Core Math II

Domain	Cluster	Standard	PARCC Assessment Limits
		1. Explain how the definition of the meaning of rational exponents follows from extending the properties of integer exponents to those values, allowing for a notation for radicals in terms of rational exponents. For example, we define $5^{1 / 3}$ to be the cube root of 5 because we want $\left(5^{1 / 3}\right)^{3}=5\left({ }^{(1 / 3}\right)^{3}$ to hold, so $\left(5^{1 / 3}\right)^{3}$ must equal 5 .	There are no assessment limits for this standard. The entire standard is assessed in this course.
		2. Rewrite expressions involving radicals and rational exponents using the properties of exponents.	There are no assessment limits for this standard. The entire standard is assessed in this course.
		3. Explain why the sum or product of two rational numbers is rational; that the sum of a rational number and an irrational number is irrational; and that the product of a nonzero rational number and an irrational number is irrational.	There are no assessment limits for this standard. The entire standard is assessed in this course.
		2. Define appropriate quantities for the purpose of descriptive modeling.	This standard will be assessed in Math II by ensuring that some modeling tasks (involving Math II content or securely held content from previous grades and courses) require the student to create a quantity of interest in the situation being described (i.e., a quantity of interest is not selected for the student by the task). For example, in a situation involving volume of a prism or pyramid, the student might autonomously decide that the area of the base is a key variable in a situation, and then choose to work with that dimension to solve the problem.
		1. Know there is a complex number i such that $i^{2}=-1$, and every complex number has the form $a+b i$ with a and b real.	There are no assessment limits for this standard. The entire standard is assessed in this course.
		2. Use the relation $i^{2}=-1$ and the commutative, associative, and distributive properties to add, subtract, and multiply complex numbers.	There are no assessment limits for this standard. The entire standard is assessed in this course.
		7. Solve quadratic equations with real coefficients that have complex solutions.	There are no assessment limits for this standard. The entire standard is assessed in this course.

Core Math II

	Domain	Cluster	Standard	PARCC Assessment Limits
			1. Interpret expressions that represent a quantity in terms of its context. ${ }^{\star}$ b. Interpret complicated expressions by viewing one or more of their parts as a single entity. For example, interpret $P(1+r)$ n as the product of P and a factor not depending on P.	i) Tasks are limited to quadratic expressions.
			2. Use the structure of an expression to identify ways to rewrite it. For example, see $x^{4}-y^{4}$ as $\left(x^{2}\right)^{2}-\left(y^{2}\right)^{2}$, thus recognizing it as a difference of squares that can be factored as $\left(x^{2}-y^{2}\right)\left(x^{2}+y^{2}\right)$.	i) Tasks are limited to quadratic and exponential expressions, including related numerical expressions. ii) Examples: See an opportunity to rewrite $a^{2}+9 a+14$ as $(a+7)(a+2)$. Recognize $53^{2}-47^{2}$ as a difference of squares and see an opportunity to rewrite it in the easier-to-evaluate form (53+47)(53-47).
			3. Choose and produce an equivalent form of an expression to reveal and explain properties of the quantity represented by the expression. ${ }^{\star}$ a. Factor a quadratic expression to reveal the zeros of the function it defines. b. Complete the square in a quadratic expression to reveal the maximum or minimum value of the function it defines.	There are no assessment limits for this standard. The entire standard is assessed in this course.
$\begin{aligned} & \frac{0}{0} \\ & 0 \\ & 0 \\ & 00 \\ & \hline 10 \end{aligned}$			1. Understand that polynomials form a system analogous to the integers, namely, they are closed under the operations of addition, subtraction, and multiplication; add, subtract, and multiply polynomials.	There are no assessment limits for this standard. The entire standard is assessed in this course.
			1. Create equations and inequalities in one variable and use them to solve problems. Include equations arising from linear and quadratic functions, and simple rational and exponential functions.	i) Tasks are limited to quadratic and exponential equations. ii) Tasks have a real-world context. iii) In simpler cases (such as exponential equations with integer exponents), tasks have more of the hallmarks of modeling as a mathematical practice (less defined tasks, more of the modeling cycle, etc.).
			2. Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales.	i) Tasks are limited to quadratic equations ii) Tasks have a real-world context. iii) Tasks have the hallmarks of modeling as a mathematical practice (less defined tasks, more of the modeling cycle, etc.).
			4. Rearrange formulas to highlight a quantity of interest, using the same reasoning as in solving equations. For example, rearrange Ohm's law $V=I R$ to highlight resistance R.	i) Tasks are limited to quadratic equations ii) Tasks have a real-world context.
			1. Explain each step in solving a simple equation as following from the equality of numbers asserted at the previous step, starting from the assumption that the original equation has a solution. Construct a viable argument to justify a solution method.	i) Tasks are limited to quadratic equations.
			4. Solve quadratic equations in one variable. a. Use the method of completing the square to transform any quadratic equation in x into an equation of the form $(x-p)^{2}=\mathrm{q}$ that has the same solutions. Derive the quadratic formula from this form. b. Solve quadratic equations by inspection (e.g., for $x^{2}=49$), taking square roots, completing the square, the quadratic formula and factoring, as appropriate to the initial form of the equation. Recognize when the quadratic formula gives complex solutions and write them as $a \pm b i$ for real numbers a and b.	There are no assessment limits for this standard. The entire standard is assessed in this course.
			7. Solve a simple system consisting of a linear equation and a quadratic equation in two variables algebraically and graphically. For example, find the points of intersection between the line $y=-3 x$ and the circle $x^{2}+y^{2}=3$.	There are no assessment limits for this standard. The entire standard is assessed in this course.

