB Only	02	03		04		NB Only		NS Perm	07		08	
Timing	G = 17.0	$\mathrm{G}=0.0$	$\mathrm{G}=0.0$		$\mathrm{G}=0.0$		G = 32.0		G = 47.0	$\mathrm{G}=0.0$		$\mathrm{G}=0.0$	
	$\mathrm{Y}=5$	$\mathrm{Y}=0$	$\mathrm{Y}=0$		$Y=0$		$Y=4$		$\mathrm{Y}=5$	$Y=0$		$\mathrm{Y}=0$	
Duration of Analysis (hrs) $=0.25$								Cycle Leng	C $\mathrm{C}=$	110.0			

Lane Group Capacity, Control Delay, and LOS Determination

BACK-OF-QUEUE WORKSHEET

General Information

Project Description Existing System W/O Slip Ramp
Average Back of Queue

Percentile Back of Queue (95th percentile)

$\mathrm{fB} \%$				1.9		1.9	1.8	1.9			1.6
Back of Queue				13.7		11.6	23.3	17.3			55.3

Queue Storage Ratio

SHORT REPORT

General Information
Analyst
SKB
Agency or Co. TDOT / Long Engineering
Date Performed 05/04/2009
Time Period PM Peak Period

Site Information
Intersection APD-40 WB @ South Lee
Hwy.
Area Type All other areas
Jurisdiction Cleveland, TN
Analysis Year 2033

Volume and Timing Input

		EB			WB			NB			SB		
		LT	TH	H ${ }^{\text {R }}$ RT	LT	TH	RT	LT	TH	RT	LT	TH	RT
Number of Lanes					1		1	2	2			2	1
Lane Group					L		R	L	T			T	R
Volume (vph)					196		167	552	1246			1456	362
\% Heavy Vehicles					3		3	3	3			3	3
PHF					0.94		0.94	0.94	0.94			0.94	0.94
Pretimed/Actuated (P/A)					A		A	A	A			A	A
Startup Lost Time					2.0		2.0	2.0	2.0			2.0	2.0
Extension of Effective Green					2.0		2.0	2.0	2.0			2.0	2.0
Arrival Type					3		3	3	3			3	3
Unit Extension					3.0		3.0	3.0	3.0			3.0	3.0
Ped/Bike/RTOR Volume		0	0		0	0	0	0	0		0	0	0
Lane Width					12.0		12.0	12.0	12.0			12.0	12.0
Parking/Grade/Parking		N	0	N	N	0	N	N	0	N	N	0	N
Parking/Hour													
Bus Stops/Hour					0		0	0	0			0	0
Minimum Pedestrian Time			3.2			3.2			3.2			3.2	
Phasing	WB Only	02	03		04		NB Only		Thru \& RT	07		08	
Timing	G = 18.0	$\mathrm{G}=0.0$	$\mathrm{G}=0.0$		$\mathrm{G}=0.0$		G = 22.0		$\mathrm{G}=46.0$	$\mathrm{G}=0.0$		$\mathrm{G}=0.0$	
	$\mathrm{Y}=5$	$\mathrm{Y}=0$		$Y=0$	$Y=0$		$Y=4$		$\mathrm{Y}=5$		$\mathrm{Y}=0$	$\mathrm{Y}=0$	
Duration of Analysis (hrs) $=0.25$									Cycle Leng	C $\mathrm{C}=$	100.0		

Lane Group Capacity, Control Delay, and LOS Determination

BACK-OF-QUEUE WORKSHEET

General Information

Project Description Existing System W/O Slip Ramp
Average Back of Queue

	EB			WB			NB			SB		
	LT	TH	RT									
Lane Group				L		R	L	T			T	R
Initial Queue/Lane				0.0		0.0	0.0	0.0			0.0	0.0
Flow Rate/Lane Group				209		178	587	1326			1549	385
Satflow/Lane				1752		1568	1752	1844			1844	1568
Capacity/Lane Group				315		282	749	2529			1616	721
Flow Ratio				0.1		0.1	0.2	0.4			0.4	0.2
v/c Ratio				0.66		0.63	0.78	0.52			0.96	0.53
I Factor				1.000		1.000	1.000	1.000			1.000	1.000
Arrival Type				3		3	3	3			3	3
Platoon Ratio				1.00		1.00	1.00	1.00			1.00	1.00
PF Factor				1.00		1.00	1.00	1.00			1.00	1.00
Q1				5.4		4.6	7.9	8.7			21.8	7.7
kB				0.4		0.3	0.4	0.9			0.7	0.6
Q2				0.7		0.6	1.3	0.9			6.3	0.7
Q Average				6.1		5.1	9.2	9.6			28.1	8.3

Percentile Back of Queue (95th percentile)

$\mathrm{fB} \%$				1.9		2.0	1.9	1.9			1.6
Back of Queue				11.7		10.0	17.2	17.8			45.7

Queue Storage Ratio

SHORT REPORT

General Information

Analyst
SKB
Agency or Co. TDOT / Long Engineering
Date Performed 05/04/2009
Time Period AM Peak Period

Site Information
Intersection
APD-40 @ I-75 NB Off-
Ramp
Jurisdiction
Analysis Year 2013

Volume and Timing Input

		EB			WB			NB			SB		
		LT	TH	RT									
Number of Lanes		1	1			1		1					
Lane Group		L	T			T		L					
Volume (vph)		22	360			1275		50					
\% Heavy Vehicles		15	15			15		15					
PHF		0.94	0.94			0.94		0.94					
Pretimed/Actuated (P/A)		A	A			A		A					
Startup Lost Time		2.0	2.0			2.0		2.0					
Extension of Effective Green		2.0	2.0			2.0		2.0					
Arrival Type		3	3			3		3					
Unit Extension		3.0	3.0			3.0		3.0					
Ped/Bike/RTOR Volume		0	0		0	0		0	0				
Lane Width		12.0	12.0			12.0		12.0					
Parking/Grade/Parking		N	0	N	N	0	N	N	0	N			
Parking/Hour													
Bus Stops/Hour		0	0			0		0					
Minimum Pedestrian Time			3.2			3.2			3.2				
Phasing	EB Only	EW Perm			04		NB Only		06				
Timing	G = 5.0	$\mathrm{G}=84.0$	G =		G = 0.0		$\mathrm{G}=7.0$		$\mathrm{G}=0.0$	G =		G =	
	$\mathrm{Y}=4$	$Y=5$	$\mathrm{Y}=$		$Y=0$		$Y=5$		$\mathrm{Y}=0$	$Y=$		$\mathrm{Y}=$	
Duration of Analysis (hrs) $=0.25$									Cycle Leng	$\mathrm{C}=$	10.0		

Lane Group Capacity, Control Delay, and LOS Determination

General Information

Project Description
 Existing System W/O Slip Ramp

Input Parameters

Period (i) AM Peak	Period									
Duration, T 0.25 h										
Cycle Length, C $\quad 110.0$ s										
		EB		WB		NB			SB	
Lane Group	L	T		T	L					
Initial Queue, Q_{b} (veh)	0.0	0.0		0.0	0.0					
Green Ratio, g / C	0.85	0.85		0.76	0.06					
v/c Ratio, X ($\mathrm{X}=\mathrm{v} / \mathrm{c}$)	0.08	0.27		1.07	0.53					
$\begin{array}{l}\text { Adjusted Lane Group Capacity, c } \\ \text { (veh/h) }\end{array}$	299	1397		1262	100					
Duration of Unmet Demand in T (h)	0.00	0.00		0.00	0.00					
Case	1	1		11	1					

Cases I and II $\left(Q_{b}=0\right)$
Initial Queue Delay, $\mathrm{d}_{3}=0$, and Uniform Delay, d_{1}, is as shown on Capacity and LOS Worksheet
Case III ($Q_{b}>0$) ($X<=1.0$) $\quad(t<T)$

Initial Queue Delay, d_{3} (s)												
Uniform Delay, $\mathrm{d}_{1}(\mathrm{~s})$												
Case IV ($Q_{b}>0$) $\quad(X<=1.0)$	$(t=T)$											
Delay Parameter, u												
Initial Queue Delay, d_{3} (s)												
Uniform Delay												
Case V $\left(Q_{b}>0\right) \quad(X>1.0)$	($t=T$)											
Initial Queue Delay, $\mathrm{d}_{3}(\mathrm{~s})$												
Uniform Delay, $\mathrm{d}_{1}(\mathrm{~s})$												

SHORT REPORT

General Information

Analyst
SKB
Agency or Co. TDOT / Long Engineering
Date Performed 05/04/2009
Time Period AM Peak Period

Site Information
Intersection
APD-40 @ I-75 NB Off-
Area Type
Jurisdiction
Analysis Year 2013

Volume and Timing Input

			EB			WB			NB			SB		
			LT	TH	RT									
Number of Lanes			1	2			2		2					
Lane Group			L	T			T		L					
Volume (vph)			22	360			1275		50					
\% Heavy Vehicles			15	15			15		15					
PHF			0.94	0.94			0.94		0.94					
Pretimed/Actuated (P/A)			A	A			A		A					
Startup Lost Time			2.0	2.0			2.0		2.0					
Extension of Effective Green			2.0	2.0			2.0		2.0					
Arrival Type			3	3			3		3					
Unit Extension			3.0	3.0			3.0		3.0					
Ped/Bike/RTOR Volume			0	0		0	0		0	0				
Lane Width			12.0	12.0			12.0		12.0					
Parking/Grade/Parking			N	0	N	N	0	N	N	0	N			
Parking/Hour														
Bus Stops/Hour			0	0			0		0					
Minimum Pedestrian Time				3.2			3.2			3.2				
Phasing	EB Only	EW Perm		03		04		NB Only	06		07		08	
Timing	$\mathrm{G}=5.0$	G =	41.0	$\mathrm{G}=0.0$		$\mathrm{G}=0.0$		$\mathrm{G}=20.0$	$\mathrm{G}=0.0$		$\mathrm{G}=0.0$		$\mathrm{G}=0.0$	
	$\mathrm{Y}=4$	$\mathrm{Y}=$	5	$\mathrm{Y}=0$		$Y=0$		$Y=5$	$\mathrm{Y}=0$		$\mathrm{Y}=0$		$\mathrm{Y}=0$	
Duration of Analysis (hrs) $=0.25$									Cycle Length $\mathrm{C}=80.0$					

Lane Group Capacity, Control Delay, and LOS Determination

BACK-OF-QUEUE WORKSHEET

General Information

Project Description Existing System W/O Slip Ramp
Average Back of Queue

Percentile Back of Queue (95th percentile)

$\mathrm{fB} \%$	2.1	2.0			1.7		2.1				
Back of Queue	0.5	4.2			28.3		1.0				

Queue Storage Ratio

Queue Spacing	25.0	25.0			25.0		25.0				
Queue Storage	0	0			0		0				
Average Queue Storage Ratio											
95% Queue Storage Ratio											

SHORT REPORT

General Information

Analyst
SKB
Agency or Co. TDOT / Long Engineering
Date Performed 05/04/2009
Time Period PM Peak Period

Site Information
Intersection
APD-40 @ I-75 NB Off-
Ramp
Jurisdiction
Analysis Year 2013

Volume and Timing Input

		EB			WB			NB			SB		
		LT	TH	RT									
Number of Lanes		1	1			1		1					
Lane Group		L	T			T		L					
Volume (vph)		28	137			990		79					
\% Heavy Vehicles		15	15			15		15					
PHF		0.90	0.90			0.90		0.90					
Pretimed/Actuated (P/A)		A	A			A		A					
Startup Lost Time		2.0	2.0			2.0		2.0					
Extension of Effective Green		2.0	2.0			2.0		2.0					
Arrival Type		3	3			3		3					
Unit Extension		3.0	3.0			3.0		3.0					
Ped/Bike/RTOR Volume		0	0		0	0		0	0				
Lane Width		12.0	12.0			12.0		12.0					
Parking/Grade/Parking		N	0	N	N	0	N	N	0	N			
Parking/Hour													
Bus Stops/Hour		0	0			0		0					
Minimum Pedestrian Time			3.2			3.2			3.2				
Phasing	EB Only	EW Perm				4	NB Only		06				
Timing	G = 5.0	G = 61.0	G =		G =	0.0	$\mathrm{G}=10.0$		$\mathrm{G}=0.0$	G =		G =	
	$\mathrm{Y}=4$	$Y=5$	$\mathrm{Y}=$		Y =	0	$\mathrm{Y}=5$		$\mathrm{Y}=0$	$\mathrm{Y}=$		$\mathrm{Y}=$	
Duration of Analysis (hrs) $=0.25$									Cycle Leng	C =	. 0		

Lane Group Capacity, Control Delay, and LOS Determination

BACK-OF-QUEUE WORKSHEET

General Information

Project Description Existing System W/O Slip Ramp
Average Back of Queue

Percentile Back of Queue (95th percentile)

$\mathrm{fB} \%$	2.1	2.1			1.6		2.0				
Back of Queue	0.4	2.1			56.1		4.7				

Queue Storage Ratio

Queue Spacing	25.0	25.0			25.0		25.0					
Queue Storage	0	0			0		0					
Average Queue Storage Ratio												
95\% Queue Storage Ratio												

SHORT REPORT

General Information

Analyst
SKB
Agency or Co. TDOT / Long Engineering
Date Performed 05/04/2009
Time Period PM Peak Period

Site Information
Intersection
APD-40 @ I-75 NB Off-
Area Type
Jurisdiction
Analysis Year 2013

Volume and Timing Input

		EB			WB			NB			SB		
		LT	TH	RT									
Number of Lanes		1	2			2		2					
Lane Group		L	T			T		L					
Volume (vph)		28	137			990		79					
\% Heavy Vehicles		15	15			15		15					
PHF		0.90	0.90			0.90		0.90					
Pretimed/Actuated (P/A)		A	A			A		A					
Startup Lost Time		2.0	2.0			2.0		2.0					
Extension of Effective Green		2.0	2.0			2.0		2.0					
Arrival Type		3	3			3		3					
Unit Extension		3.0	3.0			3.0		3.0					
Ped/Bike/RTOR Volume		0	0		0	0		0	0				
Lane Width		12.0	12.0			12.0		12.0					
Parking/Grade/Parking		N	0	N	N	0	N	N	0	N			
Parking/Hour													
Bus Stops/Hour		0	0			0		0					
Minimum Pedestrian Time			3.2			3.2			3.2				
Phasing	EB Only	EW Perm			04		NB Only		06				
Timing	G = 5.0	G = 37.0	G =		G = 0.0		G = 24.0		$\mathrm{G}=0.0$	G =		G =	
	$\mathrm{Y}=4$	$Y=5$	$\mathrm{Y}=$		$Y=0$		$Y=5$		Y = 0	$\mathrm{Y}=$		$\mathrm{Y}=$	
Duration of Analysis (hrs) $=0.25$									Cycle Leng	$\mathrm{C}=$	0		

Lane Group Capacity, Control Delay, and LOS Determination

	EB			WB		NB			SB	
Adjusted Flow Rate	31	152		1100		88				
Lane Group Capacity	215	1809		1455		914				
v/c Ratio	0.14	0.08		0.76		0.10				
Green Ratio	0.59	0.57		0.46		0.30				
Uniform Delay d ${ }_{1}$	9.7	7.6		17.8		20.2				
Delay Factor k	0.11	0.11		0.31		0.11				
Incremental Delay d ${ }_{2}$	0.3	0.0		2.3		0.0				
PF Factor	1.000	1.000		1.000		1.000				
Control Delay	10.0	7.6		20.1		20.2				
Lane Group LOS	B	A		C		C				
Approach Delay	8.0			20.1		20.2				
Approach LOS	A			C		C				
Intersection Delay	18.5			Intersection LOS					B	

BACK-OF-QUEUE WORKSHEET

General Information

Project Description Existing System W/O Slip Ramp
Average Back of Queue

Percentile Back of Queue (95th percentile)

fB\%	2.1	2.1	1.8	2.1					
Back of Queue	0.7	1.7	22.0	1.6					

Queue Storage Ratio

Queue Spacing	25.0	25.0			25.0		25.0				
Queue Storage	0	0			0		0				
Average Queue Storage Ratio											
95% Queue Storage Ratio											

SHORT REPORT

General Information

Analyst
SKB
Agency or Co. TDOT / Long Engineering
Date Performed 05/04/2009
Time Period AM Peak Period

Site Information
Intersection
APD-40 @ I-75 NB Off-
Ramp
Jurisdiction
All other areas
Cleveland, TN
2033

Volume and Timing Input

		EB			WB			NB			SB		
		LT	TH	RT									
Number of Lanes		1	1			1		1					
Lane Group		L	T			T		L					
Volume (vph)		35	560			1957		78					
\% Heavy Vehicles		15	15			15		15					
PHF		0.94	0.94			0.94		0.94					
Pretimed/Actuated (P/A)		A	A			A		A					
Startup Lost Time		2.0	2.0			2.0		2.0					
Extension of Effective Green		2.0	2.0			2.0		2.0					
Arrival Type		3	3			3		3					
Unit Extension		3.0	3.0			3.0		3.0					
Ped/Bike/RTOR Volume		0	0		0	0		0	0				
Lane Width		12.0	12.0			12.0		12.0					
Parking/Grade/Parking		N	0	N	N	0	N	N	0	N			
Parking/Hour													
Bus Stops/Hour		0	0			0		0					
Minimum Pedestrian Time			3.2			3.2			3.2				
Phasing	EB Only	EW Perm			04		NB Only		06				
Timing	$\mathrm{G}=5.0$	$\mathrm{G}=96.0$	G =		$\mathrm{G}=0.0$		$\mathrm{G}=5.0$		$\mathrm{G}=0.0$	G =		G =	
	$\mathrm{Y}=4$	$Y=5$	$\mathrm{Y}=$		$Y=0$		$Y=5$		$\mathrm{Y}=0$	Y =		$\mathrm{Y}=$	
Duration of Analysis (hrs) $=0.25$									Cycle Leng	C =	20.0		

Lane Group Capacity, Control Delay, and LOS Determination

BACK-OF-QUEUE WORKSHEET

General Information

Project Description Existing System W/O Slip Ramp [1NBL]
Average Back of Queue

Percentile Back of Queue (95th percentile)

fв\%	2.1	2.0			1.5		1.9				
Back of Queue	0.5	9.0			250		10.9				

Queue Storage Ratio

SHORT REPORT

General Information

Analyst
SKB
Agency or Co. TDOT / Long Engineering
Date Performed 05/04/2009
Time Period AM Peak Period

Site Information
Intersection
APD-40 @ I-75 NB Off-
Ramp
Jurisdiction
All other areas
Cleveland, TN
2033

Volume and Timing Input

Lane Group Capacity, Control Delay, and LOS Determination

BACK-OF-QUEUE WORKSHEET

General Information

Project Description Existing System W/O Slip Ramp [2NBL]
Average Back of Queue

Percentile Back of Queue (95th percentile)

$\mathrm{fB} \%$	2.1	2.0			1.6		2.1				
Back of Queue	0.7	6.0			63.8		2.2				

Queue Storage Ratio

Queue Spacing	25.0	25.0			25.0		25.0				
Queue Storage	0	0			0		0				
Average Queue Storage Ratio											
95% Queue Storage Ratio											

SHORT REPORT

General Information

Analyst
SKB
Agency or Co. TDOT / Long Engineering
Date Performed 05/04/2009
Time Period PM Peak Period

Site Information
Intersection
APD-40 @ I-75 NB Off-
Ramp
Jurisdiction
All other areas
Cleveland, TN
2033

Volume and Timing Input

		EB			WB			NB			SB		
		LT	TH	RT									
Number of Lanes		1	1			1		1					
Lane Group		L	T			T		L					
Volume (vph)		44	203			1528		123					
\% Heavy Vehicles		15	15			15		15					
PHF		0.94	0.94			0.94		0.94					
Pretimed/Actuated (P/A)		A	A			A		A					
Startup Lost Time		2.0	2.0			2.0		2.0					
Extension of Effective Green		2.0	2.0			2.0		2.0					
Arrival Type		3	3			3		3					
Unit Extension		3.0	3.0			3.0		3.0					
Ped/Bike/RTOR Volume		0	0		0	0		0	0				
Lane Width		12.0	12.0			12.0		12.0					
Parking/Grade/Parking		N	0	N	N	0	N	N	0	N			
Parking/Hour													
Bus Stops/Hour		0	0			0		0					
Minimum Pedestrian Time			3.2			3.2			3.2				
Phasing	EB Only	EW Perm			04		NB Only		06				
Timing	G = 5.0	G = 91.0	G =		G = 0.0		G = 10.0		$\mathrm{G}=0.0$	G =		G =	
	$\mathrm{Y}=4$	$Y=5$	$\mathrm{Y}=$		$Y=0$		$Y=5$		$Y=0$	$\mathrm{Y}=$		$\mathrm{Y}=$	
Duration of Analysis (hrs) $=0.25$									Cycle Leng	$\mathrm{C}=$	20.0		

