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Summary: Data cleaning is an important part of entity resolution and data linkage 
strategies for public health analytics. Prescription drug monitoring programs 
(PDMPs) have inherent data quality limitations created by multiple-user non-
standardized data entry.  Identification of patient entities in PDMP data is vital to 
many of the purposes of these databases.  In the Controlled Substances 
Monitoring Database (CSMD), Tennessee’s PDMP, patient names are key 
identification and linkage variables.  However, patient name text fields contain 
many data source-specific errors and require analytics-driven cleaning approaches 
to maximize use for entity resolution, data linkage, and statistical analyses.  
Strategies for cleaning patient names including identifying problematic data, 
record classification, and appropriate variable parsing strategies, are presented 
below.  The results of the cleaning procedure applied to the CSMD are described in 
support of our proposed methodology.  Examples and statistical programs are 
provided as a resource for analysts addressing similar data quality issues. 
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Introduction 
By the nature of their design, prescription drug monitoring programs (PDMPs) are susceptible to data-
entry issues at the dispenser level [1].  In Tennessee, our PDMP is the Controlled Substances Monitoring 
Database (CSMD).  Because the CSMD lacks unique identifiers, patient names are a critical component of 
entity resolution and linking records to other health outcome datasets.  Thus, cleaning the patient name 
fields is the driving focus of this report, and our goals here are to describe key data issues in using PDMP 
data as well as proposing analytics-driven cleaning solutions for patient names, using what we have 
discovered in working with the CSMD.  We also note here that while we use the CSMD as the framework 
for this discussion, all specific examples presented in this report using potentially identifying data 
such as names or birth dates are fabricated.  Results such as keyword lists or counts of classification 
types contain no such identifying data and are presented in their own section. 
 
The process of data cleaning can be loosely defined as identifying and repairing corrupted or inaccurate 
records in a dataset.  In general, data cleaning processes are concerned primarily with the standardization 
of data: de-duplication, formatting, appearance, and content.  The subject of data cleaning has been of 
increasing interest as digital datasets have become larger and more complex in not just health fields, but 
a wide variety of computing and business fields, and while there are some general procedures that are 
useful across these very diverse applications [2-4], there is also wide agreement that discipline-specific 
cleaning techniques are also necessary.  This is also true when dealing with PDMP-style databases. 
 
Patient name data cleaning comes with a more extensive set of challenges in PDMP datasets.  This stems 
primarily from two places.  First, we are dealing with records created by multiple dispensers who enter 
data in non-standard ways.  Second, an important component of entity management in a PDMP is 
linkage within a single database, as it is possible for multiple records to be associated with a single 
patient.  The complexity of balancing these challenges leads to the main issue: we must go beyond 
standard data cleaning techniques and cannot rely on a cleaning protocol developed for a different type 
of data source.  Because we are dealing with cleaning text fields with no standardization in data entry, we 
have applied manual data profiling to identify data issues prior to automating the cleaning process via 
statistical programming. 
 
To illustrate this point and give some insight into the nature of this process, let’s consider an example of 
problematic data in the patient name fields of the 
CSMD, shown in Table 1.  There are three name 
fields: FirstName, MiddleName, and LastName.  
The intention is that the dispenser enters the 
primary first name into FirstName and the full last 
name into LastName.  MiddleName may be used 
to hold a middle name or initial but may also be 
left blank.  Thus, the overall expectation is that the 
majority of both FirstName and LastName are composed of single-word entries. For comparison, we turn 
to the name entries in the database containing TN death records: less than 0.01% of these individuals 

Table 1: Multi-Word Variables in the Uncleaned 
CSMD 

One-Word 
First Names 

One-Word 
Last Names 

Frequency 
Count 

Percentage 
of Total 

NO NO 156824 0.81772 
NO YES 1685761 8.78993 
YES NO 132487 0.69082 
YES YES 17203245 89.70154 
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have a multi-word first name (223 out of 347,639) and 0.497% of these individuals have a multi-word last 
name (1,730 out of 347,639).  
 
We count the number of words in these two fields per record in the CSMD in Table 1.  We see that 89.7% 
of the CSMD is indeed formatted in the expected way.  A further 0.69% of records containing single-word 
first names and multi-word last names may also be expected, as persons with multi-word last names are 
a valid percentage of CSMD records and this percentage is not substantially inflated compared to the 
death certificate data.  However, the remaining 9.59% of the CSMD has questionable formatting.  While 
we may expect a certain degree of inflation in multi-word first names in the CSMD compared to the 
death data given that the CSMD is more likely to contain a preferred first name than the death certificate 
(for example, someone with a legal first name of ‘Cora’ and a legal middle name of ‘Ann’ may choose to 
go by ‘Cora Ann’ in daily life), it is clear that the percentage is high. Profiling these multi-word FirstName 
records quickly reveals that pharmacies enter notations (i.e., invalid information) in the name fields, which 
needs to be identified and removed to be able to use the names accurately for analyses.   
 
While this search is merely a rough estimation of the issue, it illustrates our point: the nature of CSMD 
data entry necessarily leads to problematic data in patient name fields,1 which means that attempting to 
create linkages utilizing these fields between databases or to identify patient-level prescription histories 
without implementing a deep cleaning procedure may result in missed patient information. 
 

Overview of Objectives 
We describe our methodology overall in this report and provide an appendix with statistical 
programming examples as a resource for general use in other settings.  We framed our process for 
name-field cleaning in the CSMD in terms of two overarching data-driven objectives: 

Objective #1 – Data Standardization 
This is the ‘typical’ goal of a data cleaning procedure, and we have previously described how 
there are a variety of resources on how to do this [2-4].  Our focus here is not only to standardize 
format (special characters, typos, etc.) but content as well, which is what makes manual 
verification an important part of this process. 

Objective #2 – Record Classification 
A unique challenge in the CSMD is that it contains records of multiple types: individual persons, 
individual pets, business supplies, and dummy records.  We use a flag-based approach to classify 
records into the appropriate categories. 

 

 In our cleaning algorithm, we chose to implement these objectives in tandem, using the process flow shown in 
Figure 1.  Prior to employing this algorithm, we first perform ‘basic’ cleaning procedures: upcasing, trimming 
trailing and leading blanks, and removing extra spaces between words .  The process flow should be used as the 
overarching visual for the algorithm, described in detail in the next section.

                                                            
1 A challenge in addressing this issue is that the assumption cannot be made that all multi-word entries are problematic.  Part of the complexity 
of the algorithm derives from the necessity that valid entries containing multi-word patient names must be treated differently than problematic 
entries containing a single name plus patient notations. 
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Key Elements of General Deep Cleaning Procedures 
In our cleaning process, we apply three overarching philosophical principles.  First, we do not overwrite 
original variables; all original information in the record must be preserved intact.  Second, our procedure 
is inherently data-driven; making assumptions about data structure without reading the dataset is 
inefficient.  Third, we practice conservative identification; when a record is ambiguous as to classification 
type, the default assumption is that the record is a person. 
 

I. Record Flagging 
In Tennessee, the CSMD tracks both human and non-human records, and one of our cleaning objectives 
is to classify records as human, animal (pet), business, or dummy records.  We endorse the use of record 
flags in not only this classification process but also in identifying how individual records are being 
cleaned.  This has two main purposes.  First, it allows the internal team responsible for data cleaning and 
management to keep track of which records have already been cleaned while developing their cleaning 
algorithm.  Second, it allows us to track cleaning issues in the database.  This is critical for providing 
feedback to teams developing front-end solutions to data issues; by identifying which dispensers are 
making which specific errors, training to improve data entry could be implemented for those who have 
greatest need of these services. 
 
Our procedure makes use of three main CSMD patient record classification flags: PetFlag, BusinessFlag, 
and DummyFlag (see Appendix A for a full listing of the specific variables used).  An ‘unflagged’ record 
using this system, then, is a person.  Additionally, we use placeholder flags as we are cleaning subsets of 
the database – for example, when cleaning a record of a suffix or prefix incorrectly placed in FirstName, 
we use FirstSuf as a flag that this record has been adjusted.  These placeholder flags are generally 
dropped at the end of the cleaning procedure, as they are not particularly useful in the cleaned dataset.  
The only exception to this is for researchers analyzing the cleaning process itself, the placeholder flags 
can be used to generate descriptive statistics2. 
 

