Introduction to Phosphorus Removal

By
Brett Ward
Municipal Technical Advisory Service
University of Tennessee
Nutrient Removal

• More Complex: Advanced Treatment, Tertiary Treatment
 – Chemical/Physical Treatment
 – Biological Treatment
 • Traditional Treatment-Oxidation Process
 • Nitrogen Removal-Oxidation then Reduction
 • Phosphorus- Reduction then Oxidation

• Conflicting and often a delicate processes
AS Review- Plant Configurations

• Plug Flow-long basin
 – DO may vary
 – DO demand changes
 – Rate of metabolism changes
 – BOD drops
• Multi Ring Ditch
• ~Intermittent fed SBR
AS Review- Plant Configuration

- Complete Mix~ square
 - DO ~ equal
 - DO demand ~equal
 - BOD ~ equal
 - Rate of metabolism ~equal
- Single ring ditch
- ~Continuous fed SBR
Bacterial Habitat

- Different by design
- Different by operations & controls
- Operators must use the tools at their disposal to control the bacteria!

Three Different Habitats
What are Nutrients? Think Fertilizer

• Nutrients
 – Nitrogen and Phosphorus
 – Two main fertilizer elements needed for growing green plants.
 – They contribute to aquatic plant growth,
 – Excess plant growth clogs streams and,
 – When they die add a organic matter/BOD and nutrient load back onto the stream
How do you remove nutrients?

• **Nitrogen**
 – Biologically- nitrification followed by denitrification
 – Chemically- ammonia stripping, breakpoint Cl_2

• **Phosphorus**
 – Biologically-to ~ 0.5-1.0 mg/L
 – Chemically-with or without biological removal
PHOSPHORUS REMOVAL
Phosphorus Importance

• Essential for all life; human deficiency is rare
• Essential for crop production; deficiency in soil is common
• Maury Co, Tenn. was once a world leader in the production of phosphorus fertilizer
Env. Phosphorus Cycle

- Industry
- Influent
- STP
- Effluent
- Waste Solids
- Leachate
- Landfill
- Farmland
- Erosion
- Food Chain
- Industrial Chemicals
- Fertilizer
- P mining
- Lakes and Oceans
Nitrogen/Phosphorus

- Both essential elements for life; human and plant
- Both available from food; human and plant
- Both are part of wastewater influent
- Both can be removed biologically or chemically
- But there is no gaseous form of phosphorus
Fate of Nutrients

• Nitrogen
 – Effluent
 – Sludge/Biosolids
 – Nitrogen Gas

• Phosphorus
 – Effluent
 – Sludge/Biosolids
Phosphorus Removal

• Influent Concentrations:
 – 6-20 mg/L common levels

• Common Effluent Levels
 – Secondary treatment~ 3-4 mg/L
 – With phosphorus removal ~ 1.0- 0.01mg/L

• Common Tennessee Limits ~ 0.5 mg/L

• Limits from other states ~ 0.1 mg/L
Phosphorus Sources

- Sewage, urine
- Soaps & Detergents
- Corrosion control:
 - Water distribution
 - Boiler feed water
- Industrial Sources
 - Food Processing
 - Metal processing
 - Fertilizer mfg.
Phosphorus Forms

• Influent Total Phosphorus 6-20 mg/L

• Organic Phosphorus ~ 2-5 mg/L
 – Acid digestion converts this to Orthophosphorus for testing.

• Inorganic Phosphorus ~ 4-15 mg/L
 – Orthophosphorus, PO$_4^{3-}$ (reactive phosphorus)
Fate of Phosphorus

• **Effluent**
 – Organic P in BOD & TSS
 – Dissolved in the water

• **Sludge or Biosolids**
 – Organic P in the solids
 – Dissolved in the water
Low Effluent Phosphorus

• To achieve **Low Effluent Phosphorus**:

• Phosphorus must be **high in the waste sludge and remain high when sludge or biosolids are removed from the plant**.
Load Must Balance

• Influent: 100 lbs. Phosphorus

• Effluent 90 lbs. Phosphorus

• Waste Sludge 10 lbs. Phosphorus
 – Stored in Digester/Holding Tank or,
 – Removed in Sludge or Biosolids
 – Caution: Decant/Supernatant Phosphorus
Phosphorus does not just disappear.

- It was discovered by Antoine Laurent Lavoisier about 1785.