Lane Group Capacity, Control Delay, and LOS Determination

BACK-OF-QUEUE WORKSHEET

General Information

Project Description Existing System W/O Slip Ramp
Average Back of Queue

Percentile Back of Queue (95th percentile)

fв\%	2.1	2.1			1.5		1.9				
Back of Queue	0.7	3.2			157		12.2				

Queue Storage Ratio

Queue Spacing	25.0	25.0			25.0		25.0				
Queue Storage	0	0			0		0				
Average Queue Storage Ratio											
95% Queue Storage Ratio											

SHORT REPORT

General Information

Analyst
SKB
Agency or Co. TDOT / Long Engineering
Date Performed 05/04/2009
Time Period PM Peak Period

Site Information
Intersection
APD-40 @ I-75 NB Off-
Ramp
Jurisdiction
All other areas
Cleveland, TN
2033

Volume and Timing Input

		EB			WB			NB			SB		
		LT	TH	RT									
Number of Lanes		1	2			2		2					
Lane Group		L	T			T		L					
Volume (vph)		44	203			1528		123					
\% Heavy Vehicles		15	15			15		15					
PHF		0.94	0.94			0.94		0.94					
Pretimed/Actuated (P/A)		A	A			A		A					
Startup Lost Time		2.0	2.0			2.0		2.0					
Extension of Effective Green		2.0	2.0			2.0		2.0					
Arrival Type		3	3			3		3					
Unit Extension		3.0	3.0			3.0		3.0					
Ped/Bike/RTOR Volume		0	0		0	0		0	0				
Lane Width		12.0	12.0			12.0		12.0					
Parking/Grade/Parking		N	0	N	N	0	N	N	0	N			
Parking/Hour													
Bus Stops/Hour		0	0			0		0					
Minimum Pedestrian Time			3.2			3.2			3.2				
Phasing	EB Only	EW Perm			04		NB Only		06				
Timing	G = 5.0	G = 56.0	G =		G = 0.0		G = 25.0		$\mathrm{G}=0.0$	G =		G =	
	$\mathrm{Y}=4$	$Y=5$	$\mathrm{Y}=$		$Y=0$		$Y=5$		Y = 0	$Y=$		$\mathrm{Y}=$	
Duration of Analysis (hrs) $=0.25$									Cycle Leng	$\mathrm{C}=$	00.0		

Lane Group Capacity, Control Delay, and LOS Determination

	EB			WB		NB			SB	
Adjusted Flow Rate	47	216		1626		131				
Lane Group Capacity	151	2045		1762		762				
v/c Ratio	0.31	0.11		0.92		0.17				
Green Ratio	0.66	0.65		0.56		0.25				
Uniform Delay d ${ }_{1}$	15.3	6.6		20.0		29.4				
Delay Factor k	0.11	0.11		0.44		0.11				
Incremental Delay d ${ }_{2}$	1.2	0.0		8.6		0.1				
PF Factor	1.000	1.000		1.000		1.000				
Control Delay	16.4	6.6		28.6		29.5				
Lane Group LOS	B	A		C		C				
Approach Delay	8.4			28.6		29.5				
Approach LOS	A			C		C				
Intersection Delay	26.1			Intersection LOS					C	

BACK-OF-QUEUE WORKSHEET

General Information

Project Description Existing System W/O Slip Ramp [2NBL]
Average Back of Queue

Percentile Back of Queue (95th percentile)

$\mathrm{fB} \%$	2.1	2.1			1.6		2.1				
Back of Queue	1.2	2.6			43.8		3.2				

Queue Storage Ratio

Queue Spacing	25.0	25.0			25.0		25.0				
Queue Storage	0	0			0		0				
Average Queue Storage Ratio											
95% Queue Storage Ratio											

SHORT REPORT

General Information

Analyst
SKB
Agency or Co. TDOT / Long Engineering
Date Performed 05/04/2009
Time Period AM Peak Period

Site Information
Intersection
APD-40 @ I-75 SB Off-

Area Type
Jurisdiction Cleveland, TN
Analysis Year 2013

Volume and Timing Input

			EB			WB			NB			SB		
			LT	TH	RT									
Number of Lanes				1		0	1					1		
Lane Group				T			LT					L		
Volume (vph)				124		1177	148					258		
\% Heavy Vehicles				15		15	15					15		
PHF				0.94		0.94	0.94					0.94		
Pretimed/Actuated (P/A)				A		A	A					A		
Startup Lost Time				2.0			2.0					2.0		
Extension of Effective Green				2.0			2.0					2.0		
Arrival Type				3			3					3		
Unit Extension				3.0			3.0					3.0		
Ped/Bike/RTOR Volume			0	0		0	0		0	0		0	0	
Lane Width				12.0			12.0					12.0		
Parking/Grade/Parking			N	0	N									
Parking/Hour														
Bus Stops/Hour				0			0					0		
Minimum Pedestrian Time				3.2			3.2			3.2			3.2	
Phasing	WB Only	EW	Perm		0			SB Only		06		07		
Timing	$\mathrm{G}=79.0$	$\mathrm{G}=$	9.0		0.0	$\mathrm{G}=$		$\mathrm{G}=18.0$		$\mathrm{G}=0.0$		0.0	G =	
	$Y=4$	$\mathrm{Y}=$	5			$\mathrm{Y}=$		$\mathrm{Y}=5$		$\mathrm{Y}=0$	Y	0	$\mathrm{Y}=$	
Duration of Analysis (hrs) $=0.25$										Cycle Len	h C $=$	120.0		

Lane Group Capacity, Control Delay, and LOS Determination

	EB		WB		NB			SB		
Adjusted Flow Rate	132		1409					274		
Lane Group Capacity	124		1085					236		
v/c Ratio	1.06		1.30					1.16		
Green Ratio	0.08		0.77					0.15		
Uniform Delay d ${ }_{1}$	55.5		14.0					51.0		
Delay Factor k	0.50		0.50					0.50		
Incremental Delay d ${ }_{2}$	99.2		141.2					109.0		
PF Factor	1.000		1.000					1.000		
Control Delay	154.7		155.2					160.0		
Lane Group LOS	F		F					F		
Approach Delay	154.7		155.2						160.0	
Approach LOS	F		F						F	
Intersection Delay	155.9			Intersect	tion LOS				F	

BACK-OF-QUEUE WORKSHEET

General Information

Project Description Existing System W/O Slip Ramp
Average Back of Queue

Percentile Back of Queue (95th percentile)

$\mathrm{fB} \%$		1.9			1.5					1.8	
Back of Queue		13.2			114					27.5	

Queue Storage Ratio

Queue Spacing	25.0			25.0					25.0			
Queue Storage	0			0					0			
Average Queue Storage Ratio												
95\% Queue Storage Ratio												

SHORT REPORT

General Information

Analyst
SKB
Agency or Co. TDOT / Long Engineering
Date Performed 05/04/2009
Time Period PM Peak Period

Site Information
Intersection
APD-40 @ I-75 SB Off-

Area Type
Jurisdiction Cleveland, TN
Analysis Year 2013

Volume and Timing Input

Lane Group Capacity, Control Delay, and LOS Determination

BACK-OF-QUEUE WORKSHEET

General Information

Project Description Existing System W/O Slip Ramp
Average Back of Queue

Percentile Back of Queue (95th percentile)

$\mathrm{fB} \%$		2.0			1.6					2.0	
Back of Queue		3.2			52.5					7.1	

Queue Storage Ratio

Queue Spacing		25.0			25.0						25.0
Queue Storage		0			0						
Average Queue Storage Ratio											
95% Queue Storage Ratio											

SHORT REPORT

General Information

Analyst
SKB
Agency or Co. TDOT / Long Engineering
Date Performed 05/04/2009
Time Period AM Peak Period

Site Information
Intersection
APD-40 @ I-75 SB Off-
Area Type
Jurisdiction Cleveland, TN
Analysis Year 2033

Volume and Timing Input

Lane Group Capacity, Control Delay, and LOS Determination

BACK-OF-QUEUE WORKSHEET

General Information

Project Description Existing System W/O Slip Ramp
Average Back of Queue

Percentile Back of Queue (95th percentile)

$\mathrm{fB} \%$		1.7			1.5					1.6	
Back of Queue		28.6			280					60.5	

Queue Storage Ratio

Queue Spacing
Queue Storage
Average Queue Storage Ratio

BACK-OF-QUEUE WORKSHEET

General Information

Project Description Existing System W/O Slip Ramp
Average Back of Queue

Percentile Back of Queue (95th percentile)

fв\%		2.0			1.5					1.8	
Back of Queue		7.8			162					23.0	

Queue Storage Ratio

Queue Spacing		25.0			25.0					25.0	
Queue Storage		0			0					0	
Average Queue Storage Ratio											
95% Queue Storage Ratio											

BACK-OF-QUEUE WORKSHEET

General Information

Project Description Existing System W/O Slip Ramp
Average Back of Queue

Percentile Back of Queue (95th percentile)

fв\%		2.0			1.5					1.8	
Back of Queue		7.8			162					23.0	

Queue Storage Ratio

Queue Spacing		25.0			25.0						25.0
Queue Storage		0			0						
Average Queue Storage Ratio											
95% Queue Storage Ratio											

SHORT REPORT

General Information

Analyst
SKB
Agency or Co. TDOT / Long Engineering
Date Performed 05/04/2009
Time Period AM Peak Period

Site Information
Intersection
APD-40 EB @ South Lee
Hwy.
Area Type All other areas
Jurisdiction Cleveland, TN
Analysis Year 2013

Volume and Timing Input

		EB			WB			NB			SB		
		LT	TH	RT									
Number of Lanes		2		1					2	1	1	2	
Lane Group		L		R					T	R	L	T	
Volume (vph)		194		159					538	44	156	789	
\% Heavy Vehicles		3		3					3	3	3	3	
PHF		0.94		0.94					0.94	0.94	0.94	0.94	
Pretimed/Actuated (P/A)		A		A					A	A	A	A	
Startup Lost Time		2.0		2.0					2.0	2.0	2.0	2.0	
Extension of Effective Green		2.0		2.0					2.0	2.0	2.0	2.0	
Arrival Type		3		3					3	3	3	3	
Unit Extension		3.0		3.0					3.0	3.0	3.0	3.0	
Ped/Bike/RTOR Volume		0	0	0	0	0		0	0	0	0	0	
Lane Width		12.0		12.0					12.0	12.0	12.0	12.0	
Parking/Grade/Parking		N	0	N	N	0	N	N	0	N	N	0	N
Parking/Hour													
Bus Stops/Hour		0		0					0	0	0	0	
Minimum Pedestrian Time			3.2			3.2			3.2			3.2	
Phasing	EB Only	02	03		04		SB Only		NS Perm		07	08	
Timing	G = 29.0	$\mathrm{G}=0.0$	$\mathrm{G}=0.0$		$\mathrm{G}=0.0$		G = 5.0		$\mathrm{G}=32.0$		$\mathrm{G}=0.0$	$\mathrm{G}=0.0$	
	$\mathrm{Y}=5$	$Y=0$	$\mathrm{Y}=0$		$Y=0$		$Y=4$		$\mathrm{Y}=5$		$\mathrm{Y}=0$	$Y=0$	
Duration of Analysis (hrs) $=0.25$									Cycle Len	gth C	80.0		

Lane Group Capacity, Control Delay, and LOS Determination

BACK-OF-QUEUE WORKSHEET

General Information

Project Description Existing System With Slip Ramp
Average Back of Queue

	EB			WB			NB			SB		
	LT	TH	RT									
Lane Group	L		R					T	R	L	T	
Initial Queue/Lane	0.0		0.0					0.0	0.0	0.0	0.0	
Flow Rate/Lane Group	206		169					572	47	166	839	
Satflow/Lane	1752		1568					1844	1568	735	1844	
Capacity/Lane Group	1234		568					1405	627	386	1800	
Flow Ratio	0.1		0.1					0.2	0.0	0.2	0.2	
v/c Ratio	0.17		0.30					0.41	0.07	0.43	0.47	
I Factor	1.000		1.000					1.000	1.000	1.000	1.000	
Arrival Type	3		3					3	3	3	3	
Platoon Ratio	1.00		1.00					1.00	1.00	1.00	1.00	
PF Factor	1.00		1.00					1.00	1.00	1.00	1.00	
Q1	1.6		2.7					4.8	0.6	1.8	6.3	
kB	0.5		0.5					0.5	0.5	0.4	0.6	
Q2	0.1		0.2					0.4	0.0	0.3	0.5	
Q Average	1.7		2.9					5.1	0.7	2.1	6.8	

Percentile Back of Queue (95th percentile)

$\mathrm{fB} \%$	2.0		2.0					2.0	2.1	2.0	1.9	
Back of Queue	3.5		5.8					10.0	1.4	4.2	13.0	

Queue Storage Ratio

Queue Spacing	25.0		25.0					25.0	25.0	25.0	25.0	
Queue Storage	0		0					0	0	0	0	
Average Queue Storage Ratio												
95% Queue Storage Ratio												

SHORT REPORT

General Information
Analyst
SKB
Agency or Co. TDOT / Long Engineering
Date Performed 05/04/2009
Time Period PM Peak Period

Site Information
Intersection
APD-40 EB @ South Lee
Hwy.
Area Type All other areas
Jurisdiction Cleveland, TN
Analysis Year 2013

Volume and Timing Input

		EB			WB			NB			SB		
		LT	TH	RT									
Number of Lanes		2		1					2	1	1	2	
Lane Group		L		R					T	R	L	T	
Volume (vph)		157		84					980	78	316	754	
\% Heavy Vehicles		3		3					3	3	3	3	
PHF		0.94		0.94					0.94	0.94	0.94	0.94	
Pretimed/Actuated (P/A)		A		A					A	A	A	A	
Startup Lost Time		2.0		2.0					2.0	2.0	2.0	2.0	
Extension of Effective Green		2.0		2.0					2.0	2.0	2.0	2.0	
Arrival Type		3		3					3	3	3	3	
Unit Extension		3.0		3.0					3.0	3.0	3.0	3.0	
Ped/Bike/RTOR Volume		0	0	0	0	0		0	0	0	0	0	
Lane Width		12.0		12.0					12.0	12.0	晟 12.0	12.0	
Parking/Grade/Parking		N	0	N	N	0	N	N	0	N	N	0	N
Parking/Hour													
Bus Stops/Hour		0		0					0	0	0	0	
Minimum Pedestrian Time			3.2			3.2			3.2			3.2	
Phasing	EB Only	02	03		04		SB Only		NS Perm		07	08	
Timing	$\mathrm{G}=22.0$	$\mathrm{G}=0.0$	$\mathrm{G}=0.0$		$\mathrm{G}=0.0$		G = 19.0		$\mathrm{G}=35.0$		$\mathrm{G}=0.0$	$\mathrm{G}=0.0$	
	$Y=5$	$Y=0$	$\mathrm{Y}=0$		$Y=0$		$Y=4$		$\mathrm{Y}=5$		$\mathrm{Y}=0$	$\mathrm{Y}=0$	
Duration of Analysis (hrs) $=0.25$									Cycle Len	gth C	= 90.0		

Lane Group Capacity, Control Delay, and LOS Determination

	EB		WB			NB			SB		
Adjusted Flow Rate	167	89					1043	83	336	802	
Lane Group Capacity	832	383					1366	610	460	2263	
v/c Ratio	0.20	0.23					0.76	0.14	0.73	0.35	
Green Ratio	0.24	0.24					0.39	0.39	0.66	0.64	
Uniform Delay d ${ }_{1}$	27.0	27.2					23.9	17.7	20.5	7.4	
Delay Factor k	0.11	0.11					0.32	0.11	0.29	0.11	
Incremental Delay d 2	0.1	0.3					2.6	0.1	5.9	0.1	
PF Factor	1.000	1.000					1.000	1.000	1.000	1.000	
Control Delay	27.1	27.5					26.5	17.8	26.4	7.5	
Lane Group LOS	C	C					C	B	C	A	
Approach Delay	27.3					25.9			13.0		
Approach LOS	C					C			B		
Intersection Delay	20.2		Intersection LOS						C		

BACK-OF-QUEUE WORKSHEET

General Information

Project Description Existing System With Slip Ramp
Average Back of Queue

Percentile Back of Queue (95th percentile)

$\mathrm{fB} \%$	2.0		2.0					1.8	2.1	2.0	1.9	
Back of Queue	3.7		3.9					24.2	2.9	8.9	10.3	

Queue Storage Ratio

Queue Spacing	25.0	25.0					25.0	25.0	25.0	25.0	
Queue Storage	0	0					0	0	0	0	
Average Queue Storage Ratio											
95\% Queue Storage Ratio											

SHORT REPORT

General Information
Analyst
SKB
Agency or Co. TDOT / Long Engineering
Date Performed 05/04/2009
Time Period AM Peak Period

Site Information
Intersection
APD-40 EB @ South Lee
Hwy.
Area Type All other areas
Jurisdiction Cleveland, TN
Analysis Year 2033

Volume and Timing Input

		EB			WB			NB			SB		
		LT	TH	RT									
Number of Lanes		1		1					2	1	1	2	
Lane Group		L		R					T	R	L	T	
Volume (vph)		303		258					841	69	244	1232	
\% Heavy Vehicles		3		3					3	3	3	3	
PHF		0.94		0.94					0.94	0.94	0.94	0.94	
Pretimed/Actuated (P/A)		A		A					A	A	A	A	
Startup Lost Time		2.0		2.0					2.0	2.0	2.0	2.0	
Extension of Effective Green		2.0		2.0					2.0	2.0	2.0	2.0	
Arrival Type		3		3					3	3	3	3	
Unit Extension		3.0		3.0					3.0	3.0	3.0	3.0	
Ped/Bike/RTOR Volume		0	0	0	0	0		0	0	0	0	0	
Lane Width		12.0		12.0					12.0	12.0	晟 12.0	12.0	
Parking/Grade/Parking		N	0	N	N	0	N	N	0	N	N	0	N
Parking/Hour													
Bus Stops/Hour		0		0					0	0	0	0	
Minimum Pedestrian Time			3.2			3.2			3.2			3.2	
Phasing	EB Only	02	03		04		SB Only		NS Perm		07	08	
Timing	$\mathrm{G}=31.0$	$\mathrm{G}=0.0$	$\mathrm{G}=0.0$		$\mathrm{G}=0.0$		G = 14.0		$\mathrm{G}=31.0$		$\mathrm{G}=0.0$	$\mathrm{G}=0.0$	
	$\mathrm{Y}=5$	$Y=0$	$\mathrm{Y}=0$		$Y=0$		$Y=4$		$\mathrm{Y}=5$		$\mathrm{Y}=0$	$\mathrm{Y}=0$	
Duration of Analysis (hrs) $=0.25$									Cycle Le	gth C	= 90.0		

Lane Group Capacity, Control Delay, and LOS Determination

BACK-OF-QUEUE WORKSHEET

General Information

Project Description Existing System With Slip Ramp
Average Back of Queue

Percentile Back of Queue (95th percentile)

$\mathrm{fB} \%$	1.9		1.9					1.8	2.1	2.0	1.8	
Back of Queue	13.4		11.4					21.3	2.7	8.0	24.8	

Queue Storage Ratio

Queue Spacing	25.0	25.0					25.0	25.0	25.0	25.0	
Queue Storage	0	0					0	0	0	0	
Average Queue Storage Ratio											
95\% Queue Storage Ratio											

SHORT REPORT

General Information
Analyst
SKB
Agency or Co. TDOT / Long Engineering
Date Performed 05/04/2009
Time Period AM Peak Period

Site Information
Intersection
APD-40 EB @ South Lee
Hwy.
Area Type All other areas
Jurisdiction Cleveland, TN
Analysis Year 2033