II. Data Profiling 
The most data-driven piece of the cleaning process is the proper identification of keyword search terms.  
Because of this, keyword identification is one of the more time-consuming pieces of the procedure as 
well. As a first step, we recommend approaching the dataset in subsets of roughly 10,000 to 20,000 
records at a time.  Because reading the dataset is critical in not only identifying terms but also making 
sure that the algorithm is cleaning as it should, keeping each subset readably small is vital.  This isn’t the 
kind of routine where we can look at the first ten or twenty lines and see that it’s doing what it should; 
because each record can be quite unique in its challenges, the whole set must be read. 
 
As a consequence of this subsetting process, we have also observed in our work with the CSMD that it is 
highly impractical to attempt to write self-contained routines.  ‘Catching’ all of the desired name records 
on the first try is unreasonable; the database as a whole is just too big and diverse.  The data analyst 

                                                            
2 Further detail on specific flag variables is in Appendix A 
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must always be prepared either to edit prior routines or to simply add new sections as additional records 
are detected as the existing cleaning algorithm is implemented.   

 
Keyword Search Techniques for Patient Names 
There are several useful initial ways to subset the data to find useful search terms.  These include but are 
not limited to: 

• searching for special characters 
• searching for entries containing numbers 
• searching for multi-word entries 
• searching for ‘long’ entries3 
• searching for entries that contain no vowels 
 

Many standard sources on data cleaning recommend stripping special characters and numbers out of 
entries as a matter of course, much as they recommend stripping out multiple spaces between words.  
We found that this is counterproductive for our patient name fields in the CSMD.  Many pet and business 
records can be identified using special characters as a flag, as discussed below, and the numbers are 
often dates or other identification pieces that may be useful for entity resolution at a later time.  While 
we do eventually remove special characters from the names and move numbers into a separate variable, 
we initially leave them in the records as searchable terms.  Multi-word and ‘long’ entries are almost all 
either business records or records that have patient notations, and these searches are particularly useful 
for identifying further keywords that will be used to parse the records correctly.   

 
A specific and surprisingly useful technique that we identified in the CSMD involved searching for entries 
which have a second or third word containing no vowels.4 If the ‘word’ is longer than two letters, we can 
conclude that it is not a set of initials and must therefore be an abbreviation (e.g. CHK, MTM, RMR).  
Since it isn’t feasible that we would be aware of every possible abbreviation, running a ‘no vowel’ search 
can help us pick up those abbreviations that we weren’t aware of previously.  We tended to find this 
search especially useful after parsing the first word of the name into a separate column – more discussion 
of parsing techniques below – but it’s useful as one is finishing a routine and looking for any stray, 
uncleaned records. 
 
Even though database-specific searches need to be implemented on the ‘first pass’ of cleaning any large 
dataset like the CSMD, we can also give some indications of very common keywords found in the CSMD.  
First, we focus on search words for human records that need parsing.  Second, we discuss keywords that 
are helpful in record classification. 
 
 
 
 

                                                            
3 For the CSMD, we defined a ‘long’ entry as one having more than 20 characters, including spaces 
4 These entries are consistently formatted as NAME NOTATION, as in ‘MARY MTM’ or ‘JOHN RMR.’ 
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Keyword Specifics: Prefixes and Suffixes 
Possibly the most obvious phrases that need to be cleaned from our name variables are common 
prefixes and suffixes.  These include, but are not limited to: 

• Formal titles: Mr, Mrs, Ms, Miss 
o NOTE: Many usages of ‘Miss’ are in fact pets 

• Academic titles and suffixes: Dr, MD, DVM, DDS, PhD, DC 
o NOTE: Some use of these titles can indicate offices instead of persons 

• Religious titles: Sister/Sr5, Brother/Br, Father/Fr, Rev, Rabbi 
o NOTE: ‘Sister’ is a possible first name, especially in the Southeastern US 

• Common suffixes: Jr, Sr, III, IV, etc 
o NOTE: Watch out for all variations of these – we found III, 3rd, and THIRD in the CSMD 

 
Keyword Specifics: Numbers in Name Fields 
We have previously discussed the usefulness of searching for numbers in our name variables, but here 
we highlight in particular that the number of digits in the record can be helpful as well.  In the CSMD, we 
found that most entries that only contained one digit were actually a typo, whereas entries with multiple 
digits usually contained a notation.  We used this fact to create appropriate subsets in our cleaning 
algorithm, and Appendix B contains more detail on the mechanics of this process.   
 
Keyword Specifics: Patient Notations 
The final set of important keywords used to parse human records are intended to identify notations.  
Dispensers commonly use FirstName in the CSMD to make record notations, so we see records such as: 

• JANE CHECK DOB 
• JOHN CID 
• MARY MTM 1/3/14 

 
We have decided to retain these notations in a separate variable, but they must be identified first.  Our 
multi-word and long searches have proven useful in finding these terms, and we have also learned two 
additional techniques to help us find true instances of these notations without having to deal with too 
much over-identification.  First, we use trailing and leading blanks to find terms; for example, we search 
for ‘_ID_’ instead of just ‘ID.’  This excludes names like SIDNEY, which happen to contain the letter i beside 
the letter d.  Second, we attempt to identify the most common keyword in several phrases to keep our 
code efficient.  For example, if we look at the following phrases, we see a pattern: 

• SEE ID 
• CHECK ID 
• MUST ID 
• ID ONLY 

All of these phrases will be identified by searching for ‘ID.’  So instead of running four separate searches, 
we only run one and then adjust our parsing algorithm accordingly. 
                                                            
5 In the CSMD, we found that ‘SR’ at the beginning of a name tended to be ‘Sister,’ where ‘SR’ at the end of a name tended to be 
‘Senior.’  Reading the record can help clarify by providing context. 
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There are hundreds of possible notation keywords.  Here, we list a subset of useful ones, in addition to 
the previous example: 

NOTE BANNED FILL NO 
WORKMAN READ USE AKA 

DECEASE PREFER DOB SELF 
HOSPICE PAY TWIN ONLY 

 
Additionally, there are many pharmacy notations, related either to medication packaging or therapy 
management that are important.  Some of these include: 

MTM LOOSE DYE PIP 
EZ PHI NSC WC 

 
We also found the following keywords useful in identifying dummy records: 

ERROR VOID MISTAKE TEST 
DUMMY DO NOT USE HOUSE STOCK PATIENT6 

 
Identifying businesses can be quite complex, as there are a variety of ways the name can be entered.  It 
is also important to keep in mind that some common business terms, like the word ‘CENTER’ are also 
fairly common last names, which makes implementing this search more challenging.  Again, we present a 
subset of useful search terms: 
 

HOSPITAL INSTITUTE COUNTY DENTAL 
OFFICE ALLIANCE PEDIATRIC METRO 

SHELTER CLINIC MEDICAL *State name 
RESCUE SURGERY OF7  

 
Keyword identification is one of the pieces that makes deep cleaning procedures so complex.  The goal 
of this section has been to give the reader a starting point for running these searches, as well as a set of 
useful keywords to start with.  We end this section with the reminder that it is important to let the data 
guide these searches; every database will have a unique set of keywords. 

                                                            
6 When listed as a first name with no other indicators.  In the CSMD, a common dummy notation was FirstName: PATIENT, 
LastName: VOID.  
7 By searching for ‘OF’ with appropriate leading and trailing spaces, we can find entries like CITY OF, FRIENDS OF, and so on.  In 
the CSMD, this search successfully identified only businesses, but it is possible in another state that this search might also 
indicate patient notations.  
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III. Record Parsing 
Once a subset of data has been identified by keyword search as being in need of cleaning, the actual 
process of cleaning essentially consists of: 

• parsing name information into the appropriate variable(s) 
• parsing other retained information, such as notations, into the appropriate variable(s) 
• compressing unwanted words or characters 

 
We go back to the first guiding principle stated at the beginning of this section: we strongly recommend 
retaining all data.  To ensure this, our first step is to create a new variable set: UncleanedFirstName, 
UncleanedMiddleName, UncleanedLastName.  This set holds our original information.  We have found 
this to be a good method of tracking our cleaning progress because it may be easier in writing code to 
overwrite variables for a variety of reasons, and this way our original data remains untouched.   
 
