Built Environment Evaluation

Built Environment Evaluation

Table of Contents

Overview 3
Getting Started 5
Methods and Metrics 8
Data Collection 14
Example: Greenway Evaluation 15
Tools and Resources 18
Contact Us 21

Acknowledgements

This guide was released in September, 2017. It was authored and edited by the Office of Primary Prevention, Tennessee Department of Health.

Please direct correspondence to Dr. John Vick at john.vick@tn.gov

Cover Image: Little Duck River Greenway in Manchester, Tennessee. A portion of the greenway was constructed in 2017 with funding from the Tennessee Department of Health.
Purpose of this Guide

The purpose of this guide is to provide a resource for public health professionals to evaluate the impacts of built environment projects in their communities. The Tennessee Department of Health provides funding for built environment initiatives through its Rural Access to Health and Healthy Active Built Environment grant program to fund projects that promote healthy and active lifestyles. This grant program requires evaluation of funded projects. To assist grantees with their evaluation efforts, this guide was developed to provide a brief overview of built environment evaluation and its benefits, potential metrics and data collection methods for evaluating the types of projects funded by the Rural Access to Health and Healthy Active Built Environment grants, an example evaluation, and tools and resources that may be useful for conducting built environment evaluations. While initially developed for evaluating Tennessee Department of Health grant-funded projects, the guide’s content is applicable to anyone evaluating built environment projects in a public health context.
What is evaluation?

While there is no single definition of *evaluation*, it is typically defined as a process where information is collected to assess the value, merit, or worth of something in order to understand and improve it.

Why is it useful?

Evaluation is useful for:
- Monitoring progress toward your goals.
- Determining whether your goals were met.
- Justifying continued, or additional funding and support.
- Improving the quality and usefulness of a project.
- Sharing your story with others, including successes and lessons learned.

When evaluating built environment projects, we are most often interested in whether or not the project has resulted in changes to people’s behavior, or changes to environments or policies that are likely to change behavior. For example, we might build a trail because we expect people will use it to walk, run, or bike more often, which can ultimately lead to fewer health problems that are associated with a lack of physical activity. Evaluation can help us determine if that behavior change is happening, to what extent, and whether it’s making people healthier. Sometimes we also develop policies, plans, or programs that relate to the built environment, such as a community bikeways plan or a shared use agreement for school playgrounds. These efforts can also be evaluated to determine how many people may be impacted by the change. Every project has goals, and evaluation can help us to determine whether we are meeting, or have met those goals. It can also tell us which aspects of the project worked well and which did not. This allows us to learn and improve, and provides lessons learned that can be shared with others who wish to implement similar projects.
Develop Goals

Before starting a project it is important to develop your goals for the project. These goals help you decide how to design your project, and are also critical for evaluation since they help you determine what to measure.

Example project goals:

- Increase active transportation use by constructing a new mixed use path between downtown and a city park.
- Increase the number of people using a playground by 20%, or 100 people a week, by adding new playground equipment and extending a public pavilion.
- Decrease the number of pedestrian crashes and near-misses at a dangerous intersection near an elementary school by adding improved crosswalks, crossing signals, and a median.
- Develop a plan for a future downtown sidewalk network.

In addition to project goals, it is also important to decide on the purpose of your evaluation. This can be determined by answering a few questions:

- What information do you want to know about your project?
- How will the evaluation results be used?
- Who will see and use the evaluation results?

Determining your evaluation’s purpose will help you identify the most appropriate stakeholders to involve, type of study design, and strategies for communicating your evaluation findings.
Develop a Logic Model

A logic model is a visual representation of your project, showing all of the project components and how they are related. They are useful during the project development stage to show how your resources and activities may lead to your expected outcomes over time. Logic models provide a framework for your project and are important when deciding what outputs and outcomes to evaluate.