Volume and Timing Input

		EB			WB			NB			SB		
		LT	TH	RT									
Number of Lanes		1		1					2	1	2	2	
Lane Group		L		R					T	R	L	T	
Volume (vph)		303		258					841	69	244	1232	
\% Heavy Vehicles		5		5					5	5	5	5	
PHF		0.94		0.94					0.94	0.94	0.94	0.94	
Pretimed/Actuated (P/A)		A		A					A	A	A	A	
Startup Lost Time		2.0		2.0					2.0	2.0	2.0	2.0	
Extension of Effective Green		2.0		2.0					2.0	2.0	2.0	2.0	
Arrival Type		3		3					3	3	3	3	
Unit Extension		3.0		3.0					3.0	3.0	3.0	3.0	
Ped/Bike/RTOR Volume		0	0	0	0	0		0	0	0	0	0	
Lane Width		12.0		12.0					12.0	12.0	晟 12.0	12.0	
Parking/Grade/Parking		N	0	N	N	0	N	N	0	N	N	0	N
Parking/Hour													
Bus Stops/Hour		0		0					0	0	0	0	
Minimum Pedestrian Time			3.2			3.2			3.2			3.2	
Phasing	EB Only	02	03		04		SB Only		Thru \& RT		07	08	
Timing	$\mathrm{G}=27.0$	$\mathrm{G}=0.0$	$\mathrm{G}=0.0$		$\mathrm{G}=0.0$		$\mathrm{G}=19.0$		$\mathrm{G}=30.0$		$\mathrm{G}=0.0$	$\mathrm{G}=0.0$	
	$\mathrm{Y}=5$	$Y=0$	$\mathrm{Y}=0$		$Y=0$		$\mathrm{Y}=4$		$\mathrm{Y}=5$		$\mathrm{Y}=0$	$\mathrm{Y}=0$	
Duration of Analysis (hrs) $=0.25$									Cycle L	gth C	= 90.0		

Lane Group Capacity, Control Delay, and LOS Determination

	EB			WB		NB			SB		
Adjusted Flow Rate	322	274					895	73	260	1311	
Lane Group Capacity	516	461					1148	513	705	2029	
v/c Ratio	0.62	0.59					0.78	0.14	0.37	0.65	
Green Ratio	0.30	0.30					0.33	0.33	0.21	0.59	
Uniform Delay d ${ }_{1}$	27.1	26.8					27.0	21.0	30.4	12.3	
Delay Factor k	0.21	0.18					0.33	0.11	0.11	0.22	
Incremental Delay d 2	2.4	2.1					3.5	0.1	0.3	0.7	
PF Factor	1.000	1.000					1.000	1.000	1.000	1.000	
Control Delay	29.5	28.9					30.5	21.1	30.7	13.0	
Lane Group LOS	C	C					C	C	C	B	
Approach Delay	29.2					29.8			15.9		
Approach LOS	C					C			B		
Intersection Delay	22.7		Intersection LOS						C		

BACK-OF-QUEUE WORKSHEET

General Information

Project Description Existing System With Slip Ramp
Average Back of Queue

	EB			WB			NB			SB		
	LT	TH	RT									
Lane Group	L		R					T	R	L	T	
Initial Queue/Lane	0.0		0.0					0.0	0.0	0.0	0.0	
Flow Rate/Lane Group	322		274					895	73	260	1311	
Satflow/Lane	1719		1538					1809	1538	1719	1809	
Capacity/Lane Group	516		461					1148	513	705	2029	
Flow Ratio	0.2		0.2					0.3	0.0	0.1	0.4	
v/c Ratio	0.62		0.59					0.78	0.14	0.37	0.65	
I Factor	1.000		1.000					1.000	1.000	1.000	1.000	
Arrival Type	3		3					3	3	3	3	
Platoon Ratio	1.00		1.00					1.00	1.00	1.00	1.00	
PF Factor	1.00		1.00					1.00	1.00	1.00	1.00	
Q1	6.9		5.8					10.6	1.3	2.8	11.4	
kB	0.5		0.4					0.5	0.5	0.4	0.7	
Q2	0.7		0.6					1.6	0.1	0.2	1.3	
Q Average	7.7		6.5					12.2	1.4	3.1	12.7	

Percentile Back of Queue (95th percentile)

$\mathrm{fB} \%$	1.9		1.9					1.8	2.1	2.0	1.8
Back of Queue	14.5		12.4					22.1	2.8	6.1	22.8

Queue Storage Ratio

Queue Spacing	25.0		25.0					25.0	25.0	25.0	25.0	
Queue Storage	0		0					0	0	0	0	
Average Queue Storage Ratio												
95% Queue Storage Ratio												

SHORT REPORT

General Information

Analyst
SKB
Agency or Co. TDOT / Long Engineering
Date Performed 05/04/2009
Time Period PM Peak Period

Site Information
Intersection
APD-40 EB @ South Lee
Hwy.
Area Type All other areas
Jurisdiction Cleveland, TN
Analysis Year 2033

Volume and Timing Input

Lane Group Capacity, Control Delay, and LOS Determination

	EB			WB		NB			SB		
Adjusted Flow Rate	271	150					1641	120	483	1274	
Lane Group Capacity	307	274					1580	706	514	2605	
v/c Ratio	0.88	0.55					1.04	0.17	0.94	0.49	
Green Ratio	0.17	0.17					0.45	0.45	0.75	0.74	
Uniform Delay d ${ }_{1}$	48.3	45.2					33.0	19.7	37.6	6.3	
Delay Factor k	0.41	0.15					0.50	0.11	0.45	0.11	
Incremental Delay d 2	24.6	2.3					33.3	0.1	25.5	0.1	
PF Factor	1.000	1.000					1.000	1.000	1.000	1.000	
Control Delay	72.9	47.5					66.3	19.8	63.0	6.4	
Lane Group LOS	E	D					E	B	E	A	
Approach Delay	63.8					63.2			22.0		
Approach LOS	E					E			C		
Intersection Delay	44.9		Intersection LOS						D		

BACK-OF-QUEUE WORKSHEET

General Information

Project Description Existing System With Slip Ramp
Average Back of Queue

	EB			WB			NB			SB		
	LT	TH	RT									
Lane Group	L		R					T	R	L	T	
Initial Queue/Lane	0.0		0.0					0.0	0.0	0.0	0.0	
Flow Rate/Lane Group	271		150					1641	120	483	1274	
Satflow/Lane	1752		1568					1844	1568	685	1844	
Capacity/Lane Group	307		274					1580	706	514	2605	
Flow Ratio	0.2		0.1					0.5	0.1	0.7	0.4	
v/c Ratio	0.88		0.55					1.04	0.17	0.94	0.49	
I Factor	1.000		1.000					1.000	1.000	1.000	1.000	
Arrival Type	3		3					3	3	3	3	
Platoon Ratio	1.00		1.00					1.00	1.00	1.00	1.00	
PF Factor	1.00		1.00					1.00	1.00	1.00	1.00	
Q1	8.8		4.6					28.7	2.4	5.3	9.0	
kB	0.4		0.4					0.7	0.7	0.5	1.0	
Q2	2.1		0.4					11.1	0.1	4.1	0.9	
Q Average	10.9		5.0					39.8	2.5	9.4	10.0	

Percentile Back of Queue (95th percentile)

$\mathrm{fB} \%$	1.8		2.0					1.6	2.0	1.9	1.8	
Back of Queue	19.9		9.8					62.3	5.1	17.5	18.4	

Queue Storage Ratio

Queue Spacing	25.0		25.0					25.0	25.0	25.0	25.0	
Queue Storage	0		0					0	0	0	0	
Average Queue Storage Ratio												
95% Queue Storage Ratio												

SHORT REPORT

General Information

Analyst
SKB
Agency or Co. TDOT / Long Engineering
Date Performed 05/04/2009
Time Period PM Peak Period

Site Information
Intersection
APD-40 EB @ South Lee
Hwy.
Area Type All other areas
Jurisdiction Cleveland, TN
Analysis Year 2033

Volume and Timing Input

Lane Group Capacity, Control Delay, and LOS Determination

BACK-OF-QUEUE WORKSHEET

General Information

Project Description Existing System With Slip Ramp
Average Back of Queue

	EB			WB			NB			SB		
	LT	TH	RT									
Lane Group	L		R					T	R	L	T	
Initial Queue/Lane	0.0		0.0					0.0	0.0	0.0	0.0	
Flow Rate/Lane Group	271		150					1641	120	483	1274	
Satflow/Lane	1752		1568					1844	1568	1752	1844	
Capacity/Lane Group	382		342					1660	741	619	2426	
Flow Ratio	0.2		0.1					0.5	0.1	0.1	0.4	
v/c Ratio	0.71		0.44					0.99	0.16	0.78	0.53	
I Factor	1.000		1.000					1.000	1.000	1.000	1.000	
Arrival Type	3		3					3	3	3	3	
Platoon Ratio	1.00		1.00					1.00	1.00	1.00	1.00	
PF Factor	1.00		1.00					1.00	1.00	1.00	1.00	
Q1	7.7		4.0					26.0	2.1	7.2	9.9	
kB	0.4		0.4					0.7	0.7	0.4	0.9	
Q2	1.0		0.3					8.2	0.1	1.2	1.0	
Q Average	8.7		4.3					34.2	2.2	8.4	10.9	

Percentile Back of Queue (95th percentile)

$\mathrm{fB} \%$	1.9		2.0					1.6	2.0	1.9	1.8	
Back of Queue	16.2		8.4					54.4	4.5	15.8	19.9	

Queue Storage Ratio

Queue Spacing	25.0		25.0					25.0	25.0	25.0	25.0	
Queue Storage	0		0					0	0	0	0	
Average Queue Storage Ratio												
95% Queue Storage Ratio												

SHORT REPORT

General Information

Analyst
SKB
Agency or Co. TDOT / Long Engineering
Date Performed 05/04/2009
Time Period AM Peak Period

Site Information
Intersection
Area Type
Jurisdiction
Analysis Year

Slip Ramp @ Stone Lake
Road
All other areas
Cleveland, TN
2013

Volume and Timing Input

		EB			WB			NB			SB		
		LT	TH	RT									
Number of Lanes		1		1					1			1	
Lane Group		L		R					T			T	
Volume (vph)		55		112					272			1429	
\% Heavy Vehicles		5		5					5			5	
PHF		0.94		0.94					0.94			0.94	
Pretimed/Actuated (P/A)		A		A					A			A	
Startup Lost Time		2.0		2.0					2.0			2.0	
Extension of Effective Green		2.0		2.0					2.0			2.0	
Arrival Type		3		3					3			3	
Unit Extension		3.0		3.0					3.0			3.0	
Ped/Bike/RTOR Volume		0	0	0	0	0		0	0		0	0	
Lane Width		12.0		12.0					12.0			12.0	
Parking/Grade/Parking		N	0	N									
Parking/Hour													
Bus Stops/Hour		0		0					0			0	
Minimum Pedestrian Time			3.2			3.2			3.2			3.2	
Phasing	EB Only	02			04		Thru Only		06		7		
Timing	$\mathrm{G}=11.0$	$\mathrm{G}=0.0$	G $=$		$\mathrm{G}=0.0$		$\mathrm{G}=79.0$		$=0.0$	G $=$	0.0	$\mathrm{G}=$	
	$\mathrm{Y}=5$	$\mathrm{Y}=0$	$\mathrm{Y}=$		$\mathrm{Y}=0$		$Y=5$		$=0$	$\mathrm{Y}=$	0	$\mathrm{Y}=$	
Duration of Analysis (hrs) $=0.25$									cle Len	C =	100.0		

Lane Group Capacity, Control Delay, and LOS Determination

	EB			WB		NB			SB	
Adjusted Flow Rate	59	119					289		1520	
Lane Group Capacity	189	169					1430		1430	
v/c Ratio	0.31	0.70					0.20		1.06	
Green Ratio	0.11	0.11					0.79		0.79	
Uniform Delay d ${ }_{1}$	41.0	42.9					2.6		10.5	
Delay Factor k	0.11	0.27					0.11		0.50	
Incremental Delay d ${ }_{2}$	0.9	12.5					0.1		42.5	
PF Factor	1.000	1.000					1.000		1.000	
Control Delay	42.0	55.4					2.7		53.0	
Lane Group LOS	D	E					A		D	
Approach Delay	51.0					2.7			53.0	
Approach LOS	D					A			D	
Intersection Delay	45.5			Intersection LOS					D	

BACK-OF-QUEUE WORKSHEET

General Information

Project Description Existing/Proposed System With Slip Ramp
Average Back of Queue

Percentile Back of Queue (95th percentile)

$\mathrm{fB} \%$	2.0		2.0					2.0			1.5
Back of Queue	3.3		7.4					4.5			94.4

Queue Storage Ratio

SHORT REPORT

General Information

Analyst
SKB
Agency or Co. TDOT / Long Engineering
Date Performed 05/04/2009
Time Period PM Peak Period

Site Information
Intersection
Area Type
Jurisdiction
Analysis Year

Slip Ramp @ Stone Lake
Road
All other areas
Cleveland, TN
2013

Volume and Timing Input

		EB			WB			NB			SB		
		LT	TH	RT									
Number of Lanes		1		1					1			1	
Lane Group		L		R					T			T	
Volume (vph)		41		82					1532			295	
\% Heavy Vehicles		5		5					5			5	
PHF		0.94		0.94					0.94			0.94	
Pretimed/Actuated (P/A)		A		A					A			A	
Startup Lost Time		2.0		2.0					2.0			2.0	
Extension of Effective Green		2.0		2.0					2.0			2.0	
Arrival Type		3		3					3			3	
Unit Extension		3.0		3.0					3.0			3.0	
Ped/Bike/RTOR Volume		0	0	0	0	0		0	0		0	0	
Lane Width		12.0		12.0					12.0			12.0	
Parking/Grade/Parking		N	0	N									
Parking/Hour													
Bus Stops/Hour		0		0					0			0	
Minimum Pedestrian Time			3.2			3.2			3.2			3.2	
Phasing	EB Only	02			04		Thru Only		06		7		
Timing	$\mathrm{G}=9.0$	$\mathrm{G}=0.0$	G $=$		$\mathrm{G}=0.0$		$\mathrm{G}=91.0$		$\mathrm{G}=0.0$	G =	0.0	G =	
	$\mathrm{Y}=5$	$\mathrm{Y}=0$	$\mathrm{Y}=$		$\mathrm{Y}=0$		$Y=5$		$\mathrm{Y}=0$	$\mathrm{Y}=$	0	$\mathrm{Y}=$	
Duration of Analysis (hrs) $=0.25$									Cycle Len	$\mathrm{C}=$	110.0		

Lane Group Capacity, Control Delay, and LOS Determination

BACK-OF-QUEUE WORKSHEET

General Information

Project Description Existing/Proposed System With Slip Ramp
Average Back of Queue

	EB			WB			NB			SB		
	LT	TH	RT									
Lane Group	L		R					T			T	
Initial Queue/Lane	0.0		0.0					0.0			0.0	
Flow Rate/Lane Group	44		87					1630			314	
Satflow/Lane	1719		1538					1810			1810	
Capacity/Lane Group	141		126					1497			1497	
Flow Ratio	0.0		0.1					0.9			0.2	
v/c Ratio	0.31		0.69					1.09			0.21	
I Factor	1.000		1.000					1.000			1.000	
Arrival Type	3		3					3			3	
Platoon Ratio	1.00		1.00					1.00			1.00	
PF Factor	1.00		1.00					1.00			1.00	
Q1	1.3		2.6					49.8			2.0	
kB	0.2		0.2					1.0			1.0	
Q2	0.1		0.5					24.8			0.3	
Q Average	1.4		3.0					74.6			2.3	

Percentile Back of Queue (95th percentile)

Queue Storage Ratio

SHORT REPORT

General Information

Analyst
SKB
Agency or Co. TDOT / Long Engineering
Date Performed 05/04/2009
Time Period AM Peak Period

Site Information
Intersection
Area Type
Jurisdiction
Analysis Year

Slip Ramp @ Stone Lake
Road
All other areas
Cleveland, TN
2033

Volume and Timing Input

		EB			WB			NB			SB		
		LT	TH	RT									
Number of Lanes		1		1					1			1	
Lane Group		L		R					T			T	
Volume (vph)		83		169					462			2409	
\% Heavy Vehicles		5		5					5			5	
PHF		0.94		0.94					0.94			0.94	
Pretimed/Actuated (P/A)		A		A					A			A	
Startup Lost Time		2.0		2.0					2.0			2.0	
Extension of Effective Green		2.0		2.0					2.0			2.0	
Arrival Type		3		3					3			3	
Unit Extension		3.0		3.0					3.0			3.0	
Ped/Bike/RTOR Volume		0	0	0	0	0		0	0		0	0	
Lane Width		12.0		12.0					12.0			12.0	
Parking/Grade/Parking		N	0	N									
Parking/Hour													
Bus Stops/Hour		0		0					0			0	
Minimum Pedestrian Time			3.2			3.2			3.2			3.2	
Phasing	EB Only	02			04		Thru On		06		07		
Timing	$\mathrm{G}=8.0$	$\mathrm{G}=0.0$	G $=$		$\mathrm{G}=0.0$		$\mathrm{G}=102$		$\mathrm{G}=0.0$		0.0	$\mathrm{G}=$	
	$\mathrm{Y}=5$	$\mathrm{Y}=0$	$\mathrm{Y}=$		$\mathrm{Y}=0$		$Y=5$		$\mathrm{Y}=0$	$\mathrm{Y}=$	0	$\mathrm{Y}=$	
Duration of Analysis (hrs) $=0.25$									Cycle Len	C =	120.0		

Lane Group Capacity, Control Delay, and LOS Determination

BACK-OF-QUEUE WORKSHEET

General Information

Project Description Existing/Proposed System With Slip Ramp
Average Back of Queue

	EB			WB			NB			SB		
	LT	TH	RT									
Lane Group	L		R					T			T	
Initial Queue/Lane	0.0		0.0					0.0			0.0	
Flow Rate/Lane Group	88		180					491			2563	
Satflow/Lane	1719		1538					1810			1810	
Capacity/Lane Group	115		103					1539			1539	
Flow Ratio	0.1		0.1					0.3			1.4	
v/c Ratio	0.77		1.75					0.32			1.67	
I Factor	1.000		1.000					1.000			1.000	
Arrival Type	3		3					3			3	
Platoon Ratio	1.00		1.00					1.00			1.00	
PF Factor	1.00		1.00					1.00			1.00	
Q1	2.9		6.0					3.4			85.4	
kB	0.2		0.2					1.1			1.1	
Q2	0.6		10.1					0.5			130.6	
Q Average	3.5		16.1					3.9			216.0	

Percentile Back of Queue (95th percentile)

fB\%	2.0		1.7					2.0			1.5	
Back of Queue	7.0		28.1					7.7			324	

Queue Storage Ratio

Queue Spacing	25.0	25.0					25.0			25.0	
Queue Storage	0	0					0			0	
Average Queue Storage Ratio											
95\% Queue Storage Ratio											

SHORT REPORT

General Information

Analyst
SKB
Agency or Co. TDOT / Long Engineering
Date Performed 05/04/2009
Time Period AM Peak Period

Site Information
Intersection
Area Type
Jurisdiction
Analysis Year

Slip Ramp @ Stone Lake
Road
All other areas
Cleveland, TN
2033

Volume and Timing Input

Lane Group Capacity, Control Delay, and LOS Determination

	EB			WB		NB			SB	
Adjusted Flow Rate	88	180					491		2563	
Lane Group Capacity	306	273					2450		2450	
v/c Ratio	0.29	0.66					0.20		1.05	
Green Ratio	0.18	0.18					0.71		0.71	
Uniform Delay d ${ }_{1}$	32.1	34.5					4.4		13.0	
Delay Factor k	0.11	0.23					0.11		0.50	
Incremental Delay d ${ }_{2}$	0.5	5.8					0.0		31.7	
PF Factor	1.000	1.000					1.000		1.000	
Control Delay	32.6	40.2					4.4		44.7	
Lane Group LOS	C	D					A		D	
Approach Delay	37.7					4.4			44.7	
Approach LOS	D					A			D	
Intersection Delay	38.2			Intersection LOS					D	

BACK-OF-QUEUE WORKSHEET

General Information

Project Description Existing/Proposed System With Slip Ramp
Average Back of Queue