Because of this principle of retaining as much data as possible, the only compressed terms are either 
non-alphanumeric characters or special cases of suffixes that are written phonetically, such as ‘THE 3RD.’  
In that case, the suffix ‘III’ would be parsed into the appropriate variable and the original phrasing would 
not be retained outside of the uncleaned record.  In the case of non-alphanumeric characters, we 
recommend removing all characters except a full stop, parentheses, dashes, and quote marks before 
running any keyword searches8.  Characters like !@#$ are not useful in the kinds of searches that we run 
in the CSMD.  Periods, parentheses, dashes, and quote marks are useful as search terms, however, and we 
recommend using PRXPARSE to index the position of any characters that are not either a space or 
alphabetic.  We have found the following uses for these special characters in parsing records: 

• periods can be used to separate initialed names such as C.J. if desired 
• parentheses can be used to identify nicknames, notations, or pet names 
• records beginning with quote marks are almost always pet names 
• dashes and quote marks in names can be used either to separate names if desired (MARY-BETH) 

or can be compressed if names make more sense that way (O’HARA) 
 
When parsing the names, we remind the reader that placeholder variables can be invaluable in this 
process.  They are especially useful when an entry contains more than two words or when a subset needs 
multiple if-statements to sort through its records.  Another reason we strongly recommend the usage of 
placeholder variables is because we have found it easier to clean FirstName and MiddleName 
simultaneously. 
 
 
In the vast majority of the CSMD (91.0%), the MiddleName variable is blank.  Because of this, it is more 
efficient to combine the first and middle name variables into a single placeholder and clean that 
placeholder.  Once keyword searches have been used to identify notations, special characters, and 

                                                            
8 See Appendix B for specific examples, including code, on how to remove characters from a string 
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prefixes, we use our placeholder variable in combination with an array to parse the names into the 
correct columns, including sample SAS code here because it makes more sense presented in context9: 

 array First(3) $ 50 First1-First3; 
placeholder = catx(" ", FirstName, MiddleName); 
 

   nameIndex = index(placeholder,' '); 
   i = 1; 
 
   do until(nameIndex <= 1); 
       First[i] = substr(placeholder,1,nameIndex-1); 
       placeholder = strip(substr(placeholder,nameIndex+1)); 
       nameIndex = index(placeholder,' '); 
       i+1; 
   end; 
 
Placeholders are also especially useful when notations are not uniformly formatted: 

• H011 MARY L 
• DONNA ROOM211 ANN 
• SUSAN 30 DAY SUPPLY 
 

In these cases, we would have identified all of these as records with notations due to the presence of 
numbers.  Since the notations are not in the ‘same place’ in the string, we would parse the first word, use 
an if-statement to see which entry contains a number, and put the notation or name in the appropriate 
place, moving to the next word in the entry and repeating the process until we were out of words. 

 
Parsing variables is a critical part of the data cleaning process.  Using placeholder variables helps us not 
only preserve original data but also optimize our algorithms so that we can manipulate records with 
differing formats within the same keyword search.  Due to the widely varying entry methods in the 
CSMD, this has proven to be crucial to our success. 
 
  

                                                            
9 Again, see Appendix B for definitions of functions and explanations for why we choose to structure our code in this way 
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Special Cases and Unique Procedures 
We developed methods for two special cases to address unique data features in the CSMD related to 
identifying non-human records.  Due to project resource constraints, these approaches have not been 
validated and are considered preliminary.  Details on these methods for informational and learning 
purposes are available upon request from the first author.   
 

Results 
We now turn our focus from theoretical examples and recommendations to the actual findings of our 
particular deep cleaning procedure on patient name records in the CSMD.  It is worth reminding the 
reader here that the below counts and percentages are results from the de-identified CSMD, whereas 
prior examples of potential name fields needing cleaning were fabricated for explanatory purposes.  
These results are framed in terms of our two objectives: classification and standardization.  We also 
investigate how the recommendations for keyword searches are supported by our results. 
 

I. Record Classification 
 
In Table 2, we see the breakdown of record types contained in the 
CSMD.  We can see that the overall percentage of non-human records is 
~0.5%.  We have found that animal and business records, due to their 
highly variable formats, are the most challenging to deal with 
analytically, and it is useful to be able to remove them from the dataset 
if desired.  It also be of interest to exclude non-human records for 
specific analyses. It is important to note here that the identification of 
non-human records was deliberately cautious to reduce the likelihood of 
incorrectly classifying human records as non-human, meaning that there are likely additional non-human 
records to be identified. Data cleaning work as regards this classification is an ongoing process.   
 
An example of this can be shown by examining the pre-existing SpeciesCode field in the CSMD.  
SpeciesCode is a non-required variable that dispensers are recommended to code as ‘1’ for any human 
record and ‘2’ for any non-human record.  Only 29.9% of the pet records identified by our cleaning 
procedure (N = 89209, as per Table 2 above) were previously flagged with SpeciesCode of ‘2’, and only 
42.3% of the business records we identified (N = 7137) had a previous SpeciesCode of ‘2.’  If SpeciesCode 
were utilized properly by all dispensers, it should identify 100% of our non-human records, and indeed 
make a classification algorithm unnecessary.  The lesson to be learned from this is that multiple-user data 
entry can render coding variables useless if they are not complete – a coding variable such as 
SpeciesCode should not be assumed valid without evaluation of data quality and completeness. 
 

II. Verifying Keyword Methods 
For the remainder of our results, we will be presenting counts from the assumed human records only.  
Non-human records, once classified as such, were not standardized and are thus not included in the 
subsequent parts of the cleaning procedure. 
 

Table 2: Record Classification 
in the CSMD After Cleaning 

Record 
Type 

 
N 

 
% 

Human 19081768 99.5 
Animal 89209 0.465 
Business 7137 0.0372 
Dummy 203 0.00106 



12 

One of the keyword searches we recommended in the previous section involved 
special characters.  We stated that rather than stripping all such characters out, 
they could be used for classification and parsing purposes.  Table 3 presents a 
count of the highest frequency special characters; we do not list percentages 
because some entries have multiple characters, making aggregation less 
meaningful.  As we interpret these results, we must remind ourselves that there 
are many names that actually have non-alphabetic characters in their proper 
form.  While we must remove these characters, as they make analytics difficult, 
it’s important to bear in mind that high frequencies do not necessarily imply 
entry errors or extraneous notations.  This is supported by the fact that dashes 
are by far the most common character in our name fields – due to the relative 
frequency of both hyphenated first and last names, this should not be surprising.  
We actually see that the top five special character types found are the special 
characters that we recommend leaving in the name variables to use as search 
keywords. 
 
In addition to hyphens being part of some proper names, we have also stated 
that parentheses and numbers often indicate notations. Quotes also show up in names with accents 
because that is often how the accents translate in a US digital entry format, but can also be useful in pet 
record classification.  Periods can indicate an initialed nickname and commas are often used when a suffix 
is indicated.  For these reasons, we cannot assume that these characters are typos to be stripped out, and 
the high frequencies in Table 3 support this argument.  The rest of Table 3, however, is more indicative of 
characters resulting either from typos or from dispenser-unique formatting choices.  They are not 
common enough in the database to be useful as search parameters, and our results confirm our initial 
recommendation of stripping them out of the name variables prior to deep cleaning. 
 

Let’s focus now on the numbers appearing in name fields in the CSMD.  Table 3 
showed us the overall count of records containing numbers (N = 15389).  Table 4 
shows us the number of digits present in each of these number-containing 
entries.  We are interested in this count as we have found that low numbers of 
digits are more indicative of typos to be corrected (eg, DAV1D, J0HN, etc.).  We 
see in Table 4 that single digits are the most common occurrence in name 
variables containing numbers, being 63.9% of all the entries flagged as 
containing at least one number prior to cleaning, but because there are multiple 
sources, we were careful to write our cleaning algorithm so that it accommodates 
the variety of ways this single digit can appear; in the next section, we will see 
that single trailing digits can occur as ‘notations’ as well as single digit typos 
already shown.  The higher number of digits observed in other entries were either 
ID numbers or part of patient notations and could be treated more uniformly in 
our cleaning method. Further analysis of the numbers present showed that the 

most common digit to show up, independent of the total number of digits in a single variable, was the 
number 1.   

Table 3: Special 
Characters 

Character Frequency 
- 141732 
( ) 31213 
" '  21109 
0-9 15389 
. , 3133 
} 1340 
/ \ 923 
& 380 
` 378 
_ 346 
^ 286 
# 140 
; 126 
+ 98 
[ 97 

Table 4: Number of 
Digits Per Entry 

Number 
of Digits Frequency 

1 10260 
2 1901 
3 660 
4 603 
5 1740 
6 177 
7 202 
8 402 
9 94 

10 12 
11 4 
15 1 
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III. Frequency Distributions of Cleaned Variables 
 
First, let’s look at the results of the standardization issues that require record parsing: the presence of 
notations, prefixes/suffixes, or non-alphabetic characters.  
These results are summarized in Table 5. 
The biggest concerns in the human records are non-
alphabetic characters and suffixes.  This makes logical 
sense, as some names contain special characters such as 
apostrophes or dashes when entered correctly, and 
generational suffixes are another relatively common non-
standard name addition. 
 