Logic models can be structured in many different ways, but often have the same components:

- **Resources or Inputs**: What you are putting into the project. *Examples: staff time, funding, partners.*
- **Activities**: What you are doing. *Examples: building a park, developing a policy, providing community education.*
- **Outputs**: What you produced. *Examples: playground, community plan, policy, educational materials.*
- **Outcomes**: What happened as a result. *Examples: increased number of people walking and biking, increased access to greenspace, decrease in number of crashes involving pedestrians.*
- **Impact**: What you ultimately want to happen, also called Long-Term Outcomes. *Examples: decreased obesity, improved mental health, reduction in cardiovascular disease.*

Logic Model Template Example:

<table>
<thead>
<tr>
<th>Resources/Inputs</th>
<th>Activities</th>
<th>Outputs</th>
<th>Outcomes</th>
<th>Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>What we plan to do</td>
<td>What happens as a result</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Develop Partnerships

Conducting an evaluation requires resources, but there are ways to evaluate even when time and funding are limited. Partnerships are a useful way to build the health department’s capacity to conduct or expand an evaluation. Universities or community organizations with research and evaluation expertise can be valuable partners for designing and conducting an evaluation. Partners can assist with part or all of the evaluation process, including evaluation design, data collection, analysis, and sharing the findings.

Evaluation partners may include:

- Universities, including faculty and students
- State, regional, or local government agencies
- Community organizations and non-profits
- Neighborhood groups
- Parent Teacher Organizations and schools
- Users of the facilities

Playground at Alexander Park in Ethridge, Tennessee. The playground equipment was funded by a *Rural Access to Health* grant in 2017.
Common Types of Metrics

User Counts and Types: The number of people using a facility during a given time (per day, week, month, year, school year, etc.) and their demographics (such as sex, age, race, or ethnicity). If a facility is improved or expanded, a pretest-posttest measurement design can be used to measure changes.

Policies Adopted or Changed: The number and type of policies adopted or changed as a result of the project. Policies are written statements that can include public policies, organizational policies, or shared use agreements.

Knowledge and Attitudes: A scale or survey to measure changes in users’ knowledge about physical activity and health, how the built environment impacts health, healthy foods, or other learning that may occur as a result of using a facility or participating in a process. Changes in users’ attitudes about aspects of a healthy lifestyle, such as physical activity or healthy eating, can also be assessed.

Site or Facility Description: Descriptions such as number of sites where a policy was implemented, length of greenway constructed, spaces connected by new bikeway. Can be used to show how the environment has changed as a result of the project.

Behaviors: Assessment of changes in behavior that result from the project, such as an increase in the frequency of physical activity. Behaviors can also include the type of activity they are participating in such as running, walking, biking, or social interaction.

Partnerships Developed: The number and type of organizational partnerships developed as a result of the project.

Access to Facilities: Assessment of proximity or access to a certain type of facility that changed as a result of your project. Proximity refers to how close a person is to a facility, and is typically measured from a person’s home or workplace. Access refers to a person’s ability to use that facility, which can be influenced by factors such as cost, proximity, availability, and ease of use. Access or proximity can be determined for the entire community, a neighborhood, or certain group (such as a demographic group).

Health Outcomes: The built environment influences a wide range of health outcomes, including heart disease, diabetes, cardiovascular disease, safety, stress, and depression. However, health data can be labor-intensive to collect and difficult to interpret. Further, changes in chronic disease outcomes may not be measurable in the short-term. Some short-term or immediate health outcome changes, such as changes in the number of pedestrian crashes after installation of a sidewalk and improved crosswalks, can be measured and included in an evaluation. If you are interested in measuring health outcomes to evaluate a built environment project, consult an experienced evaluator or epidemiologist to ensure health outcomes are being measured and interpreted appropriately. It is also important to note that in some cases Institutional Review Board (IRB) approval must be granted before collecting or using individual health outcome data.
Common Types of Data Collection Methods

Behavioral Observations: Behavioral observations, sometimes called direct observations, can be used to record how many people are using a facility, for how long, and for what purpose. They can also be used to record the demographics of people using a facility (such as sex and age), what types of behaviors they are engaged in (such as walking, biking, running, sitting), and who they are with (such as parents with their children, people running together). When observing the use of facilities that have been improved or expanded, a pretest-posttest design can be used to assess changes in behaviors by taking the same measurements before and after the improvement. Observations are conducted in a standardized way by a researcher or research team. When conducting behavioral observations, it is important to consider external factors that might influence the results such as weather, time of day, day of the week, or time of year/season. These factors can be accounted for by carefully choosing when the observations are conducted and recording these conditions as part of the observations.