Percentile Back of Queue (95th percentile)

$\mathrm{fB} \%$	2.0		2.0					2.0			1.5
Back of Queue	4.2		9.4					4.8			76.3

Queue Storage Ratio

Queue Spacing	25.0		25.0					25.0			25.0
Queue Storage	0		0					0			0
Average Queue Storage Ratio											
95% Queue Storage Ratio											

SHORT REPORT

General Information

Analyst
SKB
Agency or Co. TDOT / Long Engineering
Date Performed 05/04/2009
Time Period PM Peak Period

Site Information
Intersection
Area Type
Jurisdiction
Analysis Year

Slip Ramp @ Stone Lake
Road
All other areas
Cleveland, TN
2033

Volume and Timing Input

		EB			WB			NB			SB		
		LT	TH	RT									
Number of Lanes		1		1					1			1	
Lane Group		L		R					T			T	
Volume (vph)		62		126					2559			509	
\% Heavy Vehicles		5		5					5			5	
PHF		0.94		0.94					0.94			0.94	
Pretimed/Actuated (P/A)		A		A					A			A	
Startup Lost Time		2.0		2.0					2.0			2.0	
Extension of Effective Green		2.0		2.0					2.0			2.0	
Arrival Type		3		3					3			3	
Unit Extension		3.0		3.0					3.0			3.0	
Ped/Bike/RTOR Volume		0	0	0	0	0		0	0		0	0	
Lane Width		12.0		12.0					12.0			12.0	
Parking/Grade/Parking		N	0	N									
Parking/Hour													
Bus Stops/Hour		0		0					0			0	
Minimum Pedestrian Time			3.2			3.2			3.2			3.2	
Phasing	EB Only	02			04		Thru On		06		07		
Timing	$\mathrm{G}=6.0$	$\mathrm{G}=0.0$	G $=$		$\mathrm{G}=0.0$		$\mathrm{G}=104$		$\mathrm{G}=0.0$		0.0	G =	
	$\mathrm{Y}=5$	$\mathrm{Y}=0$	$\mathrm{Y}=$		$\mathrm{Y}=0$		$Y=5$		$\mathrm{Y}=0$	$\mathrm{Y}=$	0	$\mathrm{Y}=$	
Duration of Analysis (hrs) $=0.25$									Cycle Len	C =	120.0		

Lane Group Capacity, Control Delay, and LOS Determination

BACK-OF-QUEUE WORKSHEET

General Information

Project Description Existing/Proposed System With Slip Ramp
Average Back of Queue

Percentile Back of Queue (95th percentile)

Queue Storage Ratio

Queue Spacing	25.0	25.0					25.0			25.0	
Queue Storage	0	0					0			0	
Average Queue Storage Ratio											
95\% Queue Storage Ratio											

SHORT REPORT

General Information

Analyst
SKB
Agency or Co. TDOT / Long Engineering
Date Performed 05/04/2009
Time Period PM Peak Period

Site Information
Intersection
Area Type
Jurisdiction
Analysis Year

Slip Ramp @ Stone Lake
Road
All other areas
Cleveland, TN
2033

Volume and Timing Input

		EB			WB			NB			SB		
		LT	TH	RT									
Number of Lanes		1		1					2			2	
Lane Group		L		R					T			T	
Volume (vph)		62		126					2559			509	
\% Heavy Vehicles		5		5					5			5	
PHF		0.94		0.94					0.94			0.94	
Pretimed/Actuated (P/A)		A		A					A			A	
Startup Lost Time		2.0		2.0					2.0			2.0	
Extension of Effective Green		2.0		2.0					2.0			2.0	
Arrival Type		3		3					3			3	
Unit Extension		3.0		3.0					3.0			3.0	
Ped/Bike/RTOR Volume		0	0	0	0	0		0	0		0	0	
Lane Width		12.0		12.0					12.0			12.0	
Parking/Grade/Parking		N	0	N									
Parking/Hour													
Bus Stops/Hour		0		0					0			0	
Minimum Pedestrian Time			3.2			3.2			3.2			3.2	
Phasing	EB Only	02			04		Thru Only		06		07		
Timing	$\mathrm{G}=12.0$	$\mathrm{G}=0.0$	G $=$		$\mathrm{G}=0.0$		$\mathrm{G}=68.0$		$=0.0$		0.0	G =	
	$\mathrm{Y}=5$	$\mathrm{Y}=0$	$\mathrm{Y}=$		$\mathrm{Y}=0$		$Y=5$		$=0$	$\mathrm{Y}=$	0	$\mathrm{Y}=$	
Duration of Analysis (hrs) $=0.25$									cle Len	C =	90.0		

Lane Group Capacity, Control Delay, and LOS Determination

	EB		WB			NB			SB	
Adjusted Flow Rate	66	134					2722		541	
Lane Group Capacity	229	205					2603		2603	
v/c Ratio	0.29	0.65					1.05		0.21	
Green Ratio	0.13	0.13					0.76		0.76	
Uniform Delay d ${ }_{1}$	35.2	37.0					11.0		3.2	
Delay Factor k	0.11	0.23					0.50		0.11	
Incremental Delay d 2	0.7	7.3					31.1		0.0	
PF Factor	1.000	1.000					1.000		1.000	
Control Delay	35.8	44.3					42.1		3.2	
Lane Group LOS	D	D					D		A	
Approach Delay	41.5					42.1			3.2	
Approach LOS	D					D			A	
Intersection Delay	36.0		Intersection LOS						D	

BACK-OF-QUEUE WORKSHEET

General Information

Project Description Existing/Proposed System With Slip Ramp
Average Back of Queue

	EB			WB			NB			SB		
	LT	TH	RT									
Lane Group	L		R					T			T	
Initial Queue/Lane	0.0		0.0					0.0			0.0	
Flow Rate/Lane Group	66		134					2722			541	
Satflow/Lane	1719		1538					1809			1809	
Capacity/Lane Group	229		205					2603			2603	
Flow Ratio	0.0		0.1					0.8			0.2	
v/c Ratio	0.29		0.65					1.05			0.21	
I Factor	1.000		1.000					1.000			1.000	
Arrival Type	3		3					3			3	
Platoon Ratio	1.00		1.00					1.00			1.00	
PF Factor	1.00		1.00					1.00			1.00	
Q1	1.5		3.2					35.7			2.1	
kB	0.3		0.3					0.8			0.8	
Q2	0.1		0.5					16.7			0.2	
Q Average	1.6		3.7					52.4			2.3	

Percentile Back of Queue (95th percentile)

$\mathrm{fB} \%$	2.0		2.0					1.5			2.0
Back of Queue	3.3		7.3					80.3			4.6

Queue Storage Ratio

Queue Spacing	25.0		25.0					25.0			25.0
Queue Storage	0		0					0			0
Average Queue Storage Ratio											
95% Queue Storage Ratio											

SHORT REPORT

General Information

Analyst
SKB
Agency or Co. TDOT / Long Engineering
Date Performed 05/04/2009
Time Period AM Peak Period

Site Information
Intersection
Area Type
Jurisdiction Cleveland, TN
Analysis Year 2013

Volume and Timing Input

		EB			WB			NB			SB		
		LT	TH	RT									
Number of Lanes		1		2					2	1	2	2	
Lane Group		L		R					T	R	L	T	
Volume (vph)		264		285					235	61	79	231	
\% Heavy Vehicles		5		5					5	5	5	5	
PHF		0.94		0.94					0.94	0.94	0.94	0.94	
Pretimed/Actuated (P/A)		A		A					A	A	A	A	
Startup Lost Time		2.0		2.0					2.0	2.0	2.0	2.0	
Extension of Effective Green		2.0		2.0					2.0	2.0	2.0	2.0	
Arrival Type		3		3					3	3	3	3	
Unit Extension		3.0		3.0					3.0	3.0	3.0	3.0	
Ped/Bike/RTOR Volume		0	0	0	0	0		0	0	0	0	0	
Lane Width		12.0		12.0					12.0	12.0	12.0	12.0	
Parking/Grade/Parking		N	0	N	N	0	N	N	0	N	N	0	N
Parking/Hour													
Bus Stops/Hour		0		0					0	0	0	0	
Minimum Pedestrian Time			3.2			3.2			3.2			3.2	
Phasing	EB Only	02	03		04		SB Only		Thru \& RT		07	08	
Timing	G = 25.0	$\mathrm{G}=0.0$	$\mathrm{G}=0.0$		$\mathrm{G}=0.0$		G = 19.0		$\mathrm{G}=22.0$		= 0.0	$\mathrm{G}=0.0$	
	$\mathrm{Y}=5$	$Y=0$	$\mathrm{Y}=0$		$\mathrm{Y}=0$		$\mathrm{Y}=4$		$Y=5$		$\mathrm{Y}=0$	$Y=0$	
Duration of Analysis (hrs) $=0.25$									Cycle L	gth C	80.0		

Lane Group Capacity, Control Delay, and LOS Determination

	EB			WB			NB			SB		
Adjusted Flow Rate	281		303					250	65	84	246	
Lane Group Capacity	537		851					947	423	793	1938	
v/c Ratio	0.52		0.36					0.26	0.15	0.11	0.13	
Green Ratio	0.31		0.31					0.28	0.28	0.24	0.56	
Uniform Delay d_{1}	22.6		21.3					22.7	22.0	23.9	8.2	
Delay Factor k	0.13		0.11					0.11	0.11	0.11	0.11	
Incremental Delay d2	0.9		0.3					0.1	0.2	0.1	0.0	
PF Factor	1.000		1.000					1.000	1.000	1.000	1.000	
Control Delay	23.5		21.5					22.8	22.1	23.9	8.3	
Lane Group LOS	C		C					C	C	C	A	
Approach Delay	22.5						22.7			12.3		
Approach LOS	C						C			B		
Intersection Delay	19.8			Intersection LOS						B		

BACK-OF-QUEUE WORKSHEET

General Information

Project Description Proposed System W/O Slip Ramp
Average Back of Queue

Percentile Back of Queue (95th percentile)

$\mathrm{fB} \%$	1.9		2.0					2.0	2.1	2.1	2.1	
Back of Queue	10.9		6.3					4.9	2.4	1.6	3.0	

Queue Storage Ratio

Queue Spacing	25.0		25.0					25.0	25.0	25.0	25.0	
Queue Storage	0		0					0	0	0	0	
Average Queue Storage Ratio												
95% Queue Storage Ratio												

SHORT REPORT

General Information

Analyst
SKB
Agency or Co. TDOT / Long Engineering
Date Performed 05/04/2009
Time Period PM Peak Period

Site Information
Intersection
Area Type
Jurisdiction Cleveland, TN
Analysis Year 2013

Volume and Timing Input

		EB			WB			NB			SB		
		LT	TH	RT									
Number of Lanes		1		2					2	1	2	2	
Lane Group		L		R					T	R	L	T	
Volume (vph)		84		180					447	47	186	61	
\% Heavy Vehicles		5		5					5	5	5	5	
PHF		0.94		0.94					0.94	0.94	0.94	0.94	
Pretimed/Actuated (P/A)		A		A					A	A	A	A	
Startup Lost Time		2.0		2.0					2.0	2.0	2.0	2.0	
Extension of Effective Green		2.0		2.0					2.0	2.0	2.0	2.0	
Arrival Type		3		3					3	3	3	3	
Unit Extension		3.0		3.0					3.0	3.0	3.0	3.0	
Ped/Bike/RTOR Volume		0	0	0	0	0		0	0	0	0	0	
Lane Width		12.0		12.0					12.0	12.0	12.0	12.0	
Parking/Grade/Parking		N	0	N	N	0	N	N	0	N	N	0	N
Parking/Hour													
Bus Stops/Hour		0		0					0	0	0	0	
Minimum Pedestrian Time			3.2			3.2			3.2			3.2	
Phasing	EB Only	02	03		04		SB Only		Thru \& RT		07	08	
Timing	$\mathrm{G}=21.0$	$\mathrm{G}=0.0$	$\mathrm{G}=0.0$		$\mathrm{G}=0.0$		$\mathrm{G}=21.0$		$\mathrm{G}=24.0$		= 0.0	$\mathrm{G}=0.0$	
	$\mathrm{Y}=5$	$Y=0$	$\mathrm{Y}=0$		$\mathrm{Y}=0$		$\mathrm{Y}=4$		$Y=5$		$Y=0$	$Y=0$	
Duration of Analysis (hrs) $=0.25$									Cycle L	gth C	80.0		

Lane Group Capacity, Control Delay, and LOS Determination

BACK-OF-QUEUE WORKSHEET

General Information

Project Description Proposed System W/O Slip Ramp
Average Back of Queue

Percentile Back of Queue (95th percentile)

$\mathrm{fB} \%$	2.0		2.0					2.0	2.1	2.0	2.1	
Back of Queue	3.4		4.1					9.5	1.8	3.8	0.7	

Queue Storage Ratio

Queue Spacing	25.0		25.0					25.0	25.0	25.0	25.0	
Queue Storage	0		0					0	0	0	0	
Average Queue Storage Ratio												
95% Queue Storage Ratio												

SHORT REPORT

General Information

Analyst
SKB
Agency or Co. TDOT / Long Engineering
Date Performed 05/04/2009
Time Period AM Peak Period

Site Information
Intersection
Area Type
Jurisdiction Cleveland, TN
Analysis Year 2033

Volume and Timing Input

Lane Group Capacity, Control Delay, and LOS Determination

BACK-OF-QUEUE WORKSHEET

General Information

Project Description Proposed System W/O Slip Ramp
Average Back of Queue

Percentile Back of Queue (95th percentile)

$\mathrm{fB} \%$	1.8		1.9					2.0	2.0	2.1	2.0	
Back of Queue	19.6		11.0					9.1	4.3	3.0	5.9	

Queue Storage Ratio

Queue Spacing	25.0		25.0					25.0	25.0	25.0	25.0
Queue Storage	0		0					0	0	0	0
Average Queue Storage Ratio											
95% Queue Storage Ratio											

SHORT REPORT

General Information

Analyst
SKB
Agency or Co. TDOT / Long Engineering
Date Performed 05/04/2009
Time Period PM Peak Period

Site Information
Intersection
Area Type
Jurisdiction Cleveland, TN
Analysis Year 2033

Volume and Timing Input

Lane Group Capacity, Control Delay, and LOS Determination

BACK-OF-QUEUE WORKSHEET

General Information

Project Description Proposed System W/O Slip Ramp
Average Back of Queue

Percentile Back of Queue (95th percentile)

$\mathrm{fB} \%$	2.0		2.0					1.9	2.1	2.0	2.1	
Back of Queue	5.9		7.4					17.7	3.1	7.0	1.2	

Queue Storage Ratio

Queue Spacing	25.0		25.0					25.0	25.0	25.0	25.0	
Queue Storage	0		0					0	0	0	0	
Average Queue Storage Ratio												
95% Queue Storage Ratio												

SHORT REPORT

General Information
Analyst
SKB
Agency or Co. TDOT / Long Engineering
Date Performed 05/04/2009
Time Period AM Peak Period

Site Information
Intersection APD-40 @ Prop. Interchange
Area Type All other areas
Jurisdiction Cleveland, TN
Analysis Year 2013

Volume and Timing Input

		EB			WB			NB			SB		
		LT	TH	\| ${ }^{\text {RT }}$	LT	TH	RT	LT	TH	RT	LT	TH	RT
Number of Lanes					2		1	2	2			2	1
Lane Group					L		R	L	T			T	R
Volume (vph)					136		97	113	386			174	102
\% Heavy Vehicles					5		5	5	5			5	5
PHF					0.94		0.94	0.94	0.94			0.94	0.94
Pretimed/Actuated (P/A)					A		A	A	A			A	A
Startup Lost Time					2.0		2.0	2.0	2.0			2.0	2.0
Extension of Effective Green					2.0		2.0	2.0	2.0			2.0	2.0
Arrival Type					3		3	3	3			3	3
Unit Extension					3.0		3.0	3.0	3.0			3.0	3.0
Ped/Bike/RTOR Volume		0	0		0	0	0	0	0		0	0	0
Lane Width					12.0		12.0	12.0	12.0			12.0	12.0
Parking/Grade/Parking		N	0	N	N	0	N	N	0	N	N	0	N
Parking/Hour													
Bus Stops/Hour					0		0	0	0			0	0
Minimum Pedestrian Time			3.2			3.2			3.2			3.2	
Phasing	WB Only	02		03			NB		Thru \& RT		07		
Timing	$\mathrm{G}=22.0$	$\mathrm{G}=0.0$		$\mathrm{G}=0.0$	G =		G = 2		G $=23.0$		0.0	G =	
	$Y=5$	$Y=0$		$\mathrm{Y}=0$	$Y=$		$\mathrm{Y}=4$		Y = 5	Y	0	$\mathrm{Y}=$	
Duration of Analysis (hrs) $=0.25$									Cycle Leng	Ch $=$	80.0		

Lane Group Capacity, Control Delay, and LOS Determination

BACK-OF-QUEUE WORKSHEET

General Information

Project Description Proposed System W/O Slip Ramp
Average Back of Queue

	EB			WB			NB			SB		
	LT	TH	RT									
Lane Group				L		R	L	T			T	R
Initial Queue/Lane				0.0		0.0	0.0	0.0			0.0	0.0
Flow Rate/Lane Group				145		103	120	411			185	109
Satflow/Lane				1719		1538	1719	1809			1809	1538
Capacity/Lane Group				918		423	876	2067			990	442
Flow Ratio				0.0		0.1	0.0	0.1			0.1	0.1
v/c Ratio				0.16		0.24	0.14	0.20			0.19	0.25
I Factor				1.000		1.000	1.000	1.000			1.000	1.000
Arrival Type				3		3	3	3			3	3
Platoon Ratio				1.00		1.00	1.00	1.00			1.00	1.00
PF Factor				1.00		1.00	1.00	1.00			1.00	1.00
Q1				1.2		1.8	1.0	2.2			1.6	1.9
kB				0.4		0.4	0.4	0.7			0.4	0.4
Q2				0.1		0.1	0.1	0.2			0.1	0.1
Q Average				1.3		1.9	1.1	2.3			1.7	2.0

Percentile Back of Queue (95th percentile)

$\mathrm{fB} \%$				2.1		2.0	2.1	2.0			2.0
Back of Queue				2.7		3.9	2.3	4.7			3.5

Queue Storage Ratio

Queue Spacing				25.0		25.0	25.0	25.0			25.0	25.0
Queue Storage				0		0	0	0			0	0
Average Queue Storage Ratio												
95% Queue Storage Ratio												

SHORT REPORT

General Information
Analyst
SKB
Agency or Co. TDOT / Long Engineering
Date Performed 05/04/2009
Time Period PM Peak Period

Site Information
Intersection APD-40 @ Prop. Interchange
Area Type All other areas
Jurisdiction Cleveland, TN
Analysis Year 2013

Volume and Timing Input

		EB			WB			NB			SB		
		LT	TH	H ${ }^{\text {PT }}$	LT	TH	RT	LT	TH	RT	LT	TH	RT
Number of Lanes					2		1	2	2			2	1
Lane Group					L		R	L	T			T	R
Volume (vph)					44		34	217	314			203	333
\% Heavy Vehicles					5		5	5	5			5	5
PHF					0.94		0.94	0.94	0.94			0.94	0.94
Pretimed/Actuated (P/A)					A		A	A	A			A	A
Startup Lost Time					2.0		2.0	2.0	2.0			2.0	2.0
Extension of Effective Green					2.0		2.0	2.0	2.0			2.0	2.0
Arrival Type					3		3	3	3			3	3
Unit Extension					3.0		3.0	3.0	3.0			3.0	3.0
Ped/Bike/RTOR Volume		0	0		0	0	0	0	0		0	0	0
Lane Width					12.0		12.0	12.0	12.0			12.0	12.0
Parking/Grade/Parking		N	0	N	N	0	N	N	0	N	N	0	N
Parking/Hour													
Bus Stops/Hour					0		0	0	0			0	0
Minimum Pedestrian Time			3.2			3.2			3.2			3.2	
Phasing	WB Only	02		03			NB O		Thru \& RT		07		08
Timing	$\mathrm{G}=21.0$	$\mathrm{G}=0.0$		$\mathrm{G}=0.0$	G =		$\mathrm{G}=2$		$\mathrm{G}=32.0$		0.0		0.0
	$Y=5$	Y = 0		$\mathrm{Y}=0$	$\mathrm{Y}=$		$\mathrm{Y}=4$		Y = 5	Y	0	Y	
Duration of Analysis (hrs) $=0.25$									Cycle Leng	ch $\mathrm{C}=$	90.0		

