Algebra II

Domair	Cluster	Standard	Assessment Limits
The Real Number System (N-RN)	Extend the properties of exponents to rational exponents	1. Explain how the definition of the meaning of rational exponents follows from extending the properties of integer exponents to those values, allowing for a notation for radicals in terms of rational exponents. For example, we define $5^{1/3}$ to be the cube root of 5 because we want $(5^{1/3})^3 = 5^{(1/3)^3}$ to hold, so $(5^{1/3})^3$ must equal 5.	There are no assessment limits for this standard. The entire standard is assessed in this course.
	Extend the of expo to rational	2. Rewrite expressions involving radicals and rational exponents using the properties of exponents.	There are no assessment limits for this standard. The entire standard is assessed in this course.
and Quantity Quantities* (N-Q)	Reason quantitatively and use units to solve problems.	2. Define appropriate quantities for the purpose of descriptive modeling.	This standard will be assessed in Algebra II by ensuring that some modeling tasks (involving Algebra II content or securely held content from previous grades and courses) require the student to create a quantity of interest in the situation being described (i.e., this is not provided in the task). For example, in a situation involving periodic phenomena, the student might autonomously decide that amplitude is a key variable in a situation, and then choose to work with peak amplitude.
Number	Perform arithmetic operations with complex numbers.	1. Know there is a complex number <i>i</i> such that $i^2 = -1$, and every complex number has the form $a + bi$ with a and b real.	There are no assessment limits for this standard. The entire standard is assessed in this course.
ex Number ((N-CN)	_	2. Use the relation $i^2 = -1$ and the commutative, associative, and distributive properties to add, subtract, and multiply complex numbers.	There are no assessment limits for this standard. The entire standard is assessed in this course.
NUM The Complex Number System (N-CN)	Use complex numbers in polynomial identities and equations.	7. Solve quadratic equations with real coefficients that have complex solutions.	There are no assessment limits for this standard. The entire standard is assessed in this course.

Algebra II

Seeing Structure in Expressions	(A-SSE)	Interpret the structure of expressions	2. Use the structure of an expression to identify ways to rewrite it. For example, see $x^4 - y^4 as (x^2)^2 - (y^2)^2$, thus recognizing it as a difference of squares that can be factored as $(x^2 - y^2)(x^2 + y^2)$.	i) Tasks are limited to polynomial, rational, or exponential expressions. ii) Examples: see $x^4 - y^4$ as $(x^2)^2 - (y^2)^2$, thus recognizing it as a difference of squares that can be factored as $(x^2 - y^2)(x^2 + y^2)$. In the equation $x^2 + 2x + 1 + y^2 = 9$, see an opportunity to rewrite the first three terms as $(x+1)^2$, thus recognizing the equation of a circle with radius 3 and center (-1, 0). See $(x^2 + 4)/(x^2 + 3)$ as $((x^2+3) + 1)/(x^2+3)$, thus recognizing an opportunity to write it as $1 + 1/(x^2+3)$.	
eing Structure	(A-S	Write expressions in equivalent forms to solve problems	3. Choose and produce an equivalent form of an expression to reveal and explain properties of the quantity represented by the expression. \star c. Use the properties of exponents to transform expressions for exponential functions. For example the expression 1.15^{t} can be rewritten as $(1.15^{1/12})^{12t} \approx 1.012^{12t}$ to reveal the approximate equivalent monthly interest rate if the annual rate is 15%.) Tasks have a real-world context. As described in the standard, there is an interplay between the mathematical structure of the expression and the structure of the situation such that choosing and producing an equivalent form of the expression reveals comething about the situation. i) Tasks are limited to exponential expressions with rational or real exponents.	
	5	Write equiva solv	4. Derive the formula for the sum of a finite geometric series (when the common ratio is not 1), and use the formula to solve problems. <i>For example, calculate mortgage payments</i> .*	There are no assessment limits for this standard. The entire standard is assessed in this course.	
Algebra		Understand the relationship between zeros and factors of Polynomials	2. Know and apply the Remainder Theorem: For a polynomial $p(x)$ and a number a , the remainder on division by $x - a$ is $p(a)$, so $p(a) = 0$ if and only if $(x - a)$ is a factor of $p(x)$.	There are no assessment limits for this standard. The entire standard is assessed in this course.	
	ressions २)	Understand th between zer	3. Identify zeros of polynomials when suitable factorizations are available, and use the zeros to construct a rough graph of the function defined by the polynomial.	i) Tasks include quadratic, cubic, and quartic polynomials and polynomials for which factors are not provided. For example, find the zeros of $(x^2 - 1)(x^2 + 1)$	
Arithmetic with Polynomials	Rational Expressions (A-APR)	Use polynomial identities to solve problems	4. Prove polynomial identities and use them to describe numerical relationships. For example, the polynomial identity $(x^2 + y^2)^2 = (x^2 - y^2)^2 + (2xy)^2$ can be used to generate Pythagorean triples.	There are no assessment limits for this standard. The entire standard is assessed in this course.	
Arithme	Rat	Rewrite rational expressions	6. Rewrite simple rational expressions in different forms; write $a(x)/b(x)$ in the form $q(x) + r(x)/b(x)$, where $a(x)$, $b(x)$, $q(x)$, and $r(x)$ are polynomials with the degree of $r(x)$ less than the degree of $b(x)$, using inspection, long division, or, for the more complicated examples, a computer algebra system.	There are no assessment limits for this standard. The entire standard is assessed in this course.	