Built Environment Assessments: A number of assessment tools are available for assessing and evaluating built environments (see the Tools and Resources section of this guide for examples). These tools often allow the evaluator to assess existing conditions before a project is implemented, then assess again after implementation to determine what changes have occurred as a result. These assessments often include scores or a rating system for features that promote walkability, bikeability, safety, access, social life, and other characteristics related to health. Built environment assessments are different from behavioral observations in that they primarily focus on characteristics of an environment itself, while behavioral observations are used to record information about how people behave in an environment.

Surveys: Surveys are tools used to collect information directly from people. Surveys can ask users (or potential users) about their behaviors, what they do and how often. They can ask about perceptions or knowledge of facilities, such as awareness of the amenities offered by a park, perceptions of safety along a greenway, knowledge about the relationship between active transportation and health, or how a particular facility might be improved. When using surveys, behavior change can be measured using a pretest-posttest design to ask how individuals’ behaviors changed before and after the facility was developed. This approach involves administering the survey twice, both before and after the change is made. If the survey is only given after the change, then include questions that ask about how individuals’ behavior, knowledge, or perception has shifted as a result of the change. Surveys can be administered via phone, email, in-person, or provided at facilities for users to fill out. When selecting people to survey, try to randomly select users, and if this is not possible then try to make sure the users surveyed are as similar as possible to (representative of) all facility users.

Existing Data and Records: Sometimes useful data have already been collected by others and can be used in an evaluation. These types of data could include process records, meeting minutes, U.S. Census data, Geographical Information Systems (GIS) map layers, or hospitalization data, among others. Some existing data sources are not appropriate for use in evaluation, so understanding the use and limitations of each of these types of data is important.
There are numerous types of built environment projects that aim to improve health. The project types listed below represent many of the types of initiatives funded by Tennessee Department of Health grants. Each project type includes a list of potential metrics that can be used to evaluate the projects, and methods that could be used for data collection. These are sample metrics and methods rather than a comprehensive list, and are intended to provide guidance only. Built environment projects should be evaluated based on their goals and expected outcomes, using metrics and data collection methods that are most appropriate for each individual project and context.

<table>
<thead>
<tr>
<th>Project Type</th>
<th>Metrics</th>
<th>Data Collection Methods</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trails and Tracks</td>
<td>- Number of users per day/week/month/year</td>
<td>- Behavioral observations to determine number of users</td>
</tr>
<tr>
<td></td>
<td>- Individual change in frequency of exercise since trail or track constructed</td>
<td>- In-person user surveys to determine change in exercise frequency</td>
</tr>
<tr>
<td></td>
<td>- Change in number/percent of all households in a given area within 1/4, 1/2, or 1 mile of an outdoor walking trail or track</td>
<td>- Analysis using GIS (map) layers and Census data to determine change in access to trails or tracks</td>
</tr>
<tr>
<td></td>
<td>- Change in total number of miles of trails and tracks in the community</td>
<td>- Public records or maps to determine change in total number of trail or track miles</td>
</tr>
<tr>
<td>Playground Equipment</td>
<td>- Number of users per day/week/month/year</td>
<td>- Behavioral observations to determine number of users and average number of hours being physically active on the playground</td>
</tr>
<tr>
<td></td>
<td>- Number of shared use agreements developed</td>
<td>- In-person user surveys to determine change in exercise frequency</td>
</tr>
<tr>
<td></td>
<td>- Change in number/percent of all households in a given area within 1/4, 1/2, or 1 mile of a playground</td>
<td>- Analysis using GIS (map) layers and Census data to determine change in access to trails or tracks</td>
</tr>
<tr>
<td></td>
<td>- Average number of hours each child spends physically active at the playground</td>
<td></td>
</tr>
<tr>
<td>Exercise Equipment</td>
<td>- Number of users per day/week/month/year</td>
<td>- Behavioral observations to determine number of users and demographics</td>
</tr>
<tr>
<td></td>
<td>- Demographics of users: sex and age</td>
<td>- In-person user surveys to determine change in exercise frequency and demographics</td>
</tr>
<tr>
<td></td>
<td>- Individual change in frequency of exercise since equipment installed - number of minutes per day/week</td>
<td></td>
</tr>
</tbody>
</table>
Built Environment Evaluation | Methods and Metrics