Lane Group Capacity, Control Delay, and LOS Determination

	EB		WB			NB			SB	
Adjusted Flow Rate			47		36	231	334		216	354
Lane Group Capacity			779		359	853	2258		1225	547
v/c Ratio			0.06		0.10	0.27	0.15		0.18	0.65
Green Ratio			0.23		0.23	0.26	0.66		0.36	0.36
Uniform Delay d_{1}			26.8		27.1	26.8	5.9		19.9	24.3
Delay Factor k			0.11		0.11	0.11	0.11		0.11	0.22
Incremental Delay d2			0.0		0.1	0.2	0.0		0.1	2.7
PF Factor			1.000		1.000	1.000	1.000		1.000	1.000
Control Delay			26.9		27.2	27.0	5.9		20.0	26.9
Lane Group LOS			C		C	C	A		C	C
Approach Delay			27.0			14.5			24.3	
Approach LOS			C			B			C	
Intersection Delay	20.0		Intersection LOS						B	

BACK-OF-QUEUE WORKSHEET

General Information

Project Description Proposed System W/O Slip Ramp
Average Back of Queue

Percentile Back of Queue (95th percentile)

$\mathrm{fB} \%$				2.1		2.1	2.0	2.0			2.0
Back of Queue				1.0		1.6	5.1	3.7			4.2

Queue Storage Ratio

Queue Spacing				25.0		25.0	25.0	25.0			25.0	25.0
Queue Storage				0		0	0	0			0	0
Average Queue Storage Ratio												
95% Queue Storage Ratio												

SHORT REPORT

General Information
Analyst
SKB
Agency or Co. TDOT / Long Engineering
Date Performed 05/04/2009
Time Period AM Peak Period

Site Information
Intersection APD-40 @ Prop. Interchange
Area Type All other areas
Jurisdiction Cleveland, TN
Analysis Year 2033

Volume and Timing Input

		EB			WB			NB			SB		
		LT	TH	H ${ }^{\text {P/ }}$	LT	TH	RT	LT	TH	RT	LT	TH	RT
Number of Lanes					2		1	2	2			2	1
Lane Group					L		R	L	T			T	R
Volume (vph)					212		144	176	608			282	167
\% Heavy Vehicles					5		5	5	5			5	5
PHF					0.94		0.94	0.94	0.94			0.94	0.94
Pretimed/Actuated (P/A)					A		A	A	A			A	A
Startup Lost Time					2.0		2.0	2.0	2.0			2.0	2.0
Extension of Effective Green					2.0		2.0	2.0	2.0			2.0	2.0
Arrival Type					3		3	3	3			3	3
Unit Extension					3.0		3.0	3.0	3.0			3.0	3.0
Ped/Bike/RTOR Volume		0	0		0	0	0	0	0		0	0	0
Lane Width					12.0		12.0	12.0	12.0			12.0	12.0
Parking/Grade/Parking		N	0	N	N	0	N	N	0	N	N	0	N
Parking/Hour													
Bus Stops/Hour					0		0	0	0			0	0
Minimum Pedestrian Time			3.2			3.2			3.2			3.2	
Phasing	WB Only	02	03		04		NB Only		Thru \& RT	07		08	
Timing	$\mathrm{G}=27.0$	$\mathrm{G}=0.0$	$\mathrm{G}=0.0$		$\mathrm{G}=0.0$		$\mathrm{G}=23.0$		$\mathrm{G}=26.0$	$\mathrm{G}=0.0$		$\mathrm{G}=0.0$	
	$\mathrm{Y}=5$	$Y=0$	$\mathrm{Y}=0$		$\mathrm{Y}=0$		$Y=4$		Y = 5	$Y=0$		$\mathrm{Y}=0$	
Duration of Analysis (hrs) $=0.25$								Cycle Leng	Ch $\mathrm{C}=$	90.0			

Lane Group Capacity, Control Delay, and LOS Determination

BACK-OF-QUEUE WORKSHEET

General Information

Project Description Proposed System W/O Slip Ramp
Average Back of Queue

Percentile Back of Queue (95th percentile)

fB\%				2.0		2.0	2.0	2.0			2.0
Back of Queue				4.7		6.4	4.1	9.1			6.5

Queue Storage Ratio

Queue Spacing				25.0		25.0	25.0	25.0			25.0	25.0
Queue Storage				0		0	0	0			0	0
Average Queue Storage Ratio												
95% Queue Storage Ratio												

SHORT REPORT

General Information
Analyst
SKB
Agency or Co. TDOT / Long Engineering
Date Performed 05/04/2009
Time Period PM Peak Period

Site Information
Intersection APD-40 @ Prop. Interchange
Area Type All other areas
Jurisdiction Cleveland, TN
Analysis Year 2033

Volume and Timing Input

		EB			WB			NB			SB		
		LT	TH	H ${ }^{\text {P/ }}$	LT	TH	RT	LT	TH	RT	LT	TH	RT
Number of Lanes					1		1	2	2			2	1
Lane Group					L		R	L	T			T	R
Volume (vph)					68		53	490	349			324	543
\% Heavy Vehicles					5		5	5	5			5	5
PHF					0.94		0.94	0.94	0.94			0.94	0.94
Pretimed/Actuated (P/A)					A		A	A	A			A	A
Startup Lost Time					2.0		2.0	2.0	2.0			2.0	2.0
Extension of Effective Green					2.0		2.0	2.0	2.0			2.0	2.0
Arrival Type					3		3	3	3			3	3
Unit Extension					3.0		3.0	3.0	3.0			3.0	3.0
Ped/Bike/RTOR Volume		0	0		0	0	0	0	0		0	0	0
Lane Width					12.0		12.0	12.0	12.0			12.0	12.0
Parking/Grade/Parking		N	0	N	N	0	N	N	0	N	N	0	N
Parking/Hour													
Bus Stops/Hour					0		0	0	0			0	0
Minimum Pedestrian Time			3.2			3.2			3.2			3.2	
Phasing	WB Only	02	03		04		NB Only		Thru \& RT	07		08	
Timing	G = 15.0	$\mathrm{G}=0.0$	$\mathrm{G}=0.0$		$\mathrm{G}=0.0$		$\mathrm{G}=21.0$		$\mathrm{G}=40.0$	$\mathrm{G}=0.0$		$\mathrm{G}=0.0$	
	$\mathrm{Y}=5$	$Y=0$			$Y=0$		$Y=4$		$\mathrm{Y}=5$	$Y=0$		$Y=0$	
Duration of Analysis (hrs) $=0.25$									Cycle Leng	Ch $\mathrm{C}=$	90.0		

Lane Group Capacity, Control Delay, and LOS Determination

	EB			WB			NB		SB	
Adjusted Flow Rate			72		56	521	371		345	578
Lane Group Capacity			287		256	779	2488		1531	684
v/c Ratio			0.25		0.22	0.67	0.15		0.23	0.85
Green Ratio			0.17		0.17	0.23	0.72		0.44	0.44
Uniform Delay d ${ }_{1}$			32.6		32.4	31.3	3.9		15.4	22.2
Delay Factor k			0.11		0.11	0.24	0.11		0.11	0.38
Incremental Delay d ${ }_{2}$			0.5		0.4	2.2	0.0		0.1	9.6
PF Factor			1.000		1.000	1.000	1.000		1.000	1.000
Control Delay			33.1		32.9	33.6	3.9		15.5	31.8
Lane Group LOS			C		C	C	A		B	C
Approach Delay			33.0			21.2			25.7	
Approach LOS			C			C			C	
Intersection Delay	24.1		Intersection LOS						C	

BACK-OF-QUEUE WORKSHEET

General Information

Project Description Proposed System W/O Slip Ramp
Average Back of Queue

	EB			WB			NB			SB		
	LT	TH	RT									
Lane Group				L		R	L	T			T	R
Initial Queue/Lane				0.0		0.0	0.0	0.0			0.0	0.0
Flow Rate/Lane Group				72		56	521	371			345	578
Satflow/Lane				1719		1538	1719	1809			1809	1538
Capacity/Lane Group				287		256	779	2488			1531	684
Flow Ratio				0.0		0.0	0.2	0.1			0.1	0.4
v/c Ratio				0.25		0.22	0.67	0.15			0.23	0.85
I Factor				1.000		1.000	1.000	1.000			1.000	1.000
Arrival Type				3		3	3	3			3	3
Platoon Ratio				1.00		1.00	1.00	1.00			1.00	1.00
PF Factor				1.00		1.00	1.00	1.00			1.00	1.00
Q1				1.6		1.2	6.1	1.5			2.8	12.9
kB				0.3		0.3	0.4	0.8			0.6	0.5
Q2				0.1		0.1	0.8	0.1			0.2	2.5
Q Average				1.7		1.3	6.9	1.7			3.0	15.4

Percentile Back of Queue (95th percentile)

$\mathrm{fB} \%$				2.0		2.1	1.9	2.0			2.0
Back of Queue				3.4		2.7	13.1	3.4			6.0

Queue Storage Ratio

Queue Spacing
Queue Storage
Average Queue Storage Ratio

SHORT REPORT

General Information

Analyst
SKB
Agency or Co. TDOT / Long Engineering
Date Performed 05/04/2009
Time Period AM Peak Period

Site Information
Intersection
APD-40 EB @ South Lee
Hwy.
Area Type All other areas
Jurisdiction Cleveland, TN
Analysis Year 2013

Volume and Timing Input

		EB			WB			NB			SB		
		LT	TH	RT									
Number of Lanes		1		1					2	1	1	2	
Lane Group		L		R					T	R	L	T	
Volume (vph)		162		92					392	56	194	684	
\% Heavy Vehicles		3		3					3	3	3	3	
PHF		0.94		0.94					0.94	0.94	0.94	0.94	
Pretimed/Actuated (P/A)		A		A					A	A	A	A	
Startup Lost Time		2.0		2.0					2.0	2.0	2.0	2.0	
Extension of Effective Green		2.0		2.0					2.0	2.0	2.0	2.0	
Arrival Type		3		3					3	3	3	3	
Unit Extension		3.0		3.0					3.0	3.0	3.0	3.0	
Ped/Bike/RTOR Volume		0	0	0	0	0		0	0	0	0	0	
Lane Width		12.0		12.0					12.0	12.0	(12.0	12.0	
Parking/Grade/Parking		N	0	N	N	0	N	N	0	N	N	0	N
Parking/Hour													
Bus Stops/Hour		0		0					0	0	0	0	
Minimum Pedestrian Time			3.2			3.2			3.2			3.2	
Phasing	EB Only	02	03		04		SB Only		NS Perm		07	08	
Timing	G = 30.0	$\mathrm{G}=0.0$	$\mathrm{G}=0.0$		$\mathrm{G}=0.0$		G = 5.0		$\mathrm{G}=31.0$		$\mathrm{G}=0.0$	$\mathrm{G}=0.0$	
	$\mathrm{Y}=5$	$Y=0$	$\mathrm{Y}=0$		$\mathrm{Y}=0$		$\mathrm{Y}=4$		$\mathrm{Y}=5$		$Y=0$	$Y=0$	
Duration of Analysis (hrs) $=0.25$									Cycle Len	gth C	= 80.0		

Lane Group Capacity, Control Delay, and LOS Determination

BACK-OF-QUEUE WORKSHEET

General Information

Project Description Proposed System W/O Slip Ramp
Average Back of Queue

Percentile Back of Queue (95th percentile)

$\mathrm{fB} \%$	2.0		2.1					2.0	2.1	2.0	1.9	
Back of Queue	5.7		3.2					7.2	1.9	5.3	11.2	

Queue Storage Ratio

Queue Spacing	25.0		25.0					25.0	25.0	25.0	25.0	
Queue Storage	0		0					0	0	0	0	
Average Queue Storage Ratio												
95% Queue Storage Ratio												

SHORT REPORT

General Information
Analyst
SKB
Agency or Co. TDOT / Long Engineering
Date Performed 05/04/2009
Time Period PM Peak Period

Site Information
Intersection
APD-40 EB @ South Lee
Hwy.
Area Type All other areas
Jurisdiction Cleveland, TN
Analysis Year 2013

Volume and Timing Input

		EB			WB			NB			SB		
		LT	TH	RT									
Number of Lanes		1		1					2	1	1	2	
Lane Group		L		R					T	R	L	T	
Volume (vph)		187		123					972	149	386	654	
\% Heavy Vehicles		5		5					5	5	5	5	
PHF		0.94		0.94					0.94	0.94	0.94	0.94	
Pretimed/Actuated (P/A)		A		A					A	A	A	A	
Startup Lost Time		2.0		2.0					2.0	2.0	2.0	2.0	
Extension of Effective Green		2.0		2.0					2.0	2.0	2.0	2.0	
Arrival Type		3		3					3	3	3	3	
Unit Extension		3.0		3.0					3.0	3.0	3.0	3.0	
Ped/Bike/RTOR Volume		0	0	0	0	0		0	0	0	0	0	
Lane Width		12.0		12.0					12.0	12.0	晟 12.0	12.0	
Parking/Grade/Parking		N	0	N	N	0	N	N	0	N	N	0	N
Parking/Hour													
Bus Stops/Hour		0		0					0	0	0	0	
Minimum Pedestrian Time			3.2			3.2			3.2			3.2	
Phasing	EB Only	02	03		04		SB Only		NS Perm		07	08	
Timing	$\mathrm{G}=24.0$	$\mathrm{G}=0.0$	$\mathrm{G}=0.0$		$\mathrm{G}=0.0$		$\mathrm{G}=26.0$		$\mathrm{G}=36.0$		$\mathrm{G}=0.0$	$\mathrm{G}=0.0$	
	Y $=5$	$Y=0$	$\mathrm{Y}=0$		$Y=0$		$Y=4$		$\mathrm{Y}=5$		$\mathrm{Y}=0$	$\mathrm{Y}=0$	
Duration of Analysis (hrs) $=0.25$									Cycle Le	gth C	= 100.0		

Lane Group Capacity, Control Delay, and LOS Determination

	EB			WB		NB			SB		
Adjusted Flow Rate	199	131					1034	159	411	696	
Lane Group Capacity	413	369					1240	554	520	2274	
v/c Ratio	0.48	0.36					0.83	0.29	0.79	0.31	
Green Ratio	0.24	0.24					0.36	0.36	0.67	0.66	
Uniform Delay d ${ }_{1}$	32.7	31.6					29.3	22.8	25.4	7.2	
Delay Factor k	0.11	0.11					0.37	0.11	0.34	0.11	
Incremental Delay d 2	0.9	0.6					5.1	0.3	8.1	0.1	
PF Factor	1.000	1.000					1.000	1.000	1.000	1.000	
Control Delay	33.5	32.2					34.3	23.1	33.5	7.3	
Lane Group LOS	C	C					C	C	C	A	
Approach Delay	33.0					32.8			17.0		
Approach LOS	C					C			B		
Intersection Delay	26.2		Intersection LOS						C		

BACK-OF-QUEUE WORKSHEET

General Information

Project Description Proposed System W/O Slip Ramp
Average Back of Queue

Percentile Back of Queue (95th percentile)

$\mathrm{fB} \%$	2.0		2.0					1.7	2.0	1.9	2.0	
Back of Queue	10.0		6.5					28.3	6.7	12.3	9.2	

Queue Storage Ratio

Queue Spacing	25.0		25.0					25.0	25.0	25.0	25.0	
Queue Storage	0		0					0	0	0	0	
Average Queue Storage Ratio												
95% Queue Storage Ratio												

SHORT REPORT

General Information
Analyst
SKB
Agency or Co. TDOT / Long Engineering
Date Performed 05/04/2009
Time Period AM Peak Period

Site Information
Intersection
APD-40 EB @ South Lee
Hwy.
Area Type All other areas
Jurisdiction Cleveland, TN
Analysis Year 2033

Volume and Timing Input

		EB			WB			NB			SB		
		LT	TH	RT									
Number of Lanes		1		1					2	1	1	2	
Lane Group		L		R					T	R	L	T	
Volume (vph)		245		144					623	87	320	1101	
\% Heavy Vehicles		3		3					3	3	3	3	
PHF		0.94		0.94					0.94	0.94	0.94	0.94	
Pretimed/Actuated (P/A)		A		A					A	A	A	A	
Startup Lost Time		2.0		2.0					2.0	2.0	2.0	2.0	
Extension of Effective Green		2.0		2.0					2.0	2.0	2.0	2.0	
Arrival Type		3		3					3	3	3	3	
Unit Extension		3.0		3.0					3.0	3.0	3.0	3.0	
Ped/Bike/RTOR Volume		0	0	0	0	0		0	0	0	0	0	
Lane Width		12.0		12.0					12.0	12.0	12.0	12.0	
Parking/Grade/Parking		N	0	N	N	0	N	N	0	N	N	0	N
Parking/Hour													
Bus Stops/Hour		0		0					0	0	0	0	
Minimum Pedestrian Time			3.2			3.2			3.2			3.2	
Phasing	EB Only	02		03			SB		NS Per		07		
Timing	G = 32.0	$\mathrm{G}=0.0$		0.0	G =		G = 1		G = 28.		= 0.0	G =	
	$Y=5$	$Y=0$	Y	0	$Y=$		$\mathrm{Y}=4$		$\mathrm{Y}=5$,	0	$\mathrm{Y}=$	
Duration of Analysis (hrs) $=0.25$									Cycle L	gth C	90.0		

Lane Group Capacity, Control Delay, and LOS Determination

	EB			WB		NB			SB		
Adjusted Flow Rate	261	153					663	93	340	1171	
Lane Group Capacity	623	558					1093	488	460	1873	
v/c Ratio	0.42	0.27					0.61	0.19	0.74	0.63	
Green Ratio	0.36	0.36					0.31	0.31	0.54	0.53	
Uniform Delay d ${ }_{1}$	22.0	20.7					26.3	22.7	13.9	14.7	
Delay Factor k	0.11	0.11					0.19	0.11	0.30	0.21	
Incremental Delay di	0.5	0.3					1.0	0.2	6.2	0.7	
PF Factor	1.000	1.000					1.000	1.000	1.000	1.000	
Control Delay	22.4	21.0					27.3	22.9	20.1	15.4	
Lane Group LOS	C	C					C	C	C	B	
Approach Delay	21.9					26.8			16.4		
Approach LOS	C					C			B		
Intersection Delay	20.2			Intersection LOS					C		

BACK-OF-QUEUE WORKSHEET

General Information

Project Description Proposed System W/O Slip Ramp
Average Back of Queue

Percentile Back of Queue (95th percentile)

fB\%	1.9		2.0					1.9	2.0	1.9	1.8	
Back of Queue	10.3		5.9					15.3	3.7	10.8	21.5	

Queue Storage Ratio

Queue Spacing	25.0		25.0					25.0	25.0	25.0	25.0	
Queue Storage	0		0					0	0	0	0	
Average Queue Storage Ratio												
95% Queue Storage Ratio												

SHORT REPORT

General Information
Analyst
SKB
Agency or Co. TDOT / Long Engineering
Date Performed 05/04/2009
Time Period AM Peak Period

Site Information
Intersection
APD-40 EB @ South Lee
Hwy.
Area Type All other areas
Jurisdiction Cleveland, TN
Analysis Year 2033

Volume and Timing Input

Lane Group Capacity, Control Delay, and LOS Determination

	EB			WB		NB			SB		
Adjusted Flow Rate	261	153					663	93	340	1171	
Lane Group Capacity	526	470					1093	488	794	2068	
v/c Ratio	0.50	0.33					0.61	0.19	0.43	0.57	
Green Ratio	0.30	0.30					0.31	0.31	0.23	0.59	
Uniform Delay d ${ }_{1}$	25.9	24.4					26.3	22.7	29.4	11.4	
Delay Factor k	0.11	0.11					0.19	0.11	0.11	0.16	
Incremental Delay di	0.7	0.4					1.0	0.2	0.4	0.4	
PF Factor	1.000	1.000					1.000	1.000	1.000	1.000	
Control Delay	26.6	24.8					27.3	22.9	29.8	11.8	
Lane Group LOS	C	C					C	C	C	B	
Approach Delay	26.0					26.8			15.8		
Approach LOS	C					C			B		
Intersection Delay	20.5		Intersection LOS						C		

