	Core N	/lath II		TNCore			
	Domain	Cluster	Standard	PARCC Assessment Limits			
Number and Quantity	The Real Number System (N-RN)	berties s to ents.	1. Explain how the definition of the meaning of rational exponents follows from extending the properties of integer exponents to those values, allowing for a notation for radicals in terms of rational exponents. For example, we define $5^{1/3}$ to be the cube root of 5 because we want $(5^{1/3})^3 = 5(^{1/3})^3$ to hold, so $(5^{1/3})^3$ must equal 5.	There are no assessment limits for this standard. The entire standard is assessed in this course.			
		Extend the properties of exponents to rational exponents.	2. Rewrite expressions involving radicals and rational exponents using the properties of exponents.		Commented [RC1]: Didn't want to remove this, but according		
		Use properties of rational and irrational numbers.	3. Explain why the sum or product of two rational numbers is rational; that the sum of a rational number and an irrational number is irrational; and that the product of a nonzero rational number and an irrational number is irrational.		to the pathway summary table this standard does not have an assessment limit. You may want to double check.		
	Quantities [*] (N-Q)	Reason quantitatively and use units to solve problems.	2. Define appropriate quantities for the purpose of descriptive modeling.	There are no assessment limits for this standard. The entire standard is assessed in this course.			
	stem	Perform arithmetic operations with complex numbers.	1. Know there is a complex number <i>i</i> such that $i^2 = -1$, and every complex number has the form $a + bi$ with a and b real.	There are no assessment limits for this standard. The entire standard is assessed in this course.			
	x Number Sy (N-CN)		2. Use the relation $i^2 = -1$ and the commutative, associative, and distributive properties to add, subtract, and multiply complex numbers.	There are no assessment limits for this standard. The entire standard is assessed in this course.			
	The Complex Number System (N-CN)	Use complex numbers in polynomial identities and equations.	7. Solve quadratic equations with real coefficients that have complex solutions.	There are no assessment limits for this standard. The entire standard is assessed in this course.			