Let’s focus on prefixes and suffixes first.  While the CSMD does have pre-established variables for 
NameSuffix and NamePrefix, because they are not required to be completed, we see a pattern of name 
fields being used for suffixes and prefixes instead of these variables – Table 6 compares usage of 
NameSuffix and NamePrefix to the suffixes and prefixes cleaned from the name variables.  Cleaning for 

prefix keywords identified an additional 6658 records containing 
prefixes – this means that 14.8% of all identified prefixes were only 
found after cleaning.  The pre-established suffix variable is less 
properly used: cleaning identified an additional 89411 records, 
meaning that 59.6% of all identified suffixes were only found after 
cleaning.  There were 1186 additional cases where NameSuffix was 

utilized, but name field cleaning identified a second redundant suffix in a name variable.  We recall, 
however, that the goal of cleaning is not so much to identify suffixes and prefixes as it is to remove them 
from name fields to facilitate the use of the names for analytic purposes. 
 
While keeping this objective in mind, we still believe it to be useful to 
look at the most common prefix and suffix occurrences, to verify the 
keyword search terms proposed in previous sections.  Table 7 looks at 
the cleaned prefix/suffix distributions in the human records of the 
CSMD.  The percentages calculated are in relation to the total number 
of cleaned prefixes (N = 6622) and cleaned suffixes (N = 91735) 
identified by our deep cleaning procedure.   
 
Another keyword search requiring parsing to remove extraneous information from name fields concerns 
the identification of notations, and in previous sections, we presented several potential search terms for 
this procedure.  Table 8 below shows the most common notations identified by our cleaning procedure 
and calculates the percentage out of the total number of records with notations (N = 54955, from Table 
5).  While these are literal counts, we recall that there are also sets of notations that are ‘grouped’ – 
identified by a common search term.   
 
 
 
 

Table 5: Standardization Issues in the CSMD 
Name Fields 

 
N % 

Contains Notations 54955 0.29 
Contains Suffix 91735 0.48 
Contains Prefix 6622 0.03 
Contains Non-Alphabetic 210035 1.10 
Other Human Records 18718519 98.10 

Table 6: Results of Prefix/Suffix 
Cleaning in Name Fields 

 

Before 
Cleaning 

After 
Cleaning 

Has Prefix 38239 44897 
Has Suffix 60637 150048 

Table 7: Top 3 Prefix/Suffix 
Frequencies After Cleaning 

  
N % 

Prefixes MR 3516 53.10 

 MS 1283 19.37 

 DR 1149 17.35 
Suffixes JR 59440 64.80 

 SR 14030 15.29 

 III 9235 10.07 
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It turns out that the single most common type of notation in the name fields 
result from searching for variants on ‘ID.’  If we search these notation records 
for any entry containing a reference to ‘ID,’ we find 4728 records, which is 
8.60% of all of our notations.  The top two ‘ID’-containing entries are ID and 
SEE ID, shown in bold in Table 8.  We also noted in our prior discussion of 
name fields containing numbers that records containing a single digit are the 
most common, and we see from Table 8 that some of those single-digit 
records are single trailing digits, shown as notations rather than typos.  
 
As a final note of interest, we return to Table 1, where we observed that 
approximately 9.5% of the uncleaned name fields had non-standard 
formatting in the FirstName variable.  In our results, we have shown that 
record classification and record parsing do not account for anywhere near that 
percentage of the CSMD records – only 0.5% of the database is classified as 

non-human based on our procedures, and only about 2% of the database contains errors such as 
notations, suffixes, or non-alphabetic characters.  So what else is going on?  
 
We have observed in a previous section that approximately 91% of all 
records have an empty MiddleName variable.  The overwhelming majority of 
cleaning that needs to take place in the CSMD is simply to look at records 
that need their name variables parsed properly.  To explore this, we looked 
at all records in the CSMD that have multiple words in FirstName (N = 
1,661,491), then we subsetted this to only assumed human records (N = 
1,590,488), and then we subsetted further to only the records that did not 
have notations, suffixes, or non-alphabetic characters, leaving us with 
1,518,424 records, which is 91.4% of our original subset.  These records do 
need cleaning, but not the deep cleaning we’ve described in the previous sections.  Essentially, these 
records have middle names that need to be moved into the correct variable, which is confirmed in Table 
9 by looking at the length of the ‘second word’ contained in these FirstName entries – the vast majority 
of them are just one letter long; they are simply middle initials. 

 

Conclusion 

Data cleaning is a key component of entity resolution and data linkage strategies for public health 
analytics.  In Tennessee, we use our PDMP data to conduct analyses to address the opioid crisis by 
providing answers to questions regarding use of opioids and adverse outcomes, and to identify 
populations most at risk.  These analyses require accurate patient entity resolution and linkage to health 
outcomes data.  Because the CSMD doesn’t require systematic collection of unique identifiers, patient 
names play a key role in entity management.  In this report, we’ve suggested a potential methodology to 
apply when cleaning patient name fields to maximize use of available information to identify patient 

Table 8: Most 
Common Notations 

Identified By Cleaning 
Notation N % 
CRH 3044 5.51 
1 2515 4.56 
CC 1794 3.25 
2 1634 2.96 
MOT 1289 2.33 
ID 1034 1.87 
3 904 1.64 
SEE ID 851 1.54 
DEL 771 1.40 
4 736 1.33 
WC 712 1.29 

Table 9: Middle Name 
Length After Cleaning 

Name 
Length 

 
N 

 
% 

1 1162338 76.55 
4 91896 6.05 
5 87580 5.77 
3 77268 5.09 
6 50448 3.32 



15 

entities, using the results from the CSMD to illustrate the usefulness of this methodology.  We hope that 
these procedures will be helpful to readers who are looking at cleaning their own data.   
 
One limitation to note is that our cleaning process did not systematically address misspellings of names. 
Due to the highly variable nature of names and potential for atypical spellings and nicknames, this was 
beyond the scope of this paper. We are implementing processes that account for name misspellings and 
common variations in our ongoing entity resolution work using algorithms that incorporate fuzzy 
matching techniques and using SAS DataFlux Data Management Studio.    
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Additional Resources 
Because of the specific challenges in cleaning the CSMD, the references listed below are essentially the 
documents we found useful in constructing SAS code.  We are not treating this as a formal reference 
section for this reason, and this is by no means a comprehensive listing of literature on data cleaning. 

[1] Prescription Drug Monitoring Program Training and Technical Assistance Center. (April 2015). 
Technical Assistance Guide: PDMP Suggested Practices to Ensure Pharmacy Compliance and Improve 
Data Integrity. Brandeis University. Retrieved 
from http://www.pdmpassist.org/pdf/Resources/Pharmacy_compliance_data_quality_TAG__FINAL_201
50615_A.pdf    

[2] Dusetzina, S., Tyree, S., & Meyer, A. (2014, September 4). Appendix 4.1, Useful SAS Functions and 
Procedures. In Linking Data for Health Services Research: A Framework and Instructional Guide. 
Rockville, MD, US. Retrieved from https://www.ncbi.nlm.nih.gov/books/NBK253312/   

[3] Christen, P. (2012). Data Matching: Concepts and Techniques for Record Linkage, Entity Resolution, 
and Duplicate Detection. Springer Publishing Company, Incorporated. 

[4] Cody, R. (2017). Cody’s Data Cleaning Techniques Using SAS®, Third Edition. Cary, NC: SAS Institute, 
Incorporated. 

 
We also found the following SUGI papers to be extremely useful: 

129-29, The Perks of PRX: http://www2.sas.com/proceedings/sugi29/129-29.pdf 

247-31, An Introduction to Character Functions: http://www2.sas.com/proceedings/sugi31/247-31.pdf 

059-30, A Clever Demonstration of the SAS SUBSTR 
Function: http://www2.sas.com/proceedings/sugi30/059-30.pdf 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

http://www.pdmpassist.org/pdf/Resources/Pharmacy_compliance_data_quality_TAG__FINAL_20150615_A.pdf
http://www.pdmpassist.org/pdf/Resources/Pharmacy_compliance_data_quality_TAG__FINAL_20150615_A.pdf
https://www.ncbi.nlm.nih.gov/books/NBK253312/
http://www2.sas.com/proceedings/sugi29/129-29.pdf
http://www2.sas.com/proceedings/sugi31/247-31.pdf
http://www2.sas.com/proceedings/sugi30/059-30.pdf
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Appendices 
A. Primary Variables Used in Name Cleaning Procedures for the CSMD 
Below, we present a brief summary of the relevant variable fields that exist in the CSMD before and after 
name cleaning. 