BACK-OF-QUEUE WORKSHEET

General Information

Project Description Proposed System W/O Slip Ramp
Average Back of Queue

Percentile Back of Queue (95th percentile)

$\mathrm{fB} \%$	1.9		2.0					1.9	2.0	2.0	1.8	
Back of Queue	11.3		6.4					15.3	3.7	8.0	19.1	

Queue Storage Ratio

Queue Spacing	25.0		25.0					25.0	25.0	25.0	25.0	
Queue Storage	0		0					0	0	0	0	
Average Queue Storage Ratio												
95% Queue Storage Ratio												

SHORT REPORT

General Information

Analyst
SKB
Agency or Co. TDOT / Long Engineering
Date Performed 05/04/2009
Time Period PM Peak Period

Site Information
Intersection
APD-40 EB @ South Lee
Hwy.
Area Type All other areas
Jurisdiction Cleveland, TN
Analysis Year 2033

Volume and Timing Input

Lane Group Capacity, Control Delay, and LOS Determination

	EB			WB		NB			SB		
Adjusted Flow Rate	312	185					1630	268	644	1141	
Lane Group Capacity	307	274					1434	640	588	2605	
v/c Ratio	1.02	0.68					1.14	0.42	1.10	0.44	
Green Ratio	0.17	0.17					0.41	0.41	0.75	0.74	
Uniform Delay d ${ }_{1}$	49.5	46.3					35.5	25.3	36.8	5.9	
Delay Factor k	0.50	0.25					0.50	0.11	0.50	0.11	
Incremental Delay d ${ }_{2}$	55.6	6.5					70.6	0.4	65.8	0.1	
PF Factor	1.000	1.000					1.000	1.000	1.000	1.000	
Control Delay	105.1	52.8					106.1	25.8	102.6	6.0	
Lane Group LOS	F	D					F	C	F	A	
Approach Delay	85.6					94.8			40.9		
Approach LOS	F					F			D		
Intersection Delay	70.7		Intersection LOS						E		

BACK-OF-QUEUE WORKSHEET

General Information

Project Description Proposed System W/O Slip Ramp
Average Back of Queue

	EB			WB			NB			SB		
	LT	TH	RT									
Lane Group	L		R					T	R	L	T	
Initial Queue/Lane	0.0		0.0					0.0	0.0	0.0	0.0	
Flow Rate/Lane Group	312		185					1630	268	644	1141	
Satflow/Lane	1752		1568					1844	1568	783	1844	
Capacity/Lane Group	307		274					1434	640	588	2605	
Flow Ratio	0.2		0.1					0.5	0.2	0.8	0.3	
v/c Ratio	1.02		0.68					1.14	0.42	1.10	0.44	
I Factor	1.000		1.000					1.000	1.000	1.000	1.000	
Arrival Type	3		3					3	3	3	3	
Platoon Ratio	1.00		1.00					1.00	1.00	1.00	1.00	
PF Factor	1.00		1.00					1.00	1.00	1.00	1.00	
Q1	10.4		5.8					28.5	6.4	7.7	7.6	
kB	0.4		0.4					0.7	0.6	0.6	1.0	
Q2	4.3		0.7					17.2	0.4	11.2	0.8	
Q Average	14.7		6.5					45.7	6.8	18.9	8.4	

Percentile Back of Queue (95th percentile)

$\mathrm{fB} \%$	1.8		1.9					1.5	1.9	1.7	1.9	
Back of Queue	25.9		12.5					70.7	13.0	32.3	15.8	

Queue Storage Ratio

Queue Spacing	25.0		25.0					25.0	25.0	25.0	25.0	
Queue Storage	0		0					0	0	0	0	
Average Queue Storage Ratio												
95% Queue Storage Ratio												

SHORT REPORT

General Information

Analyst
SKB
Agency or Co. TDOT / Long Engineering
Date Performed 05/04/2009
Time Period PM Peak Period

Site Information
Intersection
APD-40 EB @ South Lee
Hwy.
Area Type All other areas
Jurisdiction Cleveland, TN
Analysis Year 2033

Volume and Timing Input

Lane Group Capacity, Control Delay, and LOS Determination

BACK-OF-QUEUE WORKSHEET

General Information

Project Description Proposed System W/O Slip Ramp
Average Back of Queue

	EB			WB			NB			SB		
	LT	TH	RT									
Lane Group	L		R					T	R	L	T	
Initial Queue/Lane	0.0		0.0					0.0	0.0	0.0	0.0	
Flow Rate/Lane Group	312		185					1630	268	644	1141	
Satflow/Lane	1752		1568					1844	1568	1752	1844	
Capacity/Lane Group	350		314					1580	706	715	2458	
Flow Ratio	0.2		0.1					0.5	0.2	0.2	0.3	
v/c Ratio	0.89		0.59					1.03	0.38	0.90	0.46	
I Factor	1.000		1.000					1.000	1.000	1.000	1.000	
Arrival Type	3		3					3	3	3	3	
Platoon Ratio	1.00		1.00					1.00	1.00	1.00	1.00	
PF Factor	1.00		1.00					1.00	1.00	1.00	1.00	
Q1	8.4		4.7					23.8	4.9	9.0	7.4	
kB	0.4		0.4					0.7	0.6	0.4	0.9	
Q2	2.2		0.5					10.2	0.4	2.4	0.7	
Q Average	10.6		5.2					34.0	5.3	11.3	8.1	

Percentile Back of Queue (95th percentile)

fB\%	1.8		2.0					1.6	1.9	1.8	1.9	
Back of Queue	19.5		10.1					54.1	10.3	20.6	15.3	

Queue Storage Ratio

Queue Spacing	25.0		25.0					25.0	25.0	25.0	25.0	
Queue Storage	0		0					0	0	0	0	
Average Queue Storage Ratio												
95% Queue Storage Ratio												

SHORT REPORT

General Information

Analyst
SKB
Agency or Co. TDOT / Long Engineering
Date Performed 03/03/2009
Time Period AM Peak Period

Site Information
Intersection APD-40 WB @ South Lee
Hwy.
Area Type All other areas
Jurisdiction Cleveland, TN
Analysis Year 2013

Volume and Timing Input

Lane Group Capacity, Control Delay, and LOS Determination

BACK-OF-QUEUE WORKSHEET

General Information

Project Description Proposed System W/O Slip Ramp
Average Back of Queue

	EB			WB			NB			SB		
	LT	TH	RT									
Lane Group				L		R	L	T			T	R
Initial Queue/Lane				0.0		0.0	0.0	0.0			0.0	0.0
Flow Rate/Lane Group				157		268	67	522			777	165
Satflow/Lane				1752		1568	562	1844			1844	1568
Capacity/Lane Group				657		588	289	1756			1361	608
Flow Ratio				0.1		0.2	0.1	0.1			0.2	0.1
v/c Ratio				0.24		0.46	0.23	0.30			0.57	0.27
1 Factor				1.000		1.000	1.000	1.000			1.000	1.000
Arrival Type				3		3	3	3			3	3
Platoon Ratio				1.00		1.00	1.00	1.00			1.00	1.00
PF Factor				1.00		1.00	1.00	1.00			1.00	1.00
Q1				2.4		4.5	0.7	3.6			7.1	2.5
kB				0.5		0.5	0.3	0.6			0.5	0.5
Q2				0.2		0.4	0.1	0.3			0.7	0.2
Q Average				2.6		4.9	0.8	3.8			7.8	2.7

Percentile Back of Queue (95th percentile)

fB\%				2.0		2.0	2.1	2.0			1.9
Back of Queue				5.2		9.5	1.7	7.6			14.8

Queue Storage Ratio

Queue Spacing				25.0		25.0	25.0	25.0			25.0	25.0
Queue Storage				0		0	0	0			0	0
Average Queue Storage Ratio												
95% Queue Storage Ratio												

SHORT REPORT

General Information

Analyst
SKB
Agency or Co. TDOT / Long Engineering
Date Performed 05/04/2009
Time Period PM Peak Period

Site Information
Intersection APD-40 WB @ South Lee
Hwy.
Area Type All other areas
Jurisdiction Cleveland, TN
Analysis Year 2013

Volume and Timing Input

Lane Group Capacity, Control Delay, and LOS Determination

BACK-OF-QUEUE WORKSHEET

General Information

Project Description Proposed System W/O Slip Ramp
Average Back of Queue

Percentile Back of Queue (95th percentile)

$\mathrm{fB} \%$				2.0		2.0	2.0	1.9			1.9
Back of Queue				6.1		8.5	4.5	17.4			17.8

Queue Storage Ratio

Queue Spacing
Queue Storage
Average Queue Storage Ratio

SHORT REPORT

General Information
Analyst
SKB
Agency or Co. TDOT / Long Engineering
Date Performed 05/04/2009
Time Period AM Peak Period

Site Information
Intersection APD-40 WB @ South Lee
Hwy.
Area Type All other areas
Jurisdiction Cleveland, TN
Analysis Year 2033

Volume and Timing Input

		EB			WB			NB			SB		
		LT	TH	H ${ }^{\text {P/ }}$	LT	TH	RT	LT	TH	RT	LT	TH	RT
Number of Lanes					1		1	1	2			2	1
Lane Group					L		R	L	T			T	R
Volume (vph)					232		419	99	769			1189	219
\% Heavy Vehicles					3		3	3	3			3	3
PHF					0.94		0.94	0.94	0.94			0.94	0.94
Pretimed/Actuated (P/A)					A		A	A	A			A	A
Startup Lost Time					2.0		2.0	2.0	2.0			2.0	2.0
Extension of Effective Green					2.0		2.0	2.0	2.0			2.0	2.0
Arrival Type					3		3	3	3			3	3
Unit Extension					3.0		3.0	3.0	3.0			3.0	3.0
Ped/Bike/RTOR Volume		0	0		0	0	0	0	0		0	0	0
Lane Width					12.0		12.0	12.0	12.0			12.0	12.0
Parking/Grade/Parking		N	0	N	N	0	N	N	0	N	N	0	N
Parking/Hour													
Bus Stops/Hour					0		0	0	0			0	0
Minimum Pedestrian Time			3.2			3.2			3.2			3.2	
Phasing	WB Only	02		03			NB O		NS Perm		07		
Timing	$\mathrm{G}=33.0$	$\mathrm{G}=0.0$		$\mathrm{G}=0.0$	G =		$\mathrm{G}=5.0$		$\mathrm{G}=38.0$	G	0.0	G $=$	
	$\mathrm{Y}=5$	$Y=0$		$\mathrm{Y}=0$	$\mathrm{Y}=$		$Y=4$		Y = 5	$\mathrm{Y}=$	0	$Y=$	
Duration of Analysis (hrs) $=0.25$									Cycle Leng	h C =	90.0		

Lane Group Capacity, Control Delay, and LOS Determination

BACK-OF-QUEUE WORKSHEET

General Information

Project Description Proposed System W/O Slip Ramp
Average Back of Queue

	EB			WB			NB			SB		
	LT	TH	RT									
Lane Group				L		R	L	T			T	R
Initial Queue/Lane				0.0		0.0	0.0	0.0			0.0	0.0
Flow Rate/Lane Group				247		446	105	818			1265	233
Satflow/Lane				1752		1568	337	1844			1844	1568
Capacity/Lane Group				642		575	179	1834			1483	662
Flow Ratio				0.1		0.3	0.3	0.2			0.4	0.1
v/c Ratio				0.38		0.78	0.59	0.45			0.85	0.35
I Factor				1.000		1.000	1.000	1.000			1.000	1.000
Arrival Type				3		3	3	3			3	3
Platoon Ratio				1.00		1.00	1.00	1.00			1.00	1.00
PF Factor				1.00		1.00	1.00	1.00			1.00	1.00
Q1				4.6		9.9	1.3	6.7			15.0	4.0
kB				0.5		0.5	0.2	0.7			0.6	0.5
Q2				0.3		1.6	0.3	0.5			2.9	0.3
Q Average				4.9		11.4	1.6	7.2			17.9	4.2

Percentile Back of Queue (95th percentile)

$\mathrm{fB} \%$				2.0		1.8	2.0	1.9			1.7
Back of Queue				9.6		20.8	3.3	13.7			30.8

Queue Storage Ratio

Queue Spacing				25.0		25.0	25.0	25.0			25.0	25.0
Queue Storage				0		0	0	0			0	0
Average Queue Storage Ratio												
95% Queue Storage Ratio												

SHORT REPORT

General Information
Analyst
SKB
Agency or Co. TDOT / Long Engineering
Date Performed 05/04/2009
Time Period AM Peak Period

Site Information
Intersection APD-40 WB @ South Lee
Hwy.
Area Type All other areas
Jurisdiction Cleveland, TN
Analysis Year 2033

Volume and Timing Input

Lane Group Capacity, Control Delay, and LOS Determination

BACK-OF-QUEUE WORKSHEET

General Information

Project Description Proposed System W/O Slip Ramp
Average Back of Queue

	EB			WB			NB			SB		
	LT	TH	RT									
Lane Group				L		R	L	T			T	R
Initial Queue/Lane				0.0		0.0	0.0	0.0			0.0	0.0
Flow Rate/Lane Group				247		446	105	818			1265	233
Satflow/Lane				1752		1568	1752	1844			1844	1568
Capacity/Lane Group				603		540	378	1912			1366	610
Flow Ratio				0.1		0.3	0.0	0.2			0.4	0.1
v/c Ratio				0.41		0.83	0.28	0.43			0.93	0.38
I Factor				1.000		1.000	1.000	1.000			1.000	1.000
Arrival Type				3		3	3	3			3	3
Platoon Ratio				1.00		1.00	1.00	1.00			1.00	1.00
PF Factor				1.00		1.00	1.00	1.00			1.00	1.00
Q1				4.7		10.2	1.2	6.4			15.9	4.2
kB				0.5		0.5	0.3	0.7			0.6	0.5
Q2				0.4		1.9	0.1	0.5			4.3	0.3
Q Average				5.1		12.2	1.3	6.9			20.1	4.5

Percentile Back of Queue (95th percentile)

$\mathrm{fB} \%$				2.0		1.8	2.1	1.9			1.7
Back of Queue				9.9		21.9	2.8	13.1			34.2

Queue Storage Ratio

Queue Spacing				25.0		25.0	25.0	25.0			25.0	25.0
Queue Storage				0		0	0	0			0	0
Average Queue Storage Ratio												
95% Queue Storage Ratio												

SHORT REPORT

General Information
Analyst
SKB
Agency or Co. TDOT / Long Engineering
Date Performed 05/04/2009
Time Period PM Peak Period

Site Information
Intersection APD-40 WB @ South Lee
Hwy.
Area Type All other areas
Jurisdiction Cleveland, TN
Analysis Year 2033

Volume and Timing Input

Lane Group Capacity, Control Delay, and LOS Determination

BACK-OF-QUEUE WORKSHEET

General Information

Project Description Proposed System W/O Slip Ramp
Average Back of Queue

	EB			WB			NB			SB		
	LT	TH	RT									
Lane Group				L		R	L	T			T	R
Initial Queue/Lane				0.0		0.0	0.0	0.0			0.0	0.0
Flow Rate/Lane Group				276		387	253	1688			1510	387
Satflow/Lane				1752		1568	487	1844			1844	1568
Capacity/Lane Group				508		455	302	2142			1545	690
Flow Ratio				0.2		0.2	0.5	0.5			0.4	0.2
v/c Ratio				0.54		0.85	0.84	0.79			0.98	0.56
I Factor				1.000		1.000	1.000	1.000			1.000	1.000
Arrival Type				3		3	3	3			3	3
Platoon Ratio				1.00		1.00	1.00	1.00			1.00	1.00
PF Factor				1.00		1.00	1.00	1.00			1.00	1.00
Q1				6.5		10.1	3.0	18.5			21.7	8.0
kB				0.5		0.5	0.4	0.8			0.6	0.6
Q2				0.6		2.1	1.5	2.7			7.0	0.7
Q Average				7.0		12.2	4.5	21.2			28.6	8.7

Percentile Back of Queue (95th percentile)

$\mathrm{fB} \%$				1.9		1.8	2.0	1.7			1.6
Back of Queue				13.4		22.1	8.8	35.7			46.4

Queue Storage Ratio

Queue Spacing
Queue Storage
Average Queue Storage Ratio

SHORT REPORT

General Information
Analyst
SKB
Agency or Co. TDOT / Long Engineering
Date Performed 05/04/2009
Time Period PM Peak Period

Site Information
Intersection APD-40 WB @ South Lee
Hwy.
Area Type All other areas
Jurisdiction Cleveland, TN
Analysis Year 2033

Volume and Timing Input

		EB			WB			NB			SB		
		LT	TH	H ${ }^{\text {P/ }}$	LT	TH	RT	LT	TH	RT	LT	TH	RT
Number of Lanes					1		1	2	2			2	1
Lane Group					L		R	L	T			T	R
Volume (vph)					259		364	238	1587			1419	364
\% Heavy Vehicles					3		3	3	3			3	3
PHF					0.94		0.94	0.94	0.94			0.94	0.94
Pretimed/Actuated (P/A)					A		A	A	A			A	A
Startup Lost Time					2.0		2.0	2.0	2.0			2.0	2.0
Extension of Effective Green					2.0		2.0	2.0	2.0			2.0	2.0
Arrival Type					3		3	3	3			3	3
Unit Extension					3.0		3.0	3.0	3.0			3.0	3.0
Ped/Bike/RTOR Volume		0	0		0	0	0	0	0		0	0	0
Lane Width					12.0		12.0	12.0	12.0			12.0	12.0
Parking/Grade/Parking		N	0	N	N	0	N	N	0	N	N	0	N
Parking/Hour													
Bus Stops/Hour					0		0	0	0			0	0
Minimum Pedestrian Time			3.2			3.2			3.2			3.2	
Phasing	WB Only	02	03		04		NB Only		Thru \& RT	07		08	
Timing	G $=30.0$	$\mathrm{G}=0.0$	$\mathrm{G}=0.0$		$\mathrm{G}=0.0$		$\mathrm{G}=12.0$		$\mathrm{G}=44.0$	$\mathrm{G}=0.0$		$\mathrm{G}=0.0$	
	$\mathrm{Y}=5$	$Y=0$		$Y=0$	$Y=0$		$Y=4$		$Y=5$	$\mathrm{Y}=0$		$Y=0$	
Duration of Analysis (hrs) $=0.25$									Cycle Leng	Ch $\mathrm{C}=$	100.0		

Lane Group Capacity, Control Delay, and LOS Determination

BACK-OF-QUEUE WORKSHEET

General Information

Project Description Proposed System W/O Slip Ramp
Average Back of Queue

Percentile Back of Queue (95th percentile)

$\mathrm{fB} \%$				1.9		1.8	2.0	1.7			1.6
Back of Queue				13.2		21.4	7.7	36.6			46.4

Queue Storage Ratio

Queue Spacing
Queue Storage
Average Queue Storage Ratio

SHORT REPORT

General Information

Analyst
SKB
Agency or Co. TDOT / Long Engineering
Date Performed 05/04/2009
Time Period AM Peak Period

Site Information
Intersection
APD-40 EB @ South Lee
Hwy.
Area Type All other areas
Jurisdiction Cleveland, TN
Analysis Year 2013

Volume and Timing Input

		EB			WB			NB			SB		
		LT	TH	RT									
Number of Lanes		1		1					2	1	1	2	
Lane Group		L		R					T	R	L	T	
Volume (vph)		162		92					392	56	194	684	
\% Heavy Vehicles		3		3					3	3	3	3	
PHF		0.94		0.94					0.94	0.94	0.94	0.94	
Pretimed/Actuated (P/A)		A		A					A	A	A	A	
Startup Lost Time		2.0		2.0					2.0	2.0	2.0	2.0	
Extension of Effective Green		2.0		2.0					2.0	2.0	2.0	2.0	
Arrival Type		3		3					3	3	3	3	
Unit Extension		3.0		3.0					3.0	3.0	3.0	3.0	
Ped/Bike/RTOR Volume		0	0	0	0	0		0	0	0	0	0	
Lane Width		12.0		12.0					12.0	12.0	(12.0	12.0	
Parking/Grade/Parking		N	0	N	N	0	N	N	0	N	N	0	N
Parking/Hour													
Bus Stops/Hour		0		0					0	0	0	0	
Minimum Pedestrian Time			3.2			3.2			3.2			3.2	
Phasing	EB Only	02	03		04		SB Only		NS Perm		07	08	
Timing	G = 30.0	$\mathrm{G}=0.0$	$\mathrm{G}=0.0$		$\mathrm{G}=0.0$		G = 5.0		$\mathrm{G}=31.0$		$\mathrm{G}=0.0$	$\mathrm{G}=0.0$	
	$\mathrm{Y}=5$	$Y=0$	$\mathrm{Y}=0$		$\mathrm{Y}=0$		$\mathrm{Y}=4$		$\mathrm{Y}=5$		$Y=0$	$Y=0$	
Duration of Analysis (hrs) $=0.25$									Cycle Len	gth C	= 80.0		