Project Type

Physical Activity Club

<table>
<thead>
<tr>
<th>Metrics</th>
<th>Methods</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of club participants</td>
<td>Attendance records or sign-in sheets to determine number of participants</td>
</tr>
<tr>
<td>Number of sites (schools, community centers, etc.) where clubs established</td>
<td>Administrative records or interviews with key stakeholders to determine number of sites where clubs established</td>
</tr>
<tr>
<td>Change in individual –level BMI</td>
<td>Accelerometer to determine energy expenditure</td>
</tr>
<tr>
<td>Change in energy expenditure per day/week</td>
<td>Aerobic fitness level can be calculated using distance and run time collected through observational data</td>
</tr>
<tr>
<td>Change in minutes of physical activity per day/week</td>
<td>Surveys to determine amount of physical activity (minutes and distance), self-report weight and height for calculating BMI, change in health knowledge, change in attitudes, and follow up surveys to determine maintenance of physical activity after conclusion of club</td>
</tr>
<tr>
<td>Change in distance run per day/week</td>
<td>Note: BMI is most reliable when measurements are taken by health care professionals, but this method is more time and resource intensive</td>
</tr>
<tr>
<td>Change in individual aerobic fitness level</td>
<td></td>
</tr>
<tr>
<td>Change in participant attitudes about running and being physically active</td>
<td></td>
</tr>
<tr>
<td>Change in participant knowledge of the health benefits of physical activity</td>
<td></td>
</tr>
<tr>
<td>Maintenance of running and physical activity after physical activity club has concluded</td>
<td></td>
</tr>
</tbody>
</table>

Sports Facility

<table>
<thead>
<tr>
<th>Metrics</th>
<th>Methods</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of users per day/week/month/year</td>
<td>Behavioral observations to determine number of users and average number of hours being physically active at the facility</td>
</tr>
<tr>
<td>Average number of hours each user spends physically active at the facility</td>
<td>In-person user surveys to determine change in exercise frequency</td>
</tr>
<tr>
<td>Individual change in frequency of exercise since</td>
<td></td>
</tr>
</tbody>
</table>
Built Environment Evaluation | Methods and Metrics

<table>
<thead>
<tr>
<th>Project Type</th>
<th>Metrics</th>
<th>Methods</th>
</tr>
</thead>
<tbody>
<tr>
<td>Farmer’s Market</td>
<td>♦ Total sales per week in dollars
♦ Sales per week per vendor in dollars
♦ Change in percentage of households in the community within 1 mile of a farmers market
♦ Number of farmers market visitors
♦ Total amount of SNAP sales
♦ Number of food education events and activities hosted
♦ Number of volunteer hours contributed</td>
<td>♦ Survey of market vendors to determine sales numbers, SNAP sales
♦ Surveys of market organizers to determine number of volunteer hours, number of education events and activities hosted, number of market visitors
♦ Observations to count number of market visitors
♦ Analysis using GIS (map) layers and Census data to determine change in access to farmers markets</td>
</tr>
<tr>
<td>Signage</td>
<td>♦ Number of signs installed
♦ Change in frequency of use of facilities promoted through signage</td>
<td>♦ Administrative records to determine number of signs installed
♦ Survey staff of promoted facilities to determine change in use following signage installation</td>
</tr>
<tr>
<td>Community Plan</td>
<td>♦ Number of participants or stakeholders engaged in the planning process
♦ Number of new partnerships developed
♦ Types of partners engaged in the planning process
♦ The extent to which the plan was formally adopted or institutionalized
♦ Change in participant knowledge about how the built environment impacts health
♦ Demographics of participants: metrics to determine</td>
<td>♦ Administrative process records (sign-in sheets, etc.) to determine number of participants, participant demographics, types of partners engaged
♦ Administrative records or participant surveys to determine adoption or institutionalization
♦ Participant surveys to determine new partnerships developed, change in knowledge about health and built environment</td>
</tr>
</tbody>
</table>
Built Environment Evaluation | Methods and Metrics