TNCore

Core Math II TNC					
	Domain	Cluster	Standard	PARCC Assessment Limits	
	-	the e ions	 Interpret expressions that represent a quantity in terms of its context.* Interpret complicated expressions by viewing one or more of their parts as a single entity. For example, interpret P(1+r)n as the product of P and a factor not depending on P. 	i) Tasks are limited to quadratic expressions.	
	Seeing Structure in Expressions (A-SSE)	Interpret the structure of expressions	2. Use the structure of an expression to identify ways to rewrite it. For example, see $x^4 - y^4$ as $(x^2)^2 - (y^2)^2$, thus recognizing it as a difference of squares that can be factored as $(x^2 - y^2)(x^2 + y^2)$.	 i) Tasks are limited to quadratic and exponential expressions, including related numerical expressions. ii) Examples: See an opportunity to rewrite a² + 9a + 14 as (a+7)(a+2). Recognize 53² - 47² as a difference of squares and see an opportunity to rewrite it in the easier-to-evaluate form (53+47)(53-47). 	
		Write expressions in equivalent forms to solve problems	 3. Choose and produce an equivalent form of an expression to reveal and explain properties of the quantity represented by the expression.* a. Factor a quadratic expression to reveal the zeros of the function it defines. b. Complete the square in a quadratic expression to reveal the maximum or minimum value of the function it defines. 	There are no assessment limits for this standard. The entire standard is assessed in this course.	
	Arithmetic with Polynomials and Rational Expressions (A-APR)	Perform arithmetic operations on polynomials	 Understand that polynomials form a system analogous to the integers, namely, they are closed under the operations of addition, subtraction, and multiplication; add, subtract, and multiply polynomials. 	There are no assessment limits for this standard. The entire standard is assessed in this course.	
Algebra	Creating Equations [*] (A-CED)	ations that numbers onships	1. Create equations and inequalities in one variable and use them to solve problems. Include equations arising from linear and quadratic functions, and simple rational and exponential functions.	 i) Tasks are limited to quadratic and exponential equations. ii) Tasks have a real-world context. iii) In simpler cases (such as exponential equations with integer exponents), tasks have more of the hallmarks of modeling as a mathematical practice (less defined tasks, more of the modeling cycle, etc.). 	
1		Create equations that describe numbers or relationships	2. Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales.	 i) Tasks are limited to quadratic equations ii) Tasks have a real-world context. iii) Tasks have the hallmarks of modeling as a mathematical practice (less defined tasks, more of the modeling cycle, etc.). 	
			4. Rearrange formulas to highlight a quantity of interest, using the same reasoning as in solving equations. For example, rearrange Ohm's law V = IR to highlight resistance R.	i) Tasks are limited to quadratic equations ii) Tasks have a real-world context.	
	Reasoning with Equations and Inequalities (A-REI)	Understand solving equations as a process of reasoning and	 Explain each step in solving a simple equation as following from the equality of numbers asserted at the previous step, starting from the assumption that the original equation has a solution. Construct a viable argument to justify a solution method. 	i) Tasks are limited to quadratic equations.	
		Solve equations and inequalities in one variable	4. Solve quadratic equations in one variable. a. Use the method of completing the square to transform any quadratic equation in x into an equation of the form $(x - p)^2 = q$ that has the same solutions. Derive the quadratic formula from this form. b. Solve quadratic equations by inspection (e.g., for $x^2 = 49$), taking square roots, completing the square, the quadratic formula and factoring, as appropriate to the initial form of the equation. Recognize when the quadratic formula gives complex solutions and write them as $a \pm bi$ for real numbers a and b.	There are no assessment limits for this standard. The entire standard is assessed in this course.	
		Solve systems of equations	7. Solve a simple system consisting of a linear equation and a quadratic equation in two variables algebraically and graphically. For example, find the points of intersection between the line $y = -3x$ and the circle $x^2 + y^2 = 3$.	There are no assessment limits for this standard. The entire standard is assessed in this course.	