Lane Group Capacity, Control Delay, and LOS Determination

BACK-OF-QUEUE WORKSHEET

General Information

Project Description Proposed System W/O Slip Ramp
Average Back of Queue

Percentile Back of Queue (95th percentile)

$\mathrm{fB} \%$	2.0		2.1					2.0	2.1	2.0	1.9	
Back of Queue	5.7		3.2					7.2	1.9	5.3	11.2	

Queue Storage Ratio

Queue Spacing	25.0		25.0					25.0	25.0	25.0	25.0	
Queue Storage	0		0					0	0	0	0	
Average Queue Storage Ratio												
95% Queue Storage Ratio												

SHORT REPORT

General Information
Analyst
SKB
Agency or Co. TDOT / Long Engineering
Date Performed 05/04/2009
Time Period PM Peak Period

Site Information
Intersection
APD-40 EB @ South Lee
Hwy.
Area Type All other areas
Jurisdiction Cleveland, TN
Analysis Year 2013

Volume and Timing Input

		EB			WB			NB			SB		
		LT	TH	RT									
Number of Lanes		1		1					2	1	1	2	
Lane Group		L		R					T	R	L	T	
Volume (vph)		187		123					972	149	386	654	
\% Heavy Vehicles		5		5					5	5	5	5	
PHF		0.94		0.94					0.94	0.94	0.94	0.94	
Pretimed/Actuated (P/A)		A		A					A	A	A	A	
Startup Lost Time		2.0		2.0					2.0	2.0	2.0	2.0	
Extension of Effective Green		2.0		2.0					2.0	2.0	2.0	2.0	
Arrival Type		3		3					3	3	3	3	
Unit Extension		3.0		3.0					3.0	3.0	3.0	3.0	
Ped/Bike/RTOR Volume		0	0	0	0	0		0	0	0	0	0	
Lane Width		12.0		12.0					12.0	12.0	晟 12.0	12.0	
Parking/Grade/Parking		N	0	N	N	0	N	N	0	N	N	0	N
Parking/Hour													
Bus Stops/Hour		0		0					0	0	0	0	
Minimum Pedestrian Time			3.2			3.2			3.2			3.2	
Phasing	EB Only	02	03		04		SB Only		NS Perm		07	08	
Timing	$\mathrm{G}=24.0$	$\mathrm{G}=0.0$	$\mathrm{G}=0.0$		$\mathrm{G}=0.0$		$\mathrm{G}=26.0$		$\mathrm{G}=36.0$		$\mathrm{G}=0.0$	$\mathrm{G}=0.0$	
	Y $=5$	$Y=0$	$\mathrm{Y}=0$		$Y=0$		$Y=4$		$\mathrm{Y}=5$		$\mathrm{Y}=0$	$\mathrm{Y}=0$	
Duration of Analysis (hrs) $=0.25$									Cycle Le	gth C	= 100.0		

Lane Group Capacity, Control Delay, and LOS Determination

	EB		WB			NB			SB		
Adjusted Flow Rate	199	131					1034	159	411	696	
Lane Group Capacity	413	369					1240	554	520	2274	
v/c Ratio	0.48	0.36					0.83	0.29	0.79	0.31	
Green Ratio	0.24	0.24					0.36	0.36	0.67	0.66	
Uniform Delay d ${ }_{1}$	32.7	31.6					29.3	22.8	25.4	7.2	
Delay Factor k	0.11	0.11					0.37	0.11	0.34	0.11	
Incremental Delay d 2	0.9	0.6					5.1	0.3	8.1	0.1	
PF Factor	1.000	1.000					1.000	1.000	1.000	1.000	
Control Delay	33.5	32.2					34.3	23.1	33.5	7.3	
Lane Group LOS	C	C					C	C	C	A	
Approach Delay	33.0					32.8			17.0		
Approach LOS	C					C			B		
Intersection Delay	26.2		Intersection LOS						C		

BACK-OF-QUEUE WORKSHEET

General Information

Project Description Proposed System W/O Slip Ramp
Average Back of Queue

Percentile Back of Queue (95th percentile)

$\mathrm{fB} \%$	2.0		2.0					1.7	2.0	1.9	2.0	
Back of Queue	10.0		6.5					28.3	6.7	12.3	9.2	

Queue Storage Ratio

Queue Spacing	25.0		25.0					25.0	25.0	25.0	25.0	
Queue Storage	0		0					0	0	0	0	
Average Queue Storage Ratio												
95% Queue Storage Ratio												

SHORT REPORT

General Information

Analyst
SKB
Agency or Co. TDOT / Long Engineering
Date Performed 05/04/2009
Time Period AM Peak Period

Site Information
Intersection
APD-40 EB @ South Lee
Hwy.
Area Type All other areas
Jurisdiction Cleveland, TN
Analysis Year 2033

Volume and Timing Input

		EB			WB			NB			SB		
		LT	TH	RT									
Number of Lanes		1		1					2	1	1	2	
Lane Group		L		R					T	R	L	T	
Volume (vph)		245		144					623	87	320	1101	
\% Heavy Vehicles		3		3					3	3	3	3	
PHF		0.94		0.94					0.94	0.94	0.94	0.94	
Pretimed/Actuated (P/A)		A		A					A	A	A	A	
Startup Lost Time		2.0		2.0					2.0	2.0	2.0	2.0	
Extension of Effective Green		2.0		2.0					2.0	2.0	2.0	2.0	
Arrival Type		3		3					3	3	3	3	
Unit Extension		3.0		3.0					3.0	3.0	3.0	3.0	
Ped/Bike/RTOR Volume		0	0	0	0	0		0	0	0	0	0	
Lane Width		12.0		12.0					12.0	12.0	12.0	12.0	
Parking/Grade/Parking		N	0	N	N	0	N	N	0	N	N	0	N
Parking/Hour													
Bus Stops/Hour		0		0					0	0	0	0	
Minimum Pedestrian Time			3.2			3.2			3.2			3.2	
Phasing	EB Only	02		03			SB O		NS Perm		07		
Timing	$\mathrm{G}=32.0$	$\mathrm{G}=0.0$		0.0	G =		$\mathrm{G}=16$		G = 28.0		O 0.0	G =	
	Y $=5$	$\mathrm{Y}=0$		0	Y =		$\mathrm{Y}=4$		Y = 5	Y	0	$\mathrm{Y}=$	
Duration of Analysis (hrs) $=0.25$									Cycle Len	gth C	90.0		

Lane Group Capacity, Control Delay, and LOS Determination

	EB		WB			NB			SB		
Adjusted Flow Rate	261	153					663	93	340	1171	
Lane Group Capacity	623	558					1093	488	460	1873	
v/c Ratio	0.42	0.27					0.61	0.19	0.74	0.63	
Green Ratio	0.36	0.36					0.31	0.31	0.54	0.53	
Uniform Delay d ${ }_{1}$	22.0	20.7					26.3	22.7	13.9	14.7	
Delay Factor k	0.11	0.11					0.19	0.11	0.30	0.21	
Incremental Delay d 2	0.5	0.3					1.0	0.2	6.2	0.7	
PF Factor	1.000	1.000					1.000	1.000	1.000	1.000	
Control Delay	22.4	21.0					27.3	22.9	20.1	15.4	
Lane Group LOS	C	C					C	C	C	B	
Approach Delay	21.9					26.8			16.4		
Approach LOS	C					C			B		
Intersection Delay	20.2		Intersection LOS						C		

BACK-OF-QUEUE WORKSHEET

General Information

Project Description Proposed System W/O Slip Ramp
Average Back of Queue

Percentile Back of Queue (95th percentile)

fB\%	1.9		2.0					1.9	2.0	1.9	1.8	
Back of Queue	10.3		5.9					15.3	3.7	10.8	21.5	

Queue Storage Ratio

Queue Spacing	25.0		25.0					25.0	25.0	25.0	25.0	
Queue Storage	0		0					0	0	0	0	
Average Queue Storage Ratio												
95% Queue Storage Ratio												

SHORT REPORT

General Information

Analyst
SKB
Agency or Co. TDOT / Long Engineering
Date Performed 05/04/2009
Time Period AM Peak Period

Site Information
Intersection
APD-40 EB @ South Lee
Hwy.
Area Type All other areas
Jurisdiction Cleveland, TN
Analysis Year 2033

Volume and Timing Input

Lane Group Capacity, Control Delay, and LOS Determination

BACK-OF-QUEUE WORKSHEET

General Information

Project Description Proposed System W/O Slip Ramp
Average Back of Queue

Percentile Back of Queue (95th percentile)

$\mathrm{fB} \%$	1.9		2.0					1.9	2.0	2.0	1.8	
Back of Queue	11.3		6.4					15.3	3.7	8.0	19.1	

Queue Storage Ratio

Queue Spacing	25.0		25.0					25.0	25.0	25.0	25.0	
Queue Storage	0		0					0	0	0	0	
Average Queue Storage Ratio												
95% Queue Storage Ratio												

SHORT REPORT

General Information

Analyst
SKB
Agency or Co. TDOT / Long Engineering
Date Performed 05/04/2009
Time Period PM Peak Period

Site Information
Intersection
APD-40 EB @ South Lee
Hwy.
Area Type All other areas
Jurisdiction Cleveland, TN
Analysis Year 2033

Volume and Timing Input

		EB			WB			NB			SB		
		LT	TH	RT									
Number of Lanes		1		1					2	1	1	2	
Lane Group		L		R					T	R	L	T	
Volume (vph)		293		174					1532	252	605	1073	
\% Heavy Vehicles		3		3					3	3	3	3	
PHF		0.94		0.94					0.94	0.94	0.94	0.94	
Pretimed/Actuated (P/A)		A		A					A	A	A	A	
Startup Lost Time		2.0		2.0					2.0	2.0	2.0	2.0	
Extension of Effective Green		2.0		2.0					2.0	2.0	2.0	2.0	
Arrival Type		3		3					3	3	3	3	
Unit Extension		3.0		3.0					3.0	3.0	3.0	3.0	
Ped/Bike/RTOR Volume		0	0	0	0	0		0	0	0	0	0	
Lane Width		12.0		12.0					12.0	12.0	12.0	12.0	
Parking/Grade/Parking		N	0	N	N	0	N	N	0	N	N	0	N
Parking/Hour													
Bus Stops/Hour		0		0					0	0	0	0	
Minimum Pedestrian Time			3.2			3.2			3.2			3.2	
Phasing	EB Only	02		03			SB O		NS Perm		07		
Timing	G = 21.0	$\mathrm{G}=0.0$		0.0	G =		G $=36$		$\mathrm{G}=49.0$		0.0	G =	
	$\mathrm{Y}=5$	$Y=0$		0	Y =		$Y=4$		$\mathrm{Y}=5$	\bigcirc	0	$Y=$	
Duration of Analysis (hrs) $=0.25$									Cycle Le	gth C	120.0		

Lane Group Capacity, Control Delay, and LOS Determination

	EB			WB		NB			SB		
Adjusted Flow Rate	312	185					1630	268	644	1141	
Lane Group Capacity	307	274					1434	640	588	2605	
v/c Ratio	1.02	0.68					1.14	0.42	1.10	0.44	
Green Ratio	0.17	0.17					0.41	0.41	0.75	0.74	
Uniform Delay d ${ }_{1}$	49.5	46.3					35.5	25.3	36.8	5.9	
Delay Factor k	0.50	0.25					0.50	0.11	0.50	0.11	
Incremental Delay d ${ }_{2}$	55.6	6.5					70.6	0.4	65.8	0.1	
PF Factor	1.000	1.000					1.000	1.000	1.000	1.000	
Control Delay	105.1	52.8					106.1	25.8	102.6	6.0	
Lane Group LOS	F	D					F	C	F	A	
Approach Delay	85.6					94.8			40.9		
Approach LOS	F					F			D		
Intersection Delay	70.7		Intersection LOS						E		

BACK-OF-QUEUE WORKSHEET

General Information

Project Description Proposed System W/O Slip Ramp
Average Back of Queue

	EB			WB			NB			SB		
	LT	TH	RT									
Lane Group	L		R					T	R	L	T	
Initial Queue/Lane	0.0		0.0					0.0	0.0	0.0	0.0	
Flow Rate/Lane Group	312		185					1630	268	644	1141	
Satflow/Lane	1752		1568					1844	1568	783	1844	
Capacity/Lane Group	307		274					1434	640	588	2605	
Flow Ratio	0.2		0.1					0.5	0.2	0.8	0.3	
v/c Ratio	1.02		0.68					1.14	0.42	1.10	0.44	
I Factor	1.000		1.000					1.000	1.000	1.000	1.000	
Arrival Type	3		3					3	3	3	3	
Platoon Ratio	1.00		1.00					1.00	1.00	1.00	1.00	
PF Factor	1.00		1.00					1.00	1.00	1.00	1.00	
Q1	10.4		5.8					28.5	6.4	7.7	7.6	
kB	0.4		0.4					0.7	0.6	0.6	1.0	
Q2	4.3		0.7					17.2	0.4	11.2	0.8	
Q Average	14.7		6.5					45.7	6.8	18.9	8.4	

Percentile Back of Queue (95th percentile)

$\mathrm{fB} \%$	1.8		1.9					1.5	1.9	1.7	1.9	
Back of Queue	25.9		12.5					70.7	13.0	32.3	15.8	

Queue Storage Ratio

Queue Spacing	25.0		25.0					25.0	25.0	25.0	25.0	
Queue Storage	0		0					0	0	0	0	
Average Queue Storage Ratio												
95% Queue Storage Ratio												

SHORT REPORT

General Information

Analyst
SKB
Agency or Co. TDOT / Long Engineering
Date Performed 05/04/2009
Time Period PM Peak Period

Site Information
Intersection
APD-40 EB @ South Lee
Hwy.
Area Type All other areas
Jurisdiction Cleveland, TN
Analysis Year 2033

Volume and Timing Input

Lane Group Capacity, Control Delay, and LOS Determination

BACK-OF-QUEUE WORKSHEET

General Information

Project Description Proposed System W/O Slip Ramp
Average Back of Queue

	EB			WB			NB			SB		
	LT	TH	RT									
Lane Group	L		R					T	R	L	T	
Initial Queue/Lane	0.0		0.0					0.0	0.0	0.0	0.0	
Flow Rate/Lane Group	312		185					1630	268	644	1141	
Satflow/Lane	1752		1568					1844	1568	1752	1844	
Capacity/Lane Group	350		314					1580	706	715	2458	
Flow Ratio	0.2		0.1					0.5	0.2	0.2	0.3	
v/c Ratio	0.89		0.59					1.03	0.38	0.90	0.46	
I Factor	1.000		1.000					1.000	1.000	1.000	1.000	
Arrival Type	3		3					3	3	3	3	
Platoon Ratio	1.00		1.00					1.00	1.00	1.00	1.00	
PF Factor	1.00		1.00					1.00	1.00	1.00	1.00	
Q1	8.4		4.7					23.8	4.9	9.0	7.4	
kB	0.4		0.4					0.7	0.6	0.4	0.9	
Q2	2.2		0.5					10.2	0.4	2.4	0.7	
Q Average	10.6		5.2					34.0	5.3	11.3	8.1	

Percentile Back of Queue (95th percentile)

fB\%	1.8		2.0					1.6	1.9	1.8	1.9	
Back of Queue	19.5		10.1					54.1	10.3	20.6	15.3	

Queue Storage Ratio

Queue Spacing	25.0		25.0					25.0	25.0	25.0	25.0	
Queue Storage	0		0					0	0	0	0	
Average Queue Storage Ratio												
95% Queue Storage Ratio												

SHORT REPORT

General Information

Analyst
SKB
Agency or Co. TDOT / Long Engineering
Date Performed 03/03/2009
Time Period AM Peak Period

Site Information
Intersection APD-40 WB @ South Lee
Hwy.
Area Type All other areas
Jurisdiction Cleveland, TN
Analysis Year 2013

Volume and Timing Input

Lane Group Capacity, Control Delay, and LOS Determination

BACK-OF-QUEUE WORKSHEET

General Information

Project Description Proposed System W/O Slip Ramp
Average Back of Queue

	EB			WB			NB			SB		
	LT	TH	RT									
Lane Group				L		R	L	T			T	R
Initial Queue/Lane				0.0		0.0	0.0	0.0			0.0	0.0
Flow Rate/Lane Group				157		268	67	522			777	165
Satflow/Lane				1752		1568	562	1844			1844	1568
Capacity/Lane Group				657		588	289	1756			1361	608
Flow Ratio				0.1		0.2	0.1	0.1			0.2	0.1
v/c Ratio				0.24		0.46	0.23	0.30			0.57	0.27
1 Factor				1.000		1.000	1.000	1.000			1.000	1.000
Arrival Type				3		3	3	3			3	3
Platoon Ratio				1.00		1.00	1.00	1.00			1.00	1.00
PF Factor				1.00		1.00	1.00	1.00			1.00	1.00
Q1				2.4		4.5	0.7	3.6			7.1	2.5
kB				0.5		0.5	0.3	0.6			0.5	0.5
Q2				0.2		0.4	0.1	0.3			0.7	0.2
Q Average				2.6		4.9	0.8	3.8			7.8	2.7

Percentile Back of Queue (95th percentile)

fB\%				2.0		2.0	2.1	2.0			1.9
Back of Queue				5.2		9.5	1.7	7.6			14.8

Queue Storage Ratio

Queue Spacing				25.0		25.0	25.0	25.0			25.0	25.0
Queue Storage				0		0	0	0			0	0
Average Queue Storage Ratio												
95% Queue Storage Ratio												

SHORT REPORT

General Information

Analyst
SKB
Agency or Co. TDOT / Long Engineering
Date Performed 05/04/2009
Time Period PM Peak Period

Site Information
Intersection APD-40 WB @ South Lee
Hwy.
Area Type All other areas
Jurisdiction Cleveland, TN
Analysis Year 2013

Volume and Timing Input

Lane Group Capacity, Control Delay, and LOS Determination

BACK-OF-QUEUE WORKSHEET

General Information

Project Description Proposed System W/O Slip Ramp
Average Back of Queue

Percentile Back of Queue (95th percentile)

$\mathrm{fB} \%$				2.0		2.0	2.0	1.9			1.9
Back of Queue				6.1		8.5	4.5	17.4			17.8

Queue Storage Ratio

Queue Spacing
Queue Storage
Average Queue Storage Ratio

SHORT REPORT

General Information
Analyst
SKB
Agency or Co. TDOT / Long Engineering
Date Performed 05/04/2009
Time Period AM Peak Period

Site Information
Intersection APD-40 WB @ South Lee
Hwy.
Area Type All other areas
Jurisdiction Cleveland, TN
Analysis Year 2033

Volume and Timing Input

		EB			WB			NB			SB		
		LT	TH	H ${ }^{\text {PT }}$	LT	TH	RT	LT	TH	RT	LT	TH	RT
Number of Lanes					1		1	1	2			2	1
Lane Group					L		R	L	T			T	R
Volume (vph)					232		419	99	769			1189	219
\% Heavy Vehicles					3		3	3	3			3	3
PHF					0.94		0.94	0.94	0.94			0.94	0.94
Pretimed/Actuated (P/A)					A		A	A	A			A	A
Startup Lost Time					2.0		2.0	2.0	2.0			2.0	2.0
Extension of Effective Green					2.0		2.0	2.0	2.0			2.0	2.0
Arrival Type					3		3	3	3			3	3
Unit Extension					3.0		3.0	3.0	3.0			3.0	3.0
Ped/Bike/RTOR Volume		0	0		0	0	0	0	0		0	0	0
Lane Width					12.0		12.0	12.0	12.0			12.0	12.0
Parking/Grade/Parking		N	0	N	N	0	N	N	0	N	N	0	N
Parking/Hour													
Bus Stops/Hour					0		0	0	0			0	0
Minimum Pedestrian Time			3.2			3.2			3.2			3.2	
Phasing	WB Only	02		03			NB O		NS Perm		07		08
Timing	$\mathrm{G}=33.0$	$\mathrm{G}=0.0$		$\mathrm{G}=0.0$	G =		$\mathrm{G}=5.0$		$\mathrm{G}=38.0$	G	0.0		0.0
	$Y=5$	Y = 0		$\mathrm{Y}=0$	$\mathrm{Y}=$		$Y=4$		Y = 5	Y $=$	0	Y	
Duration of Analysis (hrs) $=0.25$									Cycle Leng	h C =	90.0		