- In a chemical reaction, or biochemical reaction, matter is neither created nor destroyed, though its form may change.
Plant Phosphorus Routes

100 lbs Influent P → Activated Sludge

90 lbs Effluent P → WAS Phos, 10 lbs

Land Application P ← Dig. P

Landfill P
Biological Phosphorus Removal

• Three Steps
 – Pass-through Phos
 – Assimilative Removal
 – Enhanced Biological Phosphorus Removal (EBPR)
1. Pass-Through Phosphorus

Low: BOD, TSS = Lower Phosphorus

High: BOD, TSS = Higher Phosphorus

- Keep effluent BOD & TSS low! Filters help.
2. Assimilative Phosphorus

- Keep a lower MLSS, MCRT, & younger sludge, that is waste more!
- 10 day SRT = 22,000 lbs
- 40 day SRT = 13,000 lbs
- 70 day SRT = 10,000 lbs
- More lbs wasted, more Phosphorus removed
Plant Phosphorus Routes

100 lbs Influent P

Activated Sludge

70 lbs Effluent P

WAS Phos, 30 lbs

Land Application P

Dig. P

Landfill P
Nutrient Removal Conflict

- Phosphorus Removal
 - Lower MLSS, MCRT, sludge age
- Ammonia Removal
 - Higher MLSS, MCT, sludge age

Balancing Act: Lowest MLSS/MCRT/sludge age that will fully nitrify. Watch ammonia levels; you may have to accept higher effluent ammonia to get low Phosphorus.
Bacteriiological Conflict

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Nitrifiers</th>
<th>Denitrifiers</th>
<th>PAO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preferred SRT</td>
<td>Long</td>
<td>Short</td>
<td>Short</td>
</tr>
<tr>
<td>F/M</td>
<td>Low</td>
<td>High</td>
<td>High</td>
</tr>
<tr>
<td>ORP (DO)</td>
<td>High</td>
<td>Low</td>
<td>Very low \rightarrow High</td>
</tr>
<tr>
<td>rbCOD</td>
<td>No</td>
<td>Yes</td>
<td>Yes: VFA</td>
</tr>
<tr>
<td>NO$_X$-N</td>
<td>Ok</td>
<td>Must</td>
<td>No1</td>
</tr>
<tr>
<td>Temperature sensitivity</td>
<td>Very high</td>
<td>Moderate</td>
<td>Low</td>
</tr>
</tbody>
</table>

1 – When conditions for secondary release are not present.

Developed after Metcalf and Eddy (2014); EPA (2010); Downing et al. (2009); Kang et al. (2008); Brown et al. (2007); Oleszkiewicz and Barnard (2006).

Canadian Water Network, March 2015
3. Enhanced Biological Phosphorus Removal, EBPR

- Phosphorus Accumulating Organisms, PAO’s
- Heterotrophic, Obligate Aerobes
 - Feed on CBOD
 - Must have Oxygen
 - But have a unique metabolic capacity

Candidatus Accumulibacter phosphatis (blue cells)
PAO’s Unique Metabolic Capacity

- PAO- phosphorus accumulating organisms
- Also called Luxury Uptake of Phosphorus
- Process includes:
 - Anaerobic zone where phosphorus is released
 - Aerobic zone- Luxury Uptake of Phosphorus
- There are many variations of this basic flow
Biological Phosphorus Removal

- PAO bacteria
- To enhance their proliferation they must be cycled through two habitates
 - Anaerobic (release) stage
 - Aerobic (luxury uptake) stage
PAO Metabolism

Anaerobic Zone, two processes
Substrate = CBOD
Facultative Bacteria, not POA’s
Acetate is a VFA

PHB= Polyhydroxybutyrate, stored energy using VFA’s and O₄ from stored PO₄
P is released

Aerobic Zone
Oxygen present PHB is metabolized releasing CO₂ and water, aerobic metabolism like all other heterotrophs for maintenance and growth (new cells)
Phos & O₂ taken in to form new PHB or PO₄ (luxury uptake)
Plant Phosphorus Routes

- Influent P: 100 lbs
- Activated Sludge
- Effluent P: 10 lbs
- WAS Phos, 90 lbs
- Land Application P
- Dig. P
- Landfill P
Three Stage A²/O Process

BIOLOGICAL NUTRIENT REMOVAL (BNR) (1970's)