Pre-Existing Variables 

Field Name Description Role in Cleaning 
FirstName Contains primary first 

name 
Needs to be cleaned; can contain notations, 
unwanted special characters, or other extra 
information such as prefix/suffix 

MiddleName Contains middle name or 
initial (optional) 

Mostly empty; needs to be cleaned, but can be done 
in tandem with FirstName; subject to same cleaning 
issues as above 

LastName Contains full last name Needs to be cleaned; subject to same cleaning 
issues as FirstName 

DateOfBirth Contains date of birth in 
SAS time-date format 

Can be used as a secondary ‘screening’ variable for 
initially identifying potential non-human records  

NamePrefix Contains preferred prefix 
(optional) 

Used only after cleaning for comparison in 
descriptive analysis 

NameSuffix Contains preferred suffix 
(optional) 

SpeciesCode ‘1’ for human prescriptions, 
‘2’ for non-human 
prescriptions (optional) 

Cleaned Variables Created By Deep Cleaning Procedure 

Field Name Description Notes on Cleaning 
UncleanedFirstName Contains contents of 

original FirstName 
Retains original information for comparison or after-
cleaning analysis 

UncleanedMiddleName Contains contents of 
original MiddleName 

UncleanedLastName Contains contents of 
original LastName 

First1-First4 Contains cleaned first and 
middle names; each 
variable only contains a 
single word 

Cleaned name fields are parsed into separate 
variables because it’s easier to concatenate strings 
later than to parse them a second time Last1-Last4 Contains cleaned last 

names; each variable only 
contains a single word 

BirthYear Created from DateOfBirth 
to contain only the birth 
year as a numeric variable 

Like DateOfBirth, can be useful in identifying initially 
identifying potential  non-human records  

PetFlag ‘1’ for identified pet/animal 
prescriptions, ‘0’ otherwise 

By flagging non-human records as they are 
identified, they can be removed from the algorithm 
for efficiency; additionally, flags can be used to BusinessFlag ‘1’ for identified business 
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records, ‘0’ otherwise identify records of interest after cleaning 
DummyFlag ‘1’ for voided records, ‘0’ 

otherwise 
PetName Contains cleaned pet 

names from animal 
prescriptions 

Name of pet is less important than name of owner 
for analytics; if pet name is present in animal 
prescription, it’s moved here. Owner name (if given) 
goes into First/Last variables 

SpeciesName If cleaned animal 
prescription contains 
species information, it is 
placed here 

Variable exists mostly for descriptives or a potential 
future analysis; current CSMD projects are not 
focused on non-human records. Species is 
preserved in the interest of not deleting any 
information 

CleanNamePrefix Contains cleaned prefixes Cleaned prefix/suffix are put in their own fields for 
comparison to original NamePrefix/NameSuffix after 
cleaning 

CleanNameSuffix Contains cleaned suffixes 

ChildFirst Contains child first name 
information  

A few records are worded with mother’s name and 
child’s name (JANE BABY JOHN); these variables 
contain the cleaned child’s name. Mother’s name is 
in First/Last variables 

ChildLast Contains child name 
information if last name 
differs from LastName 

PatientNotes Contains cleaned notations All non-name information in any name field is 
placed here; majority of these appear to be 
notations or some sort of business-specific ID 
numbers. Retained for potential later use in analytics 
projects 

PrefFlag ‘1’ if cleaning process 
identified a prefix in a 
name field, ‘0’ otherwise 

Post-cleaning flags simply used to generate internal 
statistics to see what the algorithm is doing; also 
used to generate descriptives if desired (see Results 
section) 

SufFlag ‘1’ if cleaning process 
identified a suffix in a name 
field, ‘0’ otherwise 

NotesFlag ‘1’ if cleaning process 
identified a notation in a 
name field, ‘0’ otherwise 

CharFlag ‘1’ if cleaning process 
identified a special 
character in a name field, 
‘0’ otherwise 

NumFlag ‘1’ if cleaning process 
identified a number in a 
name field, ‘0’ otherwise 
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B. A Basic Overview Of SAS Techniques 
SAS is an excellent tool for cleaning large datasets and has a number of functions that are extremely 
useful for text cleaning in particular.  There are several websites and SUGI papers that discuss the basic 
cleaning functions, and a summary of these functions will be presented below.  But for the kind of deep 
cleaning that we propose on PDMP-type databases, there are several non-standard routines that are 
extremely useful and are not found by a simple documentation search.  To illustrate this, let’s look at a 
dataset containing three irregular records: 

 

This will be the main sample that we work from throughout this section. 
 

I. Standard Cleaning Functions 
There are several basic functions that any cleaning procedure is going to utilize.  These basic functions 
are detailed in many resources and we simply list them below, noting any potential issues. 

• left 
Syntax: 
 varName = left(varName); 

• trim 
Syntax: 
 varName = trim(varName); 

NOTE: There is a function called STRIP that will simultaneously remove trailing and leading spaces.  
Depending on your data requirements, it’s slightly faster to run.  If you know that you don’t need 
these spaces, then I’d recommend running strip instead of left and trim.  

• upcase 
Syntax: 
 varName = upcase(varName); 

• compbl 
Syntax: 
 varName = compbl(varName); 

• compress 
Syntax: 
 varName = compress(varName,'$'); 
 where $ is a placeholder for any character or characters that you are looking to remove.   

Some cleaning references recommend using compress to strip all special characters from 
variables at the outset, but we have found in our work on the CSMD that some special characters 
are useful searching parameters and therefore do not recommend stripping non-alphanumeric 
characters until later in the cleaning process. 

• tranwrd 
Syntax: 
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 varName = tranwrd(varName, '$', 'R'); 

where $ is a placeholder for the character string you want to change and R is a placeholder for 
the string you want to replace it with 

 

II. Arrays 
Some readers may already be familiar with arrays, but they are so useful in cleaning that we give a brief 
overview here just in case.  An array in SAS is basically a variable that consists of a collection of variables.  
We can declare an array using the following syntax: 

array vary(3) var1-var3; 

We now have a variable called vary that contains the three variables var1, var2, and var3. 

This is important because an array can run on an internal loop within a datastep.  From a pure 
programming perspective, a SAS datastep is a big ‘do-loop.’  When you run a datastep, what you’re 
telling SAS is, “Look at each record in my file and do these things to it.”10  Do-loops are great when you 
want to run a repetitive process on a large number of records or variables, and setting up variable arrays 
allow you to do to variables what SAS is already doing to the records.  Here’s some code: 

data cleaning2; 
 set foo; 
 
 array vary(3) var1-var3; 
 
 do i=1 to 3; 
  vary[i] = left(trim(compbl(upcase(vary[i])))); 
  vary[i] = compress(vary[i], '+-'); 
 end; 
 
 drop i; 
run; 

This code efficiently performs a basic cleaning routine on our example dataset, giving us the following 
output: 

 

Let’s break it down.  After declaring our array, we set up our do-loop with ‘do i=1 to 3; ‘, where we’re 
telling SAS to “look at each variable in our array and do the following stuff to it.”  The first step performs 
all of our formatting functions in a nested function, removing trailing and leading spaces, as well as 
internal extra spaces and converting the string to uppercase characters.  The second step removes the 
unwanted special characters, ‘+’ sign and ‘-‘.  We always have to tell SAS when the do-loop is over by 
using an end-statement.  For personal preference and space considerations, we drop the variable ‘i’ at 
the end of our datastep because we only needed it for the do-loop. 

                                                            
10 A major drawback to this construction is that during a datastep, SAS can only ‘look’ at one record at a time. This is 
problematic if you want to compare record values to each other in a single datastep creation, but that’s not necessarily 
pertinent to data cleaning. 
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Arrays are not only an incredibly useful tool in basic cleaning, like the above functions, but a powerhouse 
in all programming applications, whether working in SAS or not, and it is definitely worth the time it takes 
to master their use. 
 

III. Search Functions 
There are really two main ways to search string variables.  The preferred method depends on what you’re 
trying to find. 