Lane Group Capacity, Control Delay, and LOS Determination

BACK-OF-QUEUE WORKSHEET

General Information

Project Description Proposed System W/O Slip Ramp
Average Back of Queue

	EB			WB			NB			SB		
	LT	TH	RT									
Lane Group				L		R	L	T			T	R
Initial Queue/Lane				0.0		0.0	0.0	0.0			0.0	0.0
Flow Rate/Lane Group				247		446	105	818			1265	233
Satflow/Lane				1752		1568	337	1844			1844	1568
Capacity/Lane Group				642		575	179	1834			1483	662
Flow Ratio				0.1		0.3	0.3	0.2			0.4	0.1
v/c Ratio				0.38		0.78	0.59	0.45			0.85	0.35
I Factor				1.000		1.000	1.000	1.000			1.000	1.000
Arrival Type				3		3	3	3			3	3
Platoon Ratio				1.00		1.00	1.00	1.00			1.00	1.00
PF Factor				1.00		1.00	1.00	1.00			1.00	1.00
Q1				4.6		9.9	1.3	6.7			15.0	4.0
kB				0.5		0.5	0.2	0.7			0.6	0.5
Q2				0.3		1.6	0.3	0.5			2.9	0.3
Q Average				4.9		11.4	1.6	7.2			17.9	4.2

Percentile Back of Queue (95th percentile)

$\mathrm{fB} \%$				2.0		1.8	2.0	1.9			1.7
Back of Queue				9.6		20.8	3.3	13.7			30.8

Queue Storage Ratio

Queue Spacing
Queue Storage
Average Queue Storage Ratio

SHORT REPORT

General Information
Analyst
SKB
Agency or Co. TDOT / Long Engineering
Date Performed 05/04/2009
Time Period AM Peak Period

Site Information
Intersection APD-40 WB @ South Lee
Hwy.
Area Type All other areas
Jurisdiction Cleveland, TN
Analysis Year 2033

Volume and Timing Input

		EB			WB			NB			SB		
		LT	TH	H ${ }^{\text {P/ }}$	LT	TH	RT	LT	TH	RT	LT	TH	RT
Number of Lanes					1		1	2	2			2	1
Lane Group					L		R	L	T			T	R
Volume (vph)					232		419	99	769			1189	219
\% Heavy Vehicles					3		3	3	3			3	3
PHF					0.94		0.94	0.94	0.94			0.94	0.94
Pretimed/Actuated (P/A)					A		A	A	A			A	A
Startup Lost Time					2.0		2.0	2.0	2.0			2.0	2.0
Extension of Effective Green					2.0		2.0	2.0	2.0			2.0	2.0
Arrival Type					3		3	3	3			3	3
Unit Extension					3.0		3.0	3.0	3.0			3.0	3.0
Ped/Bike/RTOR Volume		0	0		0	0	0	0	0		0	0	0
Lane Width					12.0		12.0	12.0	12.0			12.0	12.0
Parking/Grade/Parking		N	0	N	N	0	N	N	0	N	N	0	N
Parking/Hour													
Bus Stops/Hour					0		0	0	0			0	0
Minimum Pedestrian Time			3.2			3.2			3.2			3.2	
Phasing	WB Only	02		03			NB O		Thru \& RT		07		
Timing	G = 31.0	$\mathrm{G}=0.0$		$\mathrm{G}=0.0$	G =		G = 10		G = 35.0	G $=$	0.0	G =	
	$\mathrm{Y}=5$	$Y=0$		$\mathrm{Y}=0$	$Y=$		$Y=4$		Y = 5	$\mathrm{Y}=$	0	$Y=$	
Duration of Analysis (hrs) $=0.25$									Cycle Leng	h C =	90.0		

Lane Group Capacity, Control Delay, and LOS Determination

BACK-OF-QUEUE WORKSHEET

General Information

Project Description Proposed System W/O Slip Ramp
Average Back of Queue

	EB			WB			NB			SB		
	LT	TH	RT									
Lane Group				L		R	L	T			T	R
Initial Queue/Lane				0.0		0.0	0.0	0.0			0.0	0.0
Flow Rate/Lane Group				247		446	105	818			1265	233
Satflow/Lane				1752		1568	1752	1844			1844	1568
Capacity/Lane Group				603		540	378	1912			1366	610
Flow Ratio				0.1		0.3	0.0	0.2			0.4	0.1
v/c Ratio				0.41		0.83	0.28	0.43			0.93	0.38
I Factor				1.000		1.000	1.000	1.000			1.000	1.000
Arrival Type				3		3	3	3			3	3
Platoon Ratio				1.00		1.00	1.00	1.00			1.00	1.00
PF Factor				1.00		1.00	1.00	1.00			1.00	1.00
Q1				4.7		10.2	1.2	6.4			15.9	4.2
kB				0.5		0.5	0.3	0.7			0.6	0.5
Q2				0.4		1.9	0.1	0.5			4.3	0.3
Q Average				5.1		12.2	1.3	6.9			20.1	4.5

Percentile Back of Queue (95th percentile)

$\mathrm{fB} \%$				2.0		1.8	2.1	1.9			1.7
Back of Queue				9.9		21.9	2.8	13.1			34.2

Queue Storage Ratio

Queue Spacing				25.0		25.0	25.0	25.0			25.0	25.0
Queue Storage				0		0	0	0			0	0
Average Queue Storage Ratio												
95% Queue Storage Ratio												

SHORT REPORT

General Information
Analyst
SKB
Agency or Co. TDOT / Long Engineering
Date Performed 05/04/2009
Time Period PM Peak Period

Site Information
Intersection APD-40 WB @ South Lee
Hwy.
Area Type All other areas
Jurisdiction Cleveland, TN
Analysis Year 2033

Volume and Timing Input

Lane Group Capacity, Control Delay, and LOS Determination

BACK-OF-QUEUE WORKSHEET

General Information

Project Description Proposed System W/O Slip Ramp
Average Back of Queue

	EB			WB			NB			SB		
	LT	TH	RT									
Lane Group				L		R	L	T			T	R
Initial Queue/Lane				0.0		0.0	0.0	0.0			0.0	0.0
Flow Rate/Lane Group				276		387	253	1688			1510	387
Satflow/Lane				1752		1568	487	1844			1844	1568
Capacity/Lane Group				508		455	302	2142			1545	690
Flow Ratio				0.2		0.2	0.5	0.5			0.4	0.2
v/c Ratio				0.54		0.85	0.84	0.79			0.98	0.56
I Factor				1.000		1.000	1.000	1.000			1.000	1.000
Arrival Type				3		3	3	3			3	3
Platoon Ratio				1.00		1.00	1.00	1.00			1.00	1.00
PF Factor				1.00		1.00	1.00	1.00			1.00	1.00
Q1				6.5		10.1	3.0	18.5			21.7	8.0
kB				0.5		0.5	0.4	0.8			0.6	0.6
Q2				0.6		2.1	1.5	2.7			7.0	0.7
Q Average				7.0		12.2	4.5	21.2			28.6	8.7

Percentile Back of Queue (95th percentile)

$\mathrm{fB} \%$				1.9		1.8	2.0	1.7			1.6
Back of Queue				13.4		22.1	8.8	35.7			46.4

Queue Storage Ratio

Queue Spacing				25.0		25.0	25.0	25.0			25.0	25.0
Queue Storage				0		0	0	0			0	0
Average Queue Storage Ratio												
95% Queue Storage Ratio												

SHORT REPORT

General Information
Analyst
SKB
Agency or Co. TDOT / Long Engineering
Date Performed 05/04/2009
Time Period PM Peak Period

Site Information
Intersection APD-40 WB @ South Lee
Hwy.
Area Type All other areas
Jurisdiction Cleveland, TN
Analysis Year 2033

Volume and Timing Input

		EB			WB			NB			SB		
		LT	TH	H ${ }^{\text {P/ }}$	LT	TH	RT	LT	TH	RT	LT	TH	RT
Number of Lanes					1		1	2	2			2	1
Lane Group					L		R	L	T			T	R
Volume (vph)					259		364	238	1587			1419	364
\% Heavy Vehicles					3		3	3	3			3	3
PHF					0.94		0.94	0.94	0.94			0.94	0.94
Pretimed/Actuated (P/A)					A		A	A	A			A	A
Startup Lost Time					2.0		2.0	2.0	2.0			2.0	2.0
Extension of Effective Green					2.0		2.0	2.0	2.0			2.0	2.0
Arrival Type					3		3	3	3			3	3
Unit Extension					3.0		3.0	3.0	3.0			3.0	3.0
Ped/Bike/RTOR Volume		0	0		0	0	0	0	0		0	0	0
Lane Width					12.0		12.0	12.0	12.0			12.0	12.0
Parking/Grade/Parking		N	0	N	N	0	N	N	0	N	N	0	N
Parking/Hour													
Bus Stops/Hour					0		0	0	0			0	0
Minimum Pedestrian Time			3.2			3.2			3.2			3.2	
Phasing	WB Only	02	03		04		NB Only		Thru \& RT	07		08	
Timing	G $=30.0$	$\mathrm{G}=0.0$	$\mathrm{G}=0.0$		$\mathrm{G}=0.0$		$\mathrm{G}=12.0$		$\mathrm{G}=44.0$	$\mathrm{G}=0.0$		$\mathrm{G}=0.0$	
	$\mathrm{Y}=5$	$Y=0$		$Y=0$	$Y=0$		$Y=4$		$Y=5$	$\mathrm{Y}=0$		$Y=0$	
Duration of Analysis (hrs) $=0.25$									Cycle Leng	Ch $\mathrm{C}=$	100.0		

Lane Group Capacity, Control Delay, and LOS Determination

BACK-OF-QUEUE WORKSHEET

General Information

Project Description Proposed System W/O Slip Ramp
Average Back of Queue

Percentile Back of Queue (95th percentile)

$\mathrm{fB} \%$				1.9		1.8	2.0	1.7			1.6
Back of Queue				13.2		21.4	7.7	36.6			46.4

Queue Storage Ratio

Queue Spacing
Queue Storage
Average Queue Storage Ratio

SHORT REPORT

General Information

Analyst
SKB
Agency or Co. TDOT / Long Engineering
Date Performed 05/04/2009
Time Period AM Peak Period

Site Information
Intersection
Area Type
Jurisdiction Cleveland, TN
Analysis Year 2013

Volume and Timing Input

		EB			WB			NB			SB		
		LT	TH	RT									
Number of Lanes		1		2					2	1	2	2	
Lane Group		L		R					T	R	L	T	
Volume (vph)		264		118					235	61	79	231	
\% Heavy Vehicles		5		5					5	5	5	5	
PHF		0.94		0.94					0.94	0.94	0.94	0.94	
Pretimed/Actuated (P/A)		A		A					A	A	A	A	
Startup Lost Time		2.0		2.0					2.0	2.0	2.0	2.0	
Extension of Effective Green		2.0		2.0					2.0	2.0	2.0	2.0	
Arrival Type		3		3					3	3	3	3	
Unit Extension		3.0		3.0					3.0	3.0	3.0	3.0	
Ped/Bike/RTOR Volume		0	0	0	0	0		0	0	0	0	0	
Lane Width		12.0		12.0					12.0	12.0	12.0	12.0	
Parking/Grade/Parking		N	0	N	N	0	N	N	0	N	N	0	N
Parking/Hour													
Bus Stops/Hour		0		0					0	0	0	0	
Minimum Pedestrian Time			3.2			3.2			3.2			3.2	
Phasing	EB Only	02	03		04		SB Only		Thru \& RT		07	08	
Timing	G = 25.0	$\mathrm{G}=0.0$	$\mathrm{G}=0.0$		$\mathrm{G}=0.0$		G = 19.0		$\mathrm{G}=22.0$		= 0.0	$\mathrm{G}=0.0$	
	$\mathrm{Y}=5$	$Y=0$	$\mathrm{Y}=0$		$\mathrm{Y}=0$		$\mathrm{Y}=4$		$Y=5$		$\mathrm{Y}=0$	$Y=0$	
Duration of Analysis (hrs) $=0.25$									Cycle L	gth C	80.0		

Lane Group Capacity, Control Delay, and LOS Determination

	EB			WB			NB			SB		
Adjusted Flow Rate	281		126					250	65	84	246	
Lane Group Capacity	537		851					947	423	793	1938	
v/c Ratio	0.52		0.15					0.26	0.15	0.11	0.13	
Green Ratio	0.31		0.31					0.28	0.28	0.24	0.56	
Uniform Delay d_{1}	22.6		19.8					22.7	22.0	23.9	8.2	
Delay Factor k	0.13		0.11					0.11	0.11	0.11	0.11	
Incremental Delay d2	0.9		0.1					0.1	0.2	0.1	0.0	
PF Factor	1.000		1.000					1.000	1.000	1.000	1.000	
Control Delay	23.5		19.9					22.8	22.1	23.9	8.3	
Lane Group LOS	C		B					C	C	C	A	
Approach Delay	22.4						22.7			12.3		
Approach LOS	C						C			B		
Intersection Delay	19.3			Intersection LOS						B		

BACK-OF-QUEUE WORKSHEET

General Information

Project Description Proposed System With Slip Ramp
Average Back of Queue

Percentile Back of Queue (95th percentile)

$\mathrm{fB} \%$	1.9		2.1					2.0	2.1	2.1	2.1	
Back of Queue	10.9		2.5					4.9	2.4	1.6	3.0	

Queue Storage Ratio

Queue Spacing	25.0		25.0					25.0	25.0	25.0	25.0	
Queue Storage	0		0					0	0	0	0	
Average Queue Storage Ratio												
95% Queue Storage Ratio												

SHORT REPORT

General Information

Analyst
SKB
Agency or Co. TDOT / Long Engineering
Date Performed 05/04/2009
Time Period PM Peak Period

Site Information
Intersection
Area Type
Jurisdiction Cleveland, TN
Analysis Year 2013

Volume and Timing Input

Lane Group Capacity, Control Delay, and LOS Determination

BACK-OF-QUEUE WORKSHEET

General Information

Project Description Proposed System With Slip Ramp
Average Back of Queue

Percentile Back of Queue (95th percentile)

$\mathrm{fB} \%$	2.0		2.1					2.0	2.1	2.0	2.1	
Back of Queue	3.4		1.3					9.5	1.8	3.8	0.7	

Queue Storage Ratio

Queue Spacing	25.0		25.0					25.0	25.0	25.0	25.0	
Queue Storage	0		0					0	0	0	0	
Average Queue Storage Ratio												
95% Queue Storage Ratio												

SHORT REPORT

General Information

Analyst
SKB
Agency or Co. TDOT / Long Engineering
Date Performed 05/04/2009
Time Period AM Peak Period

Site Information
Intersection
Area Type
Jurisdiction Cleveland, TN
Analysis Year 2033

Volume and Timing Input

		EB			WB			NB			SB		
		LT	TH	RT									
Number of Lanes		1		2					2	1	2	2	
Lane Group		L		R					T	R	L	T	
Volume (vph)		412		194					372	96	123	371	
\% Heavy Vehicles		5		5					5	5	5	5	
PHF		0.94		0.94					0.94	0.94	0.94	0.94	
Pretimed/Actuated (P/A)		A		A					A	A	A	A	
Startup Lost Time		2.0		2.0					2.0	2.0	2.0	2.0	
Extension of Effective Green		2.0		2.0					2.0	2.0	2.0	2.0	
Arrival Type		3		3					3	3	3	3	
Unit Extension		3.0		3.0					3.0	3.0	3.0	3.0	
Ped/Bike/RTOR Volume		0	0	0	0	0		0	0	0	0	0	
Lane Width		12.0		12.0					12.0	12.0	12.0	12.0	
Parking/Grade/Parking		N	0	N	N	0	N	N	0	N	N	0	N
Parking/Hour													
Bus Stops/Hour		0		0					0	0	0	0	
Minimum Pedestrian Time			3.2			3.2			3.2			3.2	
Phasing	EB Only	02	03		04		SB Only		Thru \& RT		07	08	
Timing	G = 32.0	$\mathrm{G}=0.0$	$\mathrm{G}=0.0$		$\mathrm{G}=0.0$		$\mathrm{G}=20.0$		$\mathrm{G}=24.0$		= 0.0	$\mathrm{G}=0.0$	
	$\mathrm{Y}=5$	$Y=0$	$\mathrm{Y}=0$		$\mathrm{Y}=0$		$\mathrm{Y}=4$		$\mathrm{Y}=5$		$Y=0$	$Y=0$	
Duration of Analysis (hrs) $=0.25$									Cycle L	gth C	90.0		

Lane Group Capacity, Control Delay, and LOS Determination

BACK-OF-QUEUE WORKSHEET

General Information

Project Description Proposed System With Slip Ramp
Average Back of Queue

Percentile Back of Queue (95th percentile)

$\mathrm{fB} \%$	1.8		2.0					2.0	2.0	2.1	2.0	
Back of Queue	19.6		4.4					9.1	4.3	3.0	5.9	

Queue Storage Ratio

Queue Spacing	25.0		25.0					25.0	25.0	25.0	25.0	
Queue Storage	0		0					0	0	0	0	
Average Queue Storage Ratio												
95% Queue Storage Ratio												

SHORT REPORT

General Information

Analyst
SKB
Agency or Co. TDOT / Long Engineering
Date Performed 05/04/2009
Time Period PM Peak Period

Site Information
Intersection
Area Type
Jurisdiction Cleveland, TN
Analysis Year 2033

Volume and Timing Input

Lane Group Capacity, Control Delay, and LOS Determination

	EB			WB			NB			SB		
Adjusted Flow Rate	139		99					753	79	310	107	
Lane Group Capacity	458		726					1110	496	853	2144	
v/c Ratio	0.30		0.14					0.68	0.16	0.36	0.05	
Green Ratio	0.27		0.27					0.32	0.32	0.26	0.62	
Uniform Delay d_{1}	26.3		25.1					26.5	21.8	27.5	6.6	
Delay Factor k	0.11		0.11					0.25	0.11	0.11	0.11	
Incremental Delay d2	0.4		0.1					1.7	0.2	0.3	0.0	
PF Factor	1.000		1.000					1.000	1.000	1.000	1.000	
Control Delay	26.7		25.2					28.1	21.9	27.8	6.6	
Lane Group LOS	C		C					C	C	C	A	
Approach Delay	26.1			27.6						22.3		
Approach LOS	C			C						C		
Intersection Delay	25.9			Intersection LOS						C		

BACK-OF-QUEUE WORKSHEET

General Information

Project Description Proposed System With Slip Ramp
Average Back of Queue

Percentile Back of Queue (95th percentile)

$\mathrm{fB} \%$	2.0		2.1					1.9	2.1	2.0	2.1	
Back of Queue	5.9		2.3					17.7	3.1	7.0	1.2	

Queue Storage Ratio

Queue Spacing	25.0		25.0					25.0	25.0	25.0	25.0	
Queue Storage	0		0					0	0	0	0	
Average Queue Storage Ratio												
95% Queue Storage Ratio												

[^0]: 5550 Franklin Pike • Suite 202• Nashville, TN 37220•615-221-1131•615-221-1132 fax
 2550 Heritage Court • Suite 100 • Atlanta, GA 30339 • 770-951-2495 • 770-951-2496 fax
 1780 Corporate Drive • Suite 400 • Norcross, GA 30093 • 770-951-8005 • 770-951-8555 fax

[^1]: 1 After additional review, this may not be the case as the limits of controlled access may be adjusted. This would make Concept 4 more attractive to the locals than originally thought.