Recycle flow = 2-5* Q

Anaerobic zone needs VFA’s and **No** oxygen or nitrate, P released here

Nitrate Recycle

Luxury uptake of P as Polyphosphate in aerator

RAS should have little O₂ or NO₃, Nitrate Recycle to remove NO₃

Waste Sludge High in Phosphorus
Enhanced Biological Phosphorus Removal

- EBPR is known for “process instability”

- Requires more:
 - Careful operations
 - Process control testing
 - Communications and teamwork
Other Phos Removal Processes

- Three Stage A²/0
- Five Stage Bardenpho
- University of Cape Town (UCT)
 - Also UCT with Virginia Initiative Process
- Johannesburg and Modified Johannesburg processes
- All have some pattern of Anaerobic/Aerobic
Biological Phosphorus Removal

- Anaerobic zone
- ~ 2 hours HDT
- Fermenter for VFA’s but IBOD is down so adding Alum
- Reducing environment needed, ORP , -150 to -250 mV

Anaerobic Zone
Biological Phosphorus

- Oxidation Ditch
 - Off/On cycles
 - 90 on, DO~2 ORP ~300
 - 60 off, ORP ~ -100mV
 - Subsurface mixing
 - DO controlled and ORP monitored
 - Limits TN=8, TP=2
Other Technology and Methods

• Many proprietary nutrient removal methods
• Side stream treatment processes
 – Treat part of the flow to develop PAO’s then add them to the full flow
 – Treat internal flows such as digester supernatant
Side Stream Anaerobic System

- Influent
- Anaerobic Recycle with PAOs
- Aerobic aerator with luxury uptake
- Waste Activated Sludge
- Anaerobic Fermentation
 - ~ 10% of WAS returned

Low Phosphorus Effluent.
• WAS recycle to old thickener, then to ditch
• 2nd trial, to middle ring
• Success with no Chemicals
• Winter Performance is better
• Ortho P < DL
AUB- North Mouse Creek

- WAS holding tank
 - ORP = -200 mV
 - Side stream fermenter
 - 6000 gpd returned
 - Eff Ortho P < DL
Madisonville

- Aeromod Plant
 - Headworks
 - Anaerobic Zone
 - Selector
 - Aerobic- Off/On Zones
 - Clarifiers
Madisonville

- Anaerobic Zone
 - Sewage only
 - Air Mixed 5 minutes-twice per day
 - ORP -300 to -200 mV

- Selector
 - RAS added
 - Subsurface mixing
 - ORP -200 to -100 mV
Madisonville

- **Effluent**
 - Total Phosphorus 3.0-0.3 mg/L
 - Total Nitrogen ~ 4.0
 - CBOD ~ 5
 - TSS ~ 6
Baileyton

- Low Pressure CS-very septic influent-VFA’s ~ 100 mg/L
- Preaeration Ferm Zone
 - MLSS recycle
 - Did not work??????
- Aeration off/on
 - 10 hr off- 4/2/4
 - TP < 2.0 lbs (< 5 mg/L)
Baileyton Lessons Learned

- Keep Trying
- Onsite Testing Valuable
- Phos Removal may not follow the books
- Digesters: decant & dewatering impact effluent
- TDEC will change limits
Cookeville- Success!

- 4 Oxidation Ditches
- 6 Brush Rotors each
- Rotating Brush Rotor operation
- Settled Blanket-Ferm Zone.
Cookeville- Success

- Initial Side Stream
- Layered Ditch
- ORP testing
ORP-Oxidation Reduction Potential

• ORP Measurements
 - pH meter with OPR probe, use mV scale
 - Only “quick” and insightful parameter for unaerated treatment units
ORP: Classic & Practitioners Values

- Ignore Positive Values use DO Meter
- Denit ~ -50 to -150 mV
- Fermentation Zone ~ -200 to -300 mV
Practitioners ORP Values

ORP & Metabolic Processes

<table>
<thead>
<tr>
<th>ORP Condition</th>
<th>ORP mV</th>
<th>Process Ranges</th>
<th>Process</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mildly Negative</td>
<td>+50</td>
<td>Classic Anoxic Zone</td>
<td>Anoxic Zone</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-50</td>
<td>Extended Anoxic Zone</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Moderately Negative</td>
<td>-150</td>
<td>Classic Fermentation Zone</td>
<td>Fermentation Zone</td>
</tr>
<tr>
<td></td>
<td>-200</td>
<td>Extended Fermentation Zone</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-250</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-300</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Strongly Negative</td>
<td>-350</td>
<td>Fully Anaerobic</td>
<td>Anaerobic (Methane) Zone</td>
</tr>
<tr>
<td></td>
<td>-400</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-450</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-500</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Influent & Phos. Removal