One method is to use the SAS function find.  Its syntax is: 

  find(varName, 'search string', 'i'); 

The first two parameters are required, and the third is optional.  What this function does is scans the 
variable of interest for whatever string is given.  It actually returns a number – the position of the first 
letter of the identified string – but we’re usually not interested in that number because we’re using find 
as a condition in an if-statement. 

The third parameter, ‘i’ is an indicator to SAS to make the search case-insensitive.  If you’re implementing 
proper cleaning technique, you’ve already upcased your dataset, in which case you could just run: 

find(varName, 'SEARCH STRING'); 

and it should work fine.  But!  If you make a single case mistake, your search won’t work.  It is our 
recommendation that you always include the case-insensitive parameter as a guard against errors. 

The other search method is to look for explicit equalities: 

varName = 'SEARCH STRING'; 

There’s no way to make this case-insensitive, so it will always be error-prone in that regard.  This method 
is a more strict technique, as it will disregard any variable that isn’t an exact match, but depending on 
what you need, that may be useful.  Let’s look at some code to see how these work. 

 data searchExample; 
 /* Let's use the cleaned dataset formed in our 'Array' section */ 
 set cleaning2; 
 
 result = find(var1,'sus', 'i'); 
 result2 = find(var1, 'sie', 'i'); 
 
 put '  ' result= result2=; 
 put ''; 
 
 if find(var2, 'ddy', 'i') then put '  ' var1 var2 var3; 
 put ''; 
 
 if var3 = 'JONES' then put '  ' var1 var2 var3; 
 put ''; 
 
 if var3 = 'jones' then put '  Found it!'; 
 else put '  Not found!'; 
 put '  End of record'; 
 put ''; 
run; 
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Some of these statements are used to make the output log readable.  Here it is: 

 

First, we can see that the datastep goes through one record at a time.  So the first five lines pertain to the 
‘Susie’ record, the next section to the ‘Steve’ record, and the last section to the ‘Paul’ record. 

In the Susie record, our code for result and result2 will return the position of the first letter of ‘SUS’ for 
result and the position of the first letter of ‘SIE’ for result2, which is why we correctly see result=1 and 
result2=3.  Since neither of those strings are present in the last two records, find will return zeroes, which 
is exactly what we see. 

In the next section of code, we used a find as the conditional in an if-statement.  What will happen here is 
that if find returns a value larger than 0, meaning that the string is present in the record, the if-statement 
will treat it as TRUE11.  Since the only var2 that has a ‘ddy’ in it is in the ‘Paul’ record, where find will return 
a value of 3, that’s the only record we see for the output in that line. 

The next section has an if-statement with a stronger conditional.  var3 must actually equal the string 
‘JONES,’ and we know that in the ‘Steve’ record, it does.  Notice two things here.  First, if the data had not 
been previously formatted using left and trim, this statement would not have worked.  ‘  JONES  ’ is not 
the same string as ‘JONES.’  We can see how this is a problem by looking at the next statement, where 
SAS searches for the string ‘jones.’  Since equality can’t be case-insensitive, it doesn’t find the lowercase 
‘jones’ string anywhere and returns Not found for all three records, even though we do have Jones as a 
last name. 

Thus, when using search functions, we need to be aware of how strong we need a search to be and how 
SAS will behave in each case.  While we have presented the most simple search options above, we will 
see that there are more sophisticated ways to search strings for information as we move forward. 
There’s a useful trick we can use when looking at records by using find that bears mentioning here.  Let’s 
look at a ‘messier’ dataset than the example we’ve been working with: 
                                                            
11 In computer logic, we generally treat ‘0’ as FALSE and ‘1’ as TRUE – the value for 2+2=4 would be 1 and the value for 2+5=4 
would be 0 in this sense – and if-statements run basically as ‘if 1 then do’ or ‘if 0 then don’t do.’  But SAS has a strange little 
quirk where its if-statements read any number bigger than zero as TRUE.  When we use find as a conditional, we are 
exploiting this quirk.  But recall that it’s SAS-specific.  If you try this trick in other scripts or languages, it won’t work! 
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A big part of entity management in PDMP-style databases concerns the fact that dispensers often use 
the name categories to make patient notations.  To clean these, we first have to find the records that 
have these notes.  So here’s some code that does that: 

data identify; 
 set foo; 
 
 array variables(3) var1-var3; 
 
 do i=1 to 3; 
  if find(variables[i],'id', 'i') then ID_Flag = 1; 
 
  if find(variables[i], 'dob', 'i') then DOB_Flag = 1; 
 end; 
 
 if ID_Flag ^= 1 then ID_Flag = 0; 
 if DOB_Flag ^= 1 then DOB_Flag = 0; 
 
 drop i; 
run; 

A note concerning arrays before we look at the output: we used an array to run our find search so that 
we could look at each variable in the record at once.  We can’t use an if-else statement here because our 
flagged values would be overwritten by later variables.  Now, here’s the created dataset: 

 

It looks like SAS has made a mistake!  It flagged record 2 as having notations when it doesn’t. 

Remember that find is searching without context – the name David ends in ‘id,’ so it will be flagged by 
our search, as will the name Dobbler, which contains ‘dob.’   

Here’s the nifty trick: we can use leading and trailing spaces in our search term to narrow it down.  So 
let’s adjust our code a little: 

data identify; 
 set foo; 
 
 array variables(3) var1-var3; 
 
 do i=1 to 3; 
  if find(variables[i],' id ', 'i') then ID_Flag = 1; 
 
  if find(variables[i], ' dob ', 'i') then DOB_Flag = 1; 
 end; 
 
 if ID_Flag ^= 1 then ID_Flag = 0; 
 if DOB_Flag ^= 1 then DOB_Flag = 0; 
 
 drop i; 
run; 
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Our new dataset: 

 

When we use spaces around our search term of interest, it can help weed out similar terms.  If SAS is 
looking for _id_, then David won’t be flagged.  Two drawbacks to note here.  The first one is usually less 
of an issue and has an easy fix: if your search term occurs at the very end of a string, then putting a 
trailing space on your find function will exclude that record.  But when we say end of the string, we mean 
the end of the declared string length – notice that our search above still picked up the ‘dob’ at the end of 
the first record’s var3.  This string looks like it’s 12 characters long, but when creating the dataset, we 
preset all of our variable lengths at 20 characters using the following syntax: 

 length var1-var3 $ 20; 
 informat var1-var3  $char20.; 
 input var1 var2 var3 $; 

This way, the trailing spaces on a find are accommodated by the fact that each variable has ‘extra space’ 
at the end.  We recommend that when importing your dataset, you should include explicit length 
statements for each name category (we used 50 characters) so that you can avoid this issue. 

The second issue with our find trick is less fixable: using leading spaces automatically excludes instances 
at the beginning of the term.  If we’re searching for ‘ID,’ and the notation is ‘ID JANE,’ then our find 
function above won’t see it.  The recommended workaround is to use: 

find(var1, ' id ', 'i') | (substr(var1,1,3) = 'ID ') 

A detailed description of the substr function is in the next. 
 

IV. Strings and Numerics 
For the kind of data cleaning discussed here, we deal mostly with strings.  As we do so, it’s critical to bear 
in mind that SAS treats strings and numbers very differently.  For many operations, this doesn’t matter 
much, but when we’re looking at conditional statements, it can be quite important.  Especially when 
using comparison statements in our logic (equal to, greater than, etc). 

We’ve already discussed one string comparison: ‘ABC’ = ‘abc’.  Here, SAS would return a 0, meaning 
FALSE, because its equality is case-sensitive.  It’s exactly comparing the whole string along its length, 
which is why ‘ABCDE’ = ‘ABCDF’ would also result in a 0.  If you’re trying to find exact strings, there’s no 
problem here. 

String operators can be modified in SAS using a colon however.  If you submit ‘ABC’ := ‘ABCDE’, then SAS 
will return a 1, meaning TRUE! 

The colon modifier is used when comparing strings of differing lengths.  What it essentially does is chops 
off the end of the longer string to make them equal.  So by putting := in the above statement, what SAS 
is comparing is ‘ABC’ = ‘ABCDE’.  The first three characters are the same, so SAS returns TRUE. 

The colon modifier can be used on any comparison operation for strings and it more or less does the 
same thing each time.  We note here that while SAS will use the ASCII collating sequence to report such 
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statements as ‘G’ is greater than ‘A,’ we don’t recommend using this in cleaning.  It’s just too easy to lose 
track12. 