Algebra II	
------------	--

Creating Equations [*] (A-CED)	Create equations that describe numbers or relationships	1. Create equations and inequalities in one variable and use them to solve problems. Include equations arising from linear and quadratic functions, and simple rational and exponential functions.	i) Tasks are limited to exponential equations with rational or real exponents and rational functions. ii) Tasks have a real-world context.	
ies	Understand solving equations as a process of reasoning and explain the reasoning	1. Explain each step in solving a simple equation as following from the equality of numbers asserted at the previous step, starting from the assumption that the original equation has a solution. Construct a viable argument to justify a solution method.	i) Tasks are limited to simple rational or radical equations.	
a nequaliti	Understa equations of reasonin the re	2. Solve simple rational and radical equations in one variable, and give examples showing how extraneous solutions may arise.	There are no assessment limits for this standard. The entire standard is assessed in this course.	
Algeur Juations and II (A-REI)		i) In the case of equations that have roots with nonzero imaginary parts, students write the solutions as a \pm bi for real numbers a and b.		
vith Eq (stems ations	6. Solve systems of linear equations exactly and approximately (e.g., with graphs), focusing on pairs of linear equations in two variables.	i) Tasks are limited to 3x3 systems.	
ioning w	Solve systems of equations	7. Solve a simple system consisting of a linear equation and a quadratic equation in two variables algebraically and graphically. For example, find the points of intersection between the line $y = -3x$ and the circle $x^2 + y^2 = 3$.	There are no assessment limits for this standard. The entire standard is assessed in this course.	
Reas	Represent and solve equations and inequalities graphically	11. Explain why the x-coordinates of the points where the graphs of the equations $y = f(x)$ and $y = g(x)$ intersect are the solutions of the equation $f(x) = g(x)$; find the solutions approximately, e.g., using technology to graph the functions, make tables of values, or find successive approximations. Include cases where $f(x)$ and/or $g(x)$ are linear, polynomial, rational, absolute value, exponential, and logarithmic functions.*	i) Tasks may involve any of the function types mentioned in the standard.	

Algebra II

	Understand the concept of a function and use function notation	3. Recognize that sequences are functions, sometimes defined recursively, whose domain is a subset of the integers. For example, the Fibonacci sequence is defined recursively by $f(0) = f(1) = 1$, $f(n+1) = f(n) + f(n-1)$ for $n \ge 1$.	i) This standard is Supporting work in Algebra II. This standard should support the Major work in F-BF.2 for coherence.
	nterpret functions that arise in applications in terms of the context	4. For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. <i>Key features include: intercepts; intervals where the function is increasing, decreasing, positive, or negative; relative maximums and minimums; symmetries; end behavior; and periodicity.</i> *	i) Tasks have a real-world context ii) Tasks may involve polynomial, exponential, logarithmic, and trigonometric functions. <i>Compare note (ii) with standard F-IF.7</i> . <i>The function types listed here are the same as those listed in the</i> <i>Algebra II column for standards F-IF.6 and F-IF.9</i> .
Interpreting Functions (F-IF)	Interpret fu arise in app terms of t	6. Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a specified interval. Estimate the rate of change from a graph. *	 i) Tasks have a real-world context. ii) Tasks may involve polynomial, exponential, logarithmic, and trigonometric functions. The function types listed here are the same as those listed in the Algebra II column for standards F-IF.4 and F-IF.9.
Interpreting Fu (F-IF)	Analyze functions using different representations	 7. Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases.* c. Graph polynomial functions, identifying zeros when suitable factorizations are available, and showing end behavior. e. Graph exponential and logarithmic functions, showing intercepts and end behavior, and trigonometric functions, showing period, midline, and amplitude. 	There are no assessment limits for this standard. The entire standard is assessed in this course.
		8. Write a function defined by an expression in different but equivalent forms to reveal and explain different properties of the function. b. Use the properties of exponents to interpret expressions for exponential functions. For example, identify percent rate of change in functions such as $y = (1.02)^t$, $y = (0.97)^t$, $y = (1.01)^{12t}$, $y = (1.2)^{t/10}$, and classify them as representing exponential growth or decay.	There are no assessment limits for this standard. The entire standard is assessed in this course.
	5	9. Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions). For example, given a graph of one quadratic function and an algebraic expression for another, say	i) Tasks may involve polynomial, exponential, logarithmic, and trigonometric functions.
		which has the larger maximum.	The function types listed here are the same as those listed in the Algebra II column for standards F-IF.4 and F-IF.6.