<table>
<thead>
<tr>
<th>Project Type</th>
<th>Metrics</th>
<th>Methods</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sidewalk</td>
<td>✦ Number of feet of sidewalk built</td>
<td>✦ Public or administrative construction records to determine number of feet built</td>
</tr>
<tr>
<td></td>
<td>✦ Qualitative assessment of type of connections made by sidewalk - what destinations were connected and the benefits of that connection</td>
<td>✦ Observations (online maps or in-person) to assess types of connections made</td>
</tr>
<tr>
<td></td>
<td>✦ Change in perceived safety for pedestrians</td>
<td>✦ Pedestrian survey to determine change in perceived safety</td>
</tr>
<tr>
<td></td>
<td>✦ Change in pedestrian crashes or near-misses along roadway with new sidewalk</td>
<td>✦ Behavioral observations to determine number of users, near-misses (almost crashes), other safety measures</td>
</tr>
<tr>
<td></td>
<td>✦ Change in use of destinations connected</td>
<td>✦ Public crash data (police) to determine changes in crashes involving pedestrians</td>
</tr>
<tr>
<td></td>
<td>✦ Number of people who use the sidewalk per day/week/month/year</td>
<td>✦ Walkability assessment to determine change in pedestrian environment score</td>
</tr>
<tr>
<td></td>
<td>✦ Change in score on a pedestrian environment or walkability index</td>
<td>✦ Survey of staff/employees at destinations to determine changes in use of destinations connected</td>
</tr>
<tr>
<td>Water Bottle Refill Stations</td>
<td>✦ Number of stations installed</td>
<td>✦ Behavioral observations to determine number of users, which can also be used to estimate number of disposable water bottles saved</td>
</tr>
<tr>
<td></td>
<td>✦ Change in total number of stations in the community</td>
<td>✦ Administrative or process records to determine number of stations installed</td>
</tr>
<tr>
<td></td>
<td>✦ Number of people who use the station per day/week/month/year</td>
<td>✦ Public or administrative records to determine change in total number of stations</td>
</tr>
<tr>
<td></td>
<td>✦ Estimated number of disposable water bottles saved/not used as a result of refill stations</td>
<td></td>
</tr>
</tbody>
</table>
What to Consider When Collecting Data

Points to consider when designing an evaluation:

- If measuring changes in behaviors or perceptions as a result of the new/improved facility, collect data both before and after the facility construction/improvement (pre-post design). If this is not feasible, phrase questions in the user surveys so they can self-report how their behavior or perceptions have changed.
- Use both quantitative and qualitative measures when possible. Sometimes both can be used to assess the same outputs or outcomes, each providing important information.

Points to consider when deciding how to conduct behavioral observations or in-person facility-user surveys:

- Location(s) where you conduct the observations or surveys: Choose locations that maximize your sample.
- Time of day, day of the week: Sample multiple days of the week and times of day to calculate average estimates of use.
- Season and weather: Record poor weather (cold, rain, etc.) that could account for a reduction in use.
- Other factors that might influence the data such as holidays or community events: Try not to collect data on these days, as they can impact use estimates.

Points to consider when designing a facility-user survey:

- Make sure your questions directly relate to the output or outcome you want to measure.
- Keep the survey brief: It should require less than 5 minutes to complete.
- Use plain language: Avoid jargon and use as few words as need when phrasing questions.
- You can ask demographics questions, but don’t ask for personally-identifying information.
Greenway Evaluation

This section provides an example of what a built environment evaluation could look like. Using a newly-constructed greenway as an example, project and evaluation goals are described, as well as partners, metrics, methods, and a sample logic model. This example is not intended to show how all greenway or built environment evaluations should be structured: each project and evaluation is different, and may have different goals or outcomes of interest. Rather, this example is intended to provide a general overview of how an evaluation can be planned and implemented.

Greenway Project Goals

The goals for the greenway are to:

1. Improve the health and well-being of people in the county.
2. Improve access, availability, and use of infrastructure that provides greenspace and promotes physical activity.
3. Build and strengthen working relationships between the health department, community organizations, and other partners.

Purpose of the Evaluation

The purpose of the evaluation is to inform the Tennessee Department of Health, county residents, and project stakeholders about the effectiveness of built environment grant funding in promoting and improving the health of county residents through use of the new greenway. The evaluation results will be reported to the Tennessee Department of Health via an online reporting system, as well as to county officials, community groups, and other stakeholders.