Plus, there’s an easier way to compare parts of strings than mastering colon modifiers, and that is to use 
substr. 

  substr(varName,start,length); 

Substr looks at the portion of the string specified by the starting positon start and length length.  So we 
could instead type: 

 varName = 'ABCDE'; 
 substr(varName,1,3) = 'ABC'; 

This logic statement simply asks if the first three characters of varName are equal to the string ‘ABC’.  It 
does the same thing as the colon statement, but it does so in a more readable way.  This method is 
admittedly slightly less efficient, but we recommend it as a more straightforward process, especially for 
someone less familiar with programming logic. 

The other key difference between strings and numerics that will be of use here concerns the NOT EQUAL 
comparison.  Depending on how your statement is constructed, SAS will sometimes handle a phrase like: 

varName ~= 'ABCDE'; 

in a strange manner.  We have found that it’s more effective to use the equivalent statement: 

~(varName = 'ABCDE'); 

It behaves identically and never gives errors. 

One last point regarding conditional comparison – it can be used in SAS to construct subsets. 

Let’s say we want to use a datastep to construct a subset of our example data: 

data subset; 
 set cleaning2; 
 
 if (find(var1,'sus','i') | find(var2,'ddy', 'i')); 
run; 

If we do this, the set subset contains: 

 

It has identified only the records with var1 containing ‘sus’ and var2 containing ‘ddy.’ 

Two things about why this works: first of all, we’re exploiting the fact that SAS considers 0 a logical FALSE 
and any positive number a logical TRUE.  So we’re setting up a truth table-type scenario here with our OR 
statement – any evaluation that isn’t F | F will return a 1 for TRUE.  So when we look at our if-statement, 
we’re taking our OR statement and conditioning for when that statement is greater than or equal to 1. 

Second of all, by not putting anything after the conditional on that line, we’re telling SAS to discard any 
record that doesn’t meet the conditional.  From the documentation: 

                                                            
12 Want to know more about colon modifier functions?  It’s all here: http://www2.sas.com/proceedings/sugi26/p073-26.pdf  

http://www2.sas.com/proceedings/sugi26/p073-26.pdf
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The subsetting IF statement can be used only in a DATA step. A subsetting IF statement tests the condition after an 
observation is read into the Program Data Vector (PDV). If the condition is true, SAS continues processing the current 
observation. Otherwise, the observation is discarded, and processing continues with the next observation13. 

So the short answer to ‘why does this work?’ is that SAS is specifically set up to work this way!  Bear in 
mind, however, that many other programming or scripting languages are not structured like this, so if 
working in something other than SAS, this trick may give an error message. 
 

V. Words in Strings 
We must remember that SAS doesn’t read characters as text in the same way that humans do.  This may 
seem like an overly obvious observation, but it’s worth mentioning for one main reason: SAS doesn’t read 
words.  It seems like it reads words because of a built-in function called scan. 

  scan(varName,num,'$'); 

What scan returns is a string containing the characters occurring between the numth instance of ‘$’ and 
the previous one.  If that’s too abstract to make sense, let’s look at an example: 

data _null_; 
variable = 'THIS IS A SENTENCE, CONTAINING A COMMA, SEVERAL PHRASES, AND A 

PERIOD.'; 
 
 result = scan(variable,1," "); 
 result2 = scan(variable,3," "); 
 
 result3 = scan(variable,1,","); 
 result4 = scan(variable,3,","); 
 
 put result=; 
 put result2=; 
 put '  '; 
 put result3=; 
 put result4=; 
run; 

The output log looks like: 

 

When we use a space as the delimiter, what scan effectively does is count words.  That’s what’s 
happening in result and result2 – we’re looking at the first word and the third word.  But SAS isn’t actually 
reading words; we’ve just told it to count spaces.  If we use a comma as the delimiter, scan counts 
differently, as we see in result3 and result4. 

As long as we keep in mind what scan is actually doing, it’s a very useful.  One of its most important uses 
in data cleaning is to ‘count words.’  Specifically, to isolate multi-word records from single-word records.  
Let’s combine the two examples we’ve been working with, looking at a properly formatted version: 

                                                            
13 Quoted from: 
https://support.sas.com/documentation/cdl/en/lrcon/65287/HTML/default/viewer.htm#p04fy20d8il3nfn1ssywe4f25k27.ht
m  

https://support.sas.com/documentation/cdl/en/lrcon/65287/HTML/default/viewer.htm#p04fy20d8il3nfn1ssywe4f25k27.htm
https://support.sas.com/documentation/cdl/en/lrcon/65287/HTML/default/viewer.htm#p04fy20d8il3nfn1ssywe4f25k27.htm
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In the world of name cleaning, we know that multi-word entries are going to be the most problematic.  
So let’s use scan to flag multi-word var3 entries: 

data multiWord; 
 set cleaned; 
 
 if ~(scan(var3,1," ") = var3) then multiFlag = 1; 
 else multiFlag = 0; 
run; 

The resulting set looks like: 

 

What we did was simply looked for the records where the first word of var3 was equal to the whole var3 
entry and flagged the entries where that was not the case.  By far and away, this is the single most useful 
application of scan in name cleaning that we have discovered to date. 

Some literature recommends using scan to ‘break up’ names.  If we look at record 5, we see that the 
middle initial ‘L’ in var1 really belongs in var2.  We could move it: 

data moveName; 
 set cleaned; 
 
 if find(var1,'steve', 'i') then do; 
  var2 = scan(var1,2," "); 
  var1 = scan(var1,1," "); 
 end; 
run; 

Gives us as output: 

 

And that’s fine – as long as the identical mistake has been made in each entry.  Consider records 1 and 3 
as well.  What if we applied the same cleaning routine here to these without reading them – if we just 
thought that all var1 multi-word entries must be an accidental middle name? 
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data moveName; 
 set cleaned; 
 
 if ~(scan(var1,1," ") = var1) then do; 
  var2 = scan(var1,2," "); 
  var1 = scan(var1,1," "); 
 end; 
run; 

Our result would be: 

 

Well, this is terrible.  Record 5 was fixed correctly, but in both records 1 and 3, we’ve lost information!  
Record 1 had a notation that has been lost, and record 3 is clearly a pet if we read it.  The main point 
here – unrelated to SAS tricks – is that name cleaning is a delicate process that must be undertaken 
carefully.  But we introduce this issue here to show that there is a better way to parse multi-word entries 
than using scan. 

To discuss this ‘better way,’ we need to introduce a new function, index. 
 Syntax: 
  number = index(varName,'search string'); 

Index returns the position of the first character of the search string found in the variable varName.  If the 
search string is not found, a zero will be returned. 

Let’s see how this works: 

data moveName; 
 set cleaned; 
 
 if ~(scan(var1,1," ") = var1) then do; 
  number = index(var1, " "); 
 
  placeholder1 = substr(var1,1,number-1); 
  placeholder2 = substr(var1,number+1); 
 end; 
run; 

Our resulting dataset looks like: 

 

We chose not to overwrite our previous var1 and var2 so that we can see exactly what’s going on.  This 
code only runs for multi-word var1 entries – notice that records 2, 4, and 6 are missing values for our new 
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variables.  It indexes the position of the first space in each multi-word entry – number is 5 for record 1 
because the fifth character in the string ‘JANE C ID’ is a space.  We then use substr to cut the entry into 
the characters before the space (i.e., the first word) and then everything after the space.  This way, the 
notation for record 1 is fully preserved, even though it’s still two words long. 

The goal, then, is to write a routine using these tricks that essentially turns our non-standardized data 
into this: 

 

The code that does this is: 

data moveName; 
 set cleaned; 
 
 if ~(scan(var1,1," ") = var1) then do; 
  number = index(var1, " "); 
 
  placeholder1 = substr(var1,1,number-1); 
  placeholder2 = substr(var1,number+1); 
 
  var1 = placeholder1; 
 
  if find(placeholder2, 'do', 'i') then do; 
   var1 = var3; 
   var3 = scan(var2,1," "); 
   var2 = " "; 
 
   pet_name = placeholder1; 
  end; 

else if ~(scan(placeholder2,1," ")=placeholder2) then notations = 
placeholder2; 

  else if missing(var2) then var2 = placeholder2; 
 end; 
 
 if ~(scan(var2,1," ") = var2) & missing(var3) then do; 
  number = index(var2, " "); 
 
  var3 = substr(var2,number+1); 
  var2 = substr(var2,1,number-1); 
 end; 
 
 if ~(scan(var3,1," ") = var3) then do; 
  number = index(var3, " "); 
 
  notations = catx(" ",notations,substr(var3,number+1)); 
  var3 = substr(var3,1,number-1); 
 end; 
 
 drop number placeholder1 placeholder2; 
run; 

Almost every routine used here has previously been discussed in this document.  Put together in this 
context, we can see how they form the foundation of text cleaning. 
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VI. Concatenation 
The one function used in the previous section that we haven’t discussed yet is a concatenation function.  
What concatenation functions do is put strings together.  SAS has three main concatenation functions, 
depending on what you need: 

• cat 
Syntax: 
 varName = cat('string1','string2'); 
 
 varName = 'string1' || 'string2'; 

Either phrase does the exact same thing – combines the two (or more) strings without removing 
anything at all. 