	Alge	bra II		TNCore	
	S	Build a function that models a relationship between two quantities	 Write a function that describes a relationship between two quantities.* a. Determine an explicit expression, a recursive process, or steps for calculation from a context. b. Combine standard function types using arithmetic operations. For example, build a function that models the temperature of a cooling body by adding a constant function to a decaying exponential, and relate these functions to the model. 	For F-BF.1a: i) Tasks have a real-world context ii) Tasks may involve linear functions, quadratic functions, and exponential functions.	
	Building Functions (F-BF)	Build a f a rela t	2. Write arithmetic and geometric sequences both recursively and with an explicit formula, use them to model situations, and translate between the two forms. \star	There are no assessment limits for this standard. The entire standard is assessed in this course.	
ons	Building (F	Build new functions from existing functions	3. Identify the effect on the graph of replacing $f(x)$ by $f(x) + k$, $k f(x)$, $f(kx)$, and $f(x + k)$ for specific values of k (both positive and negative); find the value of k given the graphs. Experiment with cases and illustrate an explanation of the effects on the graph using technology. <i>Include recognizing even and odd functions from their graphs and algebraic expressions for them.</i>) Tasks may involve polynomial, exponential, logarithmic, and trigonometric functions i) Tasks may involve recognizing even and odd functions. The function types listed in note (i) are the same as those listed in the Algebra II column for standards F-IF.4, F-IF.6, and F-IF.9.	
Functions		Build new existin	4. Find inverse functions. a. Solve an equation of the form $f(x) = c$ for a simple function f that has an inverse and write an expression for the inverse. For example, $f(x) = 2x^3$ or $f(x) = (x+1)/(x-1)$ for $x \neq 1$.	There are no assessment limits for this standard. The entire standard is assessed in this course.	
	and els [★]	Construct and compare linear, quadratic, and exponential models and solve problems	2. Construct linear and exponential functions, including arithmetic and geometric sequences, given a graph, a description of a relationship, or two input-output pairs (include reading these from a table).) Tasks will include solving multi-step problems by constructing inear and exponential functions.	
	Linear, Quadratic, and Exponential Models [★] (F-LE)	Construct a linear, qua exponenti and solve	4. For exponential models, express as a logarithm the solution to <i>ab</i> ^{ct} = <i>d</i> where <i>a</i> , <i>c</i> , and <i>d</i> are numbers and the base <i>b</i> is 2, 10, or <i>e</i> ; evaluate the logarithm using technology.	There are no assessment limits for this standard. The entire standard is assessed in this course.	
	Linear, (Expone	Interpret expressions for functions in terms of the situation they model	5. Interpret the parameters in a linear or exponential function in terms of a context.	i) Tasks have a real-world context. ii) Tasks are limited to exponential functions with domains not in the integers.	

Algebra I	
-----------	--

1. Understand radian measure of an angle as the length of the arc on the unit circle subtended by the angle.		There are no assessment limits for this standard. The entire standard is assessed in this course.	
nnS Functions	Extend the domain of trigonometric functions using the unit circle	2. Explain how the unit circle in the coordinate plane enables the extension of trigonometric functions to all real numbers, interpreted as radian measures of angles traversed counterclockwise around the unit circle.	There are no assessment limits for this standard. The entire standard is assessed in this course.
Functions Trigonometric Functions (F-TF)	Model periodic phenomena with trigonometric functions	5. Choose trigonometric functions to model periodic phenomena with specified amplitude, frequency, and midline.*	There are no assessment limits for this standard. The entire standard is assessed in this course.
	Prove and apply trigonometric identities	8. Prove the Pythagorean identity $\sin^2(\theta) + \cos^2(\theta) = 1$ and use it to find $\sin(\theta)$, $\cos(\theta)$, or $\tan(\theta)$ given $\sin(\theta)$, $\cos(\theta)$, or $\tan(\theta)$ and the quadrant of the angle.	There are no assessment limits for this standard. The entire standard is assessed in this course.
Ietry Seometric es with ions PE) PE) PE tween the escription attion for a ction		2. Derive the equation of a parabola given a focus and directrix.	There are no assessment limits for this standard. The entire standard is assessed in this course.