| Domain | Standard | |
| :--- | :--- | :--- | :--- | :--- |

| Domain | Standard | |
| :--- | :--- | :--- | :--- | :--- |

Core Math II

	Domain	Cluster	Standard	PARCC Assessment Limits
			6. Represent data on two quantitative variables on a scatter plot, and describe how the variables are related. a. Fit a function to the data; use functions fitted to data to solve problems in the context of the data. Use given functions or choose a function suggested by the context. Emphasize linear, quadratic, and exponential models. b. Informally assess the fit of a function by plotting and analyzing residuals.	For S-ID.6a: i) Tasks have real-world context. ii) Tasks are limited to quadratic functions. For S-ID.6b: i) Tasks have a real-world context. ii) Tasks are limited to linear functions, quadratic functions, and exponential functions with domains in the integers.
			1. Describe events as subsets of a sample space (the set of outcomes) using characteristics (or categories) of the outcomes, or as unions, intersections, or complements of other events ("or," "and," "not").	There are no assessment limits for this standard. The entire standard is assessed in this course.
			2. Understand that two events A and B are independent if the probability of A and B occurring together is the product of their probabilities, and use this characterization to determine if they are independent.	There are no assessment limits for this standard. The entire standard is assessed in this course.
			3. Understand the conditional probability of A given B as $P(A$ and $B) / P(B)$, and interpret independence of A and B as saying that the conditional probability of A given B is the same as the probability of A, and the conditional probability of B given A is the same as the probability of B.	There are no assessment limits for this standard. The entire standard is assessed in this course.
			4. Construct and interpret two-way frequency tables of data when two categories are associated with each object being classified. Use the two-way table as a sample space to decide if events are independent and to approximate conditional probabilities. For example, collect data from a random sample of students in your school on their favorite subject among math, science, and English. Estimate the probability that a randomly selected student from your school will favor science given that the student is in tenth grade. Do the same for other subjects and compare the results.	There are no assessment limits for this standard. The entire standard is assessed in this course.
			5. Recognize and explain the concepts of conditional probability and independence in everyday language and everyday situations. For example, compare the chance of having lung cancer if you are a smoker with the chance of being a smoker if you have lung cancer.	There are no assessment limits for this standard. The entire standard is assessed in this course.
			6. Find the conditional probability of A given B as the fraction of $B^{\prime} s$ outcomes that also belong to A, and interpret the answer in terms of the model.	There are no assessment limits for this standard. The entire standard is assessed in this course.
			7. Apply the Addition Rule, $\mathrm{P}(\mathrm{A}$ or B$)=\mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})-\mathrm{P}(\mathrm{A}$ and B$)$, and interpret the answer in terms of the model.	There are no assessment limits for this standard. The entire standard is assessed in this course.

	Major Content		Supporting Content		Additional Content

Mathematical Modeling is a Standard for Mathematical Practice (MP4) and a Conceptual Category, and specific modeling standards appear throughout the high school standards indicated with a star (). Where an entire domain is marked with a star, each standard in that domain is a modeling standard.