TNCore

Core Math II					
0	Domain	Cluster	Standard	PARCC Assessment Limits	
	Interpreting Functions (F-IF)	Interpret functions that arise in applications in terms of the context	4. For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. <i>Key features include: intercepts; intervals where the function is increasing, decreasing, positive, or negative; relative maximums and minimums; symmetries; end behavior; and periodicity.</i> *	i) Tasks have a real-world context. ii) Tasks are limited to quadratic and exponential functions. The function types listed here are the same as those listed in the Math II column for standards F-IF.6 and F-IF.9.	
		et functions cations in te context	5. Relate the domain of a function to its graph and, where applicable, to the quantitative relationship it describes. For example, if the function $h(n)$ gives the number of person-hours it takes to assemble n engines in a factory, then the positive integers would be an appropriate domain for the function.*	i) Tasks have a real-world context. ii) Tasks are limited to quadratic functions.	
		Interpr appli	6. Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a specified interval. Estimate the rate of change from a graph.*	 i) Tasks have a real-world context. ii) Tasks are limited to quadratic and exponential functions. The function types listed here are the same as those listed in the Math II column for standards F-IF.4 and F-IF.9. 	
		Analyze functions using different representations	 7. Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases.* a. Graph linear and quadratic functions and show intercepts, maxima, and minima. b. Graph square root, cube root, and piecewise-defined functions, including step functions and absolute value functions. e. Graph exponential and logarithmic functions, showing intercepts and end behavior, and trigonometric functions, showing period, midline, and amplitude. 	For F-IF.7a: i) Tasks are limited to quadratic functions. For F-IF.7e i) Tasks are limited to exponential functions.	
			8. Write a function defined by an expression in different but equivalent forms to reveal and explain different properties of the function. a. Use the process of factoring and completing the square in a quadratic function to show zeros, extreme values, and symmetry of the graph, and interpret these in terms of a context. b. Use the properties of exponents to interpret expressions for exponential functions. For example, identify percent rate of change in functions such as $y = (1.02)^t$, $y = (0.97)^t$, $y = (1.01)^{12t}$, $y = (1.2)^{t/10}$, and classify them as representing exponential growth or decay.	There are no assessment limits for this standard. The entire standard is assessed in this course.	
			9. Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions). For example, given a graph of one quadratic function and an algebraic expression for another, say which has the larger maximum.	 i) Tasks are limited to on quadratic and exponential functions. ii) Tasks do not have a real-world context. The function types listed here are the same as those listed in the Math II column for standards F-IF.4 and F-IF.6. 	
	Building Functions (F-BF)	Build a function that models a relationship between two quantities	 Write a function that describes a relationship between two quantities.* Determine an explicit expression, a recursive process, or steps for calculation from a context. Combine standard function types using arithmetic operations. For example, build a function that models the temperature of a cooling body by adding a constant function to a decaying exponential, and relate these functions to the model. 	li	commented [RC2]: This is supposed to have an assessmer mit: i) Tasks have a real-world context. ii) Tasks may involve liu unctions, quadratic functions, and exponential functions.
		Build new functions from existing functions	3. Identify the effect on the graph of replacing $f(x)$ by $f(x) + k$, $k f(x)$, $f(kx)$, and $f(x + k)$ for specific values of k (both positive and negative); find the value of k given the graphs. Experiment with cases and illustrate an explanation of the effects on the graph using technology. <i>Include recognizing even and odd functions from their graphs and algebraic expressions for them</i> .	i) Identifying the effect on the graph of replacing $f(x)$ by $f(x) + k$, $k = f(x)$, $f(kx)$, and $f(x+k)$ for specific values of k (both positive and negative) is limited to linear and quadratic functions. ii) Experimenting with cases and illustrating an explanation of the effects on the graph using technology is limited to linear functions, quadratic functions, square root functions, cube root functions, piecewise-defined functions (including step functions and absolute value functions), and exponential functions. iii) Tasks do not involve recognizing even and odd functions. The function types listed in note (ii) are the same as those listed in the Math I and Math II columns for standards F-IF.4, F-IF.6, and F-IF.9.	

Core Math II

TNCore

Domain		Cluster	Standard	PARCC Assessment Limits
	Similarity, Right Triangles, and Trigonometry (G-SRT)		 Verify experimentally the properties of dilations given by a center and a scale factor: a. A dilation takes a line not passing through the center of the dilation to a parallel line, and leaves a line passing through the center unchanged. b. The dilation of a line segment is longer or shorter in the ratio given by the scale factor. 	There are no assessment limits for this standard. The entire standard is assessed in this course.
		Understand similarity in terms of similarity transformations	2. Given two figures, use the definition of similarity in terms of similarity transformations to decide if they are similar; explain using similarity transformations the meaning of similarity for triangles as the equality of all corresponding pairs of angles and the proportionality of all corresponding pairs of sides.	There are no assessment limits for this standard. The entire standard is assessed in this course.
		o C	 Use the properties of similarity transformations to establish the AA criterion for two triangles to be similar. 	There are no assessment limits for this standard. The entire standard is assessed in this course.
		Prove theorems involving similarity	4. Prove theorems about triangles. Theorems include: a line parallel to one side of a triangle divides the other two proportionally, and conversely; the Pythagorean Theorem proved using triangle similarity.	There are no assessment limits for this standard. The entire standard is assessed in this course.
etry		Prove f involvin	5. Use congruence and similarity criteria for triangles to solve problems and to prove relationships in geometric figures.	There are no assessment limits for this standard. The entire standard is assessed in this course.
Geometry		rric ratios blems iangles	6. Understand that by similarity, side ratios in right triangles are properties of the angles in the triangle, leading to definitions of trigonometric ratios for acute angles.	There are no assessment limits for this standard. The entire standard is assessed in this course.
		Define trigonometric ratios and solve problems involving right triangles	7. Explain and use the relationship between the sine and cosine of complementary angles.	There are no assessment limits for this standard. The entire standard is assessed in this course.
		Define and involv	8. Use trigonometric ratios and the Pythagorean Theorem to solve right triangles in applied problems.*	There are no assessment limits for this standard. The entire standard is assessed in this course.
	Geometric Measurement and Dimension (G-GMD)	Explain volume formulas and use them to solve problems	1. Give an informal argument for the formulas for the circumference of a circle, area of a circle, volume of a cylinder, pyramid, and cone. <i>Use dissection arguments, Cavalieri's principle, and informal limit arguments</i> .	There are no assessment limits for this standard. The entire standard is assessed in this course.
		Explain volume them to sol	3. Use volume formulas for cylinders, pyramids, cones, and spheres to solve problems.*	There are no assessment limits for this standard. The entire standard is assessed in this course.