	Alge	bra II		TNCore
ility	preting Categorical and Quantitative Data (S-ID)	Summarize, represent, and interpret data on a single count or measurement variable	4. Use the mean and standard deviation of a data set to fit it to a normal distribution and to estimate population percentages. Recognize that there are data sets for which such a procedure is not appropriate. Use calculators, spreadsheets, and tables to estimate areas under the normal curve.	There are no assessment limits for this standard. The entire standard is assessed in this course.
	Interpreting Categorical Quantitative Data (S-ID)	Summarize, represent, and interpret data on two categorical and quantitative variables	 6. Represent data on two quantitative variables on a scatter plot, and describe how the variables are related. a. Fit a function to the data; use functions fitted to data to solve problems in the context of the data. Use given functions or choose a function suggested by the context. Emphasize linear, quadratic, and exponential models. 	i) Tasks have a real-world context. ii) Tasks are limited to exponential functions with domains not in the integers and trigonometric functions.
nd Probal	lusions	 1. Understand statistics as a process for making inferences about population parameters based on a random sample from that population. 2. Decide if a specified model is consistent with results from a given data-generating process, e.g., using simulation. For example, a model says a spinning coin falls heads with probability 0.5. Would a result of 5 tails in a row cause you to question the model 		There are no assessment limits for this standard. The entire standard is assessed in this course.
Statistics and Probability	Making Inferences and Justifying Conclusions (S-IC)	Understand a random proces statistical e	2. Decide if a specified model is consistent with results from a given data-generating process, e.g., using simulation. For example, a model says a spinning coin falls heads up with probability 0.5. Would a result of 5 tails in a row cause you to question the model?	There are no assessment limits for this standard. The entire standard is assessed in this course.
	es and Jus (S-IC)	ustify nple , and ies	3. Recognize the purposes of and differences among sample surveys, experiments, and observational studies; explain how randomization relates to each.	There are no assessment limits for this standard. The entire standard is assessed in this course.
	Inference	Make inferences and justify conclusions from sample surveys, experiments, and observational studies	4. Use data from a sample survey to estimate a population mean or proportion; develop a margin of error through the use of simulation models for random sampling.	There are no assessment limits for this standard. The entire standard is assessed in this course.
	aking	ake infe conclusic urveys, e observ	5. Use data from a randomized experiment to compare two treatments; use simulations to decide if differences between parameters are significant.	There are no assessment limits for this standard. The entire standard is assessed in this course.
	Σ	R. St	6. Evaluate reports based on data.	There are no assessment limits for this standard. The entire standard is assessed in this course.

	Alge	bra	II						TNCo	re
	Probability			 Describe events as subsets of a sample space (the set of outcomes) using characteristics (or categories) of the outcomes, or as unions, intersections, or complements of other events ("or," "and," "not"). 					There are no assessment limits for this standard. The en standard is assessed in this course.	ntire
		nditional	ret data		duct of	nd <i>B</i> are independent if the probabili f their probabilities, and use this cha	•		There are no assessment limits for this standard. The en standard is assessed in this course.	ntire
λ:		ence and con	use them to interpret data	independence of A and B as s	saying t	ability of A given B as P(A and B)/P(E that the conditional probability of A se conditional probability of B given A	given B is t	he	There are no assessment limits for this standard. The en standard is assessed in this course.	ntire
Statistics and Probability	Conditional Probability and the Rules of Probability (S-CP)	Understand independence and conditional	Understand independ probability and use th	associated with each object b to decide if events are indepe example, collect data from a subject among math, science selected student from your so	peing cl endent randon , and E chool w	frequency tables of data when two lassified. Use the two-way table as a t and to approximate conditional pro m sample of students in your school English. Estimate the probability that will favor science given that the stude cts and compare the results.	sample sp babilities. on their fav a randoml	ace For vorite ly	There are no assessment limits for this standard. The enstandard is assessed in this course.	ntire
atistics a	Probability (5. Recognize and explain the concepts of conditional probability and independence in everyday language and everyday situations. For example, compare the chance of having lung cancer if you are a smoker with the chance of being a smoker if you have lung cancer. 6. Find the conditional probability of A given B as the fraction of B's outcomes that also belong to A, and interpret the answer in terms of the model. 	There are no assessment limits for this standard. The en standard is assessed in this course.	ntire						
Sta	Conditional F		/ents in a uniform vility model	-	-	-	comes that	t also	There are no assessment limits for this standard. The enstandard is assessed in this course.	ntire
		Use the rules compute p	compound events probability	7. Apply the Addition Rule, P in terms of the model.	(A or B)) = P(A) + P(B) – P(A and B), and inte	rpret the a	nswer	There are no assessment limits for this standard. The enstandard is assessed in this course.	ntire
				Major Content		Supporting Content			Additional Content	

Mathematical Modeling is a Standard for Mathematical Practice (MP4) and a Conceptual Category, and specific modeling standards appear throughout the high school standards indicated with a star (). Where an entire domain is marked with a star, each standard in that domain is a modeling standard.

Algobra II