	Domain	Cluster	Standard	PARCC Assessment Limits
			1. Use units as a way to understand problems and to guide the solution of multi-step problems; choose and interpret units consistently in formulas; choose and interpret the scale and the origin in graphs and data displays.	There are no assessment limits for this standard. The entire standard is assessed in this course.
			2. Define appropriate quantities for the purpose of descriptive modeling.	This standard will be assessed in Math I by ensuring that some modeling tasks (involving Math I content or securely held content from grades 6-8) require the student to create a quantity of interest in the situation being described (i.e., a quantity of interest is not selected for the student by the task). For example, in a situation involving data, the student might autonomously decide that a measure of center is a key variable in a situation, and then choose to work with the mean.
			3. Choose a level of accuracy appropriate to limitations on measurement when reporting quantities.	There are no assessment limits for this standard. The entire standard is assessed in this course.
$\begin{aligned} & \frac{0}{0} \\ & 0 \\ & 0 \\ & \frac{0}{4} \end{aligned}$			1. Interpret expressions that represent a quantity in terms of its context. ${ }^{\star}$ a. Interpret parts of an expression, such as terms, factors, and coefficients. b. Interpret complicated expressions by viewing one or more of their parts as a single entity. For example, interpret $P(1+r) n$ as the product of P and a factor not depending on P.	i) Tasks are limited to exponential expressions, including related numerical expressions.
			3. Choose and produce an equivalent form of an expression to reveal and explain properties of the quantity represented by the expression. ${ }^{\star}$ a. Factor a quadratic expression to reveal the zeros of the function it defines. c. Use the properties of exponents to transform expressions for exponential functions. For example the expression 1.15^{t} can be rewritten as $\left(1.15^{1 / 12}\right)^{12 t} \approx 1.012^{12 t}$ to reveal the approximate equivalent monthly interest rate if the annual rate is 15%.	There are no assessment limits for this standard. The entire standard is assessed in this course.
			1. Create equations and inequalities in one variable and use them to solve problems. Include equations arising from linear and quadratic functions, and simple rational and exponential functions.	i) Tasks are limited to linear or exponential equations with integer exponents. ii) Tasks have a real-world context. iii) In the linear case, tasks have more of the hallmarks of modeling as a mathematical practice (less defined tasks, more of the modeling cycle, etc.).
			2. Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales.	i) Tasks are limited to linear equations ii) Tasks have a real-world context. iii) Tasks have the hallmarks of modeling as a mathematical practice (less defined tasks, more of the modeling cycle, etc.).
			3. Represent constraints by equations or inequalities, and by systems of equations and/or inequalities, and interpret solutions as viable or nonviable options in a modeling context. For example, represent inequalities describing nutritional and cost constraints on combinations of different foods.	There are no assessment limits for this standard. The entire standard is assessed in this course.
			4. Rearrange formulas to highlight a quantity of interest, using the same reasoning as in solving equations. For example, rearrange Ohm's law $V=I R$ to highlight resistance R.	i) Tasks are limited to linear equations ii) Tasks have a real-world context.

Domain	Cluster		Standard	PARCC Assessment Limits

	Domain	Cluster	Standard	PARCC Assessment Limits
			1. Understand that a function from one set (called the domain) to another set (called the range) assigns to each element of the domain exactly one element of the range. If f is a function and x is an element of its domain, then $f(x)$ denotes the output of f corresponding to the input x. The graph of f is the graph of the equation $y=f(x)$.	There are no assessment limits for this standard. The entire standard is assessed in this course.
			2. Use function notation, evaluate functions for inputs in their domains, and interpret statements that use function notation in terms of a context.	There are no assessment limits for this standard. The entire standard is assessed in this course.
			3. Recognize that sequences are functions, sometimes defined recursively, whose domain is a subset of the integers. For example, the Fibonacci sequence is defined recursively by $f(0)=f(1)=1, f(n+1)=f(n)+f(n-1)$ for $n \geq 1$.	There are no assessment limits for this standard. The entire standard is assessed in this course.
			4. For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. Key features include: intercepts; intervals where the function is increasing, decreasing, positive, or negative; relative maximums and minimums; symmetries; end behavior; and periodicity. *	i) Tasks have a real-world context. ii) Tasks are limited to linear functions, square root functions, cube root functions, piecewise-defined functions (including step functions and absolute value functions), and exponential functions with domains in the integers. The function types listed here are the same as those listed in the Math I column for standards F-IF. 6 and F-IF.9.
			5. Relate the domain of a function to its graph and, where applicable, to the quantitative relationship it describes. For example, if the function $h(n)$ gives the number of person-hours it takes to assemble n engines in a factory, then the positive integers would be an appropriate domain for the function. ${ }^{\star}$	i) Tasks have a real-world context. ii) Tasks are limited to linear functions, square root functions, cube root functions, piecewise-defined functions (including step functions and absolute value functions), and exponential functions with domains in the integers.
			6. Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a specified interval. Estimate the rate of change from a graph. *	i) Tasks have a real-world context. ii) Tasks are limited to linear functions, square root functions, cube root functions, piecewise-defined functions (including step functions and absolute value functions), and exponential functions with domains in the integers. The function types listed here are the same as those listed in the Math I column for standards F-IF. 4 and F-IF.9.
			7. Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases. ${ }^{\star}$ a. Graph linear and quadratic functions and show intercepts, maxima, and minima.	i) Tasks are limited to linear functions.
			9. Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions). For example, given a graph of one quadratic function and an algebraic expression for another, say which has the larger maximum.	i) Tasks have a real-world context. ii) Tasks are limited to linear functions, square root functions, cube root functions, piecewise-defined functions (including step functions and absolute value functions), and exponential functions with domains in the integers. The function types listed here are the same as those listed in the Math I column for standards F-IF. 4 and F-IF.6.

Domain	Cluster		Standard	PARCC Assessment Limits

| Domain | Cluster | Standard | |
| :--- | :--- | :--- | :--- | :--- |

Domain	Cluster		Standard	PARCC Assessment Limits

	Major Content		Supporting Content		Additional Content

[^0] high school standards indicated with a star (\star). Where an entire domain is marked with a star, each standard in that domain is a modeling standard.

[^0]: *Mathematical Modeling is a Standard for Mathematical Practice (MP4) and a Conceptual Category, and specific modeling standards appear throughout the