• cats 
Syntax: 
 varName = cats('string1','string2'); 

This function combines the two (or more) strings while removing any trailing or leading spaces. 

• catx 
Syntax: 
 varName = catx('$','string1','string2'); 

This function combines the two (or more) strings, removes trailing and leading spaces, and adds the 
separator ‘$.’  We usually use a space as the separator for the CSMD. 
 

VII. A Tranwrd Trick 
Probably the most obvious application of tranwrd is to fix typos or standardize phrasing that you’re 
trying to use in a search: 

 FirstName = tranwrd(FirstName, "K 9", "CANINE"); 
FirstName = tranwrd(FirstName, " CID ", " SEE ID ");  

But there’s another useful thing we can do with this function.   

A relatively common indication in a pet prescription record is the presence of some form of the word 
‘OWNER.’  But this word doesn’t contribute anything to the record – it’s not a formal title or a name – so 
there’s little point in retaining it.  At the discretion of the analytics team, there may be more words like 
this. 

You could use compress in a step-by-step process to remove these words, but compress is a tricky 
function, and barring unwanted special characters like @$%, etc., it is not particularly recommended as a 
function to run on the overall set.  What we recommend doing is once you’ve used words like ‘OWNER’ 
in a search to isolate records, simply run something like: 

 varName = tranwrd(varName, "OWNER", "$"); 

In fact, make sure you change every word to the same special character.  That way, at the end of your 
datastep, you only need one line to get rid of them all simultaneously: 
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 varName = compress(varName, "$"); 

This way you know that nothing important has been removed, because you’re using a character that 
doesn’t show up anywhere else, and you can simply add tranwrd statements as they become necessary 
after search functions are done.  Using compress too early means that you’ve lost the searching ability. 
 

VIII. No Words in Strings 
When searching multi-word records, we rely on the presence of spaces between words quite heavily. 
What if there are no spaces? 

Consider the following example: 

 

These are all common pharmacy notations that have been frequently observed in the CSMD.  Some of 
them may end up being more useful than others, but they all need to be cleaned from the first name 
variable in order to be of any potential use. 

The first problem is that our previous technique involves looking for words or spaces.  There are no 
spaces here. 

One choice would be to use index and simply index the phrases ‘MTM,’ ‘PHI,’ and so on, but there’s a 
more efficient solution here.  Notice that each phrase occurs at the end of the name and is exactly three 
letters long.  The technique we’re about to describe only works when cleaning phrases of known length, 
so it’s important to verify that the variables have the correct format before implementing this routine.  
Here’s some code: 

data cleaned; 
 set foo; 
 
 placeholder = left(reverse(var1)); 
 notations = left(reverse(substr(placeholder,1,3))); 
 var1 = left(reverse(substr(placeholder,4))); 
 
 drop placeholder; 
run; 

The resulting dataset: 

 

The essence here is that we reverse the name, use substr to cut the first three characters, and then put 
the re-reversed pieces in their appropriate locations.  We do this because substr only works from left-to-
right; i.e., it only trims characters from the front.  By reversing the words, we’re getting around the fact 
that the names are not the same length. 
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Also notice that we apply a left function every time we reverse.  This is because there are potentially extra 
blank characters at the ends of these variables that will also get reversed.  If you have already cleaned 
your name variables using trim or strip, you may be able to omit the left here.   
 

IX. Numerics 
It should be relatively obvious that if a number is present in a name variable, that record needs cleaning.  
But there are two ways a number can be present: 

o an unnecessary number that is part of a notation or record ID 
o a typo (‘0’ for ‘O’, ‘1’ for ‘I’, etc.) 

These are cleaned very differently.  To identify them, however, we discovered a relatively simple trick.  If 
you count the number of digits in a record, that can help you identify algorithmically which category a 
record belongs to.  Low numbers of digits – 1 or 2 – are more indicative of typos, like J0NES or JON3S, 
whereas more digits are likely an ID, like a phone number or a room number. 

We wrote the following code to count digits: 

...;  
/* We use an array to count the number of digits in each string */ 

  array newCounts{10} newCounts1-newCounts10; 
 
  /* Array is initialized to zeros */ 
  do j = 1 to 10; 
   newCounts(j) = 0; 
  end; 
 

/* For each digit, 0-9, count how many appear in varName and put it in the 
appropriate array position */ 

  do j = 1 to 10; 
   numChar = put(j-1,1.); 
   newCounts(j) = countc(varName, numChar); 
  end; 
 
  /* Add up the total number of digits */ 
  sumCounts = sum(of newCounts{*}); 

...;  

To see how this works, let’s run this code on a dataset.  We will just look at the output: 

 
 
 
 

The final column tells us that the first record has 1 number, the next has 4, and so on.  We have left the 
array variables newCounts1—newCounts10 to illustrate that if you need them, you have also generated a 
record of how many zeros, ones, twos, etc. each record has.  If for some reason, you needed to find all 
records that only have one or two zeros in them, you could use newCounts1 as a search parameter. 

There are two other useful functions to discuss when dealing with numerics.  We already know that index 
records the position of the first character of a search string, but SAS has two other useful indexing 
functions: 
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• anydigit 
 Syntax: 
  number = anydigit(varName); 

This function returns the position of the first numeric character in the variable. 

• anyalpha 
 Syntax: 
  number = anyalpha(varName); 

This function returns the position of the first alphabetic character in the variable. 

When dealing with ‘split’ names, these functions are invaluable.  Consider the final record in our output 
above – clearly there’s an ID number splitting the name ‘Martin.’  To clean this record, we would use the 
following code: 

 ...; 
  nameIndex = anydigit(var1); 
  placeholder1 = substr(var1,1,nameIndex-1); 
  placeholder2 = substr(var1,nameIndex); 
 
  nameIndex = anyalpha(placeholder2); 
  placeholder3 = substr(placeholder2,nameIndex); 
 
  notations = substr(placeholder2,1,nameIndex-1); 
  var1 = cats(placeholder1,placeholder3); 
 ...; 

When we run this routine, we end up with: 

 

The nice thing about both of these indexing functions is that they are nonspecific – we don’t need to 
know what number or letter to search for; we’re looking for any occurrence.   
 

X. Identifying Special Characters  
In our report, we stated that we found a useful technique in the CSMD involving searching for entries 
which have a word containing no vowels.  If the ‘word’ is longer than two letters, we can conclude that it 
is not a set of initials and must therefore be an abbreviation (e.g. CHK, MTM, RMR).  Since it isn’t feasible 
that we would be aware of every possible abbreviation, running a ‘no vowel’ search can help us pick up 
those abbreviations that we weren’t aware of previously.  We include the code here: 

 prxSpace = prxparse("/[AEIOUY]/i"); 
 position = prxmatch(prxSpace, varName); 
 if position ^= 0 then  
  vowelFlag = 1; 
 else vowelFlag = 0; 

prxparse is a Perl regular expression function.  In our case, it returns a pattern identifier when it finds a 
vowel (the /i at the end makes it a case-insensitive search).  We use prxmatch to translate that pattern 
identifier into a position location within the string varName and simply flag the record with a 1 if it 
contains a vowel and a 0 if it does not.  We tended to find this search useful after parsing the first word 
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of the name into a separate column, but it’s incredibly useful as one is finishing a routine and looking for 
any stray, uncleaned records. 

If searching for special characters, we also use prxparse.  Here, we’re looking to identify periods, 
parentheses, dashes, and quote marks after other special characters have been removed: 

 prxSpace = prxparse("/[^A-Z \s]/i"); 
 position = prxmatch(prxSpace, varName); 
 if position ^= 0 then  
  varFlag = 1; 
 else varFlag = 0; 

While this search would also flag numbers, we recommend using anydigit as described above to deal 
with numerics. 