• $\geq 20 \text{ mg/L } \text{BOD}_5 / 1 \text{ mg/L TP removed}$
 – 30-40: 1 may be better
• $\geq 15 \text{ mg/L } \text{sBOD}_5 / 1 \text{ mg/L TP removed}$
• $7.5 \text{ mg/L VFA} / 1 \text{ mg/L TP removed}$
 – 5-10 mg/L range
 – $> 25 \text{ mg/L VFA needed in Ferm. Zone}$
 – Lack of VFA a common point of failure
Fermentation Zone

- Dissolved Oxygen = 0.0 mg/L
- ORP = -250 mV, perhaps -300 mV
- Mixing: 1-2.5 hp/50,000 gallons
 - Bernard recommends as low as 0.65 hp / 50,000 gallons
- HDT 1-3 hours, with prefermentor ~ 1 hour
- SRT 4-5 days
Fermentation Zone

- Various Shapes & Flow Patterns
- Two Purposes
 - VFA Formation - Slow
 - VFA Uptake - Fast
 - Can be two tanks
- Flexibility - Swing Tanks
Aerobic Zone

• Dissolved Oxygen: 1-6 mg/L
 – 3.0 mg/L being the most frequently recommended
 – Higher values because of nitrification
 – Higher values recommended at head end to satisfy high initial oxygen demand
 • PAO oxygen uptake is rapid
 – Lower residual (0.25-0.5 mg/L) is recommended at Clarifier end to prevent DO transport to Ferm. Zone
Activated Sludge Biomass

- MCRT- 8-15 Days
 - 10 Days ***
- More Assimilative Uptake
- Less opportunity for Secondary Release
- PAO:VFA (VFA’s often low)
Wasting from Aerator

- Operators #1 AS Control Method

- EBPR Wasting
 - Fully Aerobic
 - Uptake is Complete
Digester Phos. Return

100 lbs
Influent P

Activated Sludge

Decant & Dewatering P
50 lbs

WAS Phos, 90 lbs

Land Application P
40 lbs

Landfill P

??10 lbs
Effluent P
Aerobic Digesters

• Keep the Phos in the Sludge
 – Avoid Secondary Release
 • JJ&G- 6hr anoxic/2hr aerobic, BNW???
 – Low MCRT
 • Move sludge or biosolids out ASAP
 • Volatile Solids Reduction releases P
Secondary Release

• Great effort to “train” PAO’s into a cycle of release and uptake.
• Given the right condition release can occur where we do not want it to happen—secondary release.
 – Digesters, Anoxic Zones, Clarifier Blankets, RAS wells, Oversized Ferm. Zone.
 – Test internal processes and flows!
Glycogen Accumulating Organisms

• GAO’s compete with PAO’s for VFA’s but do not remove phosphorus.

• Competition Factors- GAO’s Prefer:
 – Higher Temperatures
 – Lower pH
 – Longer MCRT
 – Very high organic loading
EBPR- Known for “process instability”

Know the Basics and Theory

Know your Plant

Test, Test, Test

Experiment- Notify TDEC

Ask for Help
Phosphorus Removal

• Permit Limits?
 – Long-term Limits, Pounds
• BOD/TSS Pass Through
• Assimilative Removal
• Enhanced Biological Phosphorus Removal

• Chemical Phosphorus Removal
Chemical Phosphorus Removal

• Common Chemicals
 – Aluminum & Ferric
 – Lime, pH>11
 – Proprietary Products

• Need feed equipment
• Mixing
• Alkalinity
• Effluent filters improve removal

Alum Feed System
Chemical Precipitation of Phos.

- **Coagulation** - chemicals added which change the electromagnetic forces between suspended particles
- **Flocculation** - gentle mixing to build floc which will settle or be more easily filtered
- **Sedimentation/Filtration** - removal of the Phosphorus floc from the water
Chemical Process Equipment

- Chemical Storage - Bulk tanks, day tanks, piping, valves, containment
- Chemical Feeding - Dry, liquid
- Mixing - Flash Mix, Flocculation
- Settling/Filters
- Chemical Sludge - with WAS to solids processing
Process Operations

- Proper equipment operation
- Calibration of feed equipment
- Monitoring