Core Math II

	Domain	n Cluster		Standard		PARCC Assessment Limits				
	Interpreting Categorical and Quantitative Data (S-ID)	Summarize, represent, and interpret data on two categorical and quantitative variables	are related. a. Fit a function to the da data. Use given functions quadratic, and exponenti	ta; use f or choo al mode	ative variables on a scatter plot, and describe ho unctions fitted to data to solve problems in the c se a function suggested by the context. Emphasiz Is. nction by plotting and analyzing residuals.	ontext of		For S-ID.6a: i) Tasks have real-world context. ii) Tasks are limited to quadratic functions. For S-ID.6b: i) Tasks have a real-world context. ii) Tasks are limited to linear functions, quadratic functions, and exponential functions with domains in the integers.		
	Conditional Probability and the Rules of Probability (S-CP)	ability	 Describe events as subsets of a sample space (the set of outcomes) using characteristics (or categories) of the outcomes, or as unions, intersections, or complements of other events ("or," "and," "not"). 					There are no assessment limits for this standard. The entire standard is assessed in this course.		
ility		nal prob ata	2. Understand that two events A and B are independent if the probability of A and B occurring together is the product of their probabilities, and use this characterization to determine if they are independent.					There are no assessment limits for this standard. The entire standard is assessed in this course.		
Probability		Understand independence and conditional probability and use them to interpret data	3. Understand the conditional probability of A given B as P(A and independence of A and B as saying that the conditional probabilit the probability of A, and the conditional probability of B given A i B.					There are no assessment limits for this standard. The entire standard is assessed in this course.		
Statistics and F			with each object being cla are independent and to a random sample of studen English. Estimate the prol	assified. pproxin its in you bability	ay frequency tables of data when two categories Use the two-way table as a sample space to deci nate conditional probabilities. For example, collec ur school on their favorite subject among math, s that a randomly selected student from your school in tenth grade. Do the same for other subjects and	ide if ever ct data fro cience, ar ol will favo	nts om a nd vor	There are no assessment limits for this standard. The entire standard is assessed in this course.		
Sti		Under	language and everyday si	tuations	cepts of conditional probability and independence . For example, compare the chance of having lun neing a smoker if you have lung cancer.			There are no assessment limits for this standard. The entire standard is assessed in this course.		
		ules of probability oute probabilities oound events in a probability model		obability of <i>A</i> given <i>B</i> as the fraction of <i>B</i> 's outcomes that also belong swer in terms of the model.		ong	There are no assessment limits for this standard. The entire standard is assessed in this course.			
		Use the rules o to compute p of compound uniform probal	7. Apply the Addition Rule, P(A or B) = P(A) + P(B) – P(A and B), and interpret the answer in terms of the model.			There are no assessment limits for this standard. The entire standard is assessed in this course.				
	Major Content				Supporting Content	Supporting Content Additional Content				

Mathematical Modeling is a Standard for Mathematical Practice (MP4) and a Conceptual Category, and specific modeling standards appear throughout the high school standards indicated with a star (). Where an entire domain is marked with a star, each standard in that domain is a modeling standard.