Stakeholders and Partnerships

The project will include several stakeholders and partnerships:

1. Local Health Care Council, Development District staff, Rural Planning Organization.
2. Local non-profit to provide community meeting space and assist with group facilitation.
3. Area university faculty and graduate students to assist with evaluation, group facilitation, and development of educational materials and media.
Logic model

This logic model was developed using the 3 project goals as a guide, listed at the top. Inputs, activities, outputs, and both short-term and long-term outcomes are included in the model, with arrows showing how each component leads to other components. This evaluation will focus on the impact of the greenway, measuring the project outputs and short-term outcomes. While the long-term outcomes are of interest, data for these impacts may be difficult to measure within the evaluation period. In the next section, sample metrics are identified for each output and short-term outcome, and potential data collection methods are suggested for collecting data on each metric.
Metrics and Methods

This section lists both the outputs and short-term outcomes from the logic model (see previous section). Each output or outcome then has one or two potential metrics that can be used to measure those outputs or outcomes. Then, potential data collection methods are listed for each metric. The metrics and data collection methods listed here are suggestions, and neither not required nor the only metrics and methods that can be used. Rather, they provide examples and show how metrics and measure directly relate to the project’s outputs and outcomes.
General Evaluation Resources

◊ Developing Evaluation Indicators: https://www.cdc.gov/std/Program/pupestd/Developing%20Evaluation%20Indicators.pdf
◊ Metrics for Healthy Communities: http://metricsforhealthycommunities.org/
◊ Identifying the Components of a Logic Model: https://www.cdc.gov/std/Program/pupestd/Components%20of%20a%20Logic%20Model.pdf

Built Environment Assessment Tools

◊ Pedestrian Environment Data Scan (PEDS) Tool: http://planningandactivity.unc.edu/RP1.htm
◊ Healthy Communities Walkability Assessment Tool: http://www.ipa.udel.edu/healthyDEtoolkit/docs/WalkabilityAssessmentTool.pdf

Behavioral/Direct Observation Tools

Evaluation and Assessment Guides

- Parks, Trails, and Health Workbook, CDC and National Parks Service: https://www.nps.gov/public_health/hp/hphp/resources.htm
- Improving Public Health through Public Parks and Trails: Eight Common Measures, CDC and National Parks Service: https://npgallery.nps.gov/RTCA/GetAsset/f09e69fc-2696-45e8-b4d5-90e4cea5e689
- Metrics for Planning Health Communities, American Planning Association: https://www.planning.org/media/document/9127204/
- Farmer’s Market Impact Toolkit: https://www.demonstratingvalue.org/resources/farmers-market-toolkit
- Farmer’s Market Survey and Evaluation Resources: https://farmersmarketcoalition.org/types/surveys-evaluation-and-research/

General Built Environment and Health Resources

- Healthy Places, Tennessee Department of Health: https://www.tn.gov/health/section/healthy-places
- Building Healthy Places Initiative, Urban Land Institute: https://americas.uli.org/research/centers-initiatives/building-healthy-places-initiative/
Surveys

- Trail User Survey Workbook: https://www.railstotrails.org/resourcehandler.ashx?id=3543
- Trail User Surveys, National Trails Training Partnership: http://www.americantrails.org/resources/adjacent/
- General Trail User Survey: https://www.railstotrails.org/resourcehandler.ashx?id=7312

Mapping, GIS, Census, and Other Population Data

- U.S. Census American Fact Finder: https://factfinder.census.gov/faces/nav/jsf/pages/index.xhtml
- U.S. Census TIGER Shapefiles for GIS mapping: https://www.census.gov/geo/maps-data/data/tiger.html
- Community Commons: https://www_communitycommons.org/
- County Health Rankings and Roadmaps: http://www.countyhealthrankings.org/
Contact Us | Office of Primary Prevention

Leslie Meehan, MPA AICP
Director
Office of Primary Prevention
leslie.meehan@tn.gov

Patti Scott, DNP RN PNP NCSN
Clinical Director
Office of Primary Prevention
patricia.scott@tn.gov

Mike Thompson, MEd
Commissioner’s Fellow
Office of Primary Prevention
michael.w.thompson@tn.gov

John Vick, PhD
Evaluation and Assessment Director
Office of Primary Prevention
john.vick@tn.gov

Matt Coleman, MPH CHES
Coordinator
Office of Primary Prevention
matthew.coleman@tn.gov

Nishi Dsouza, MPH
Commissioner’s Fellow
Office of Primary Prevention
nishita.dsouza@tn.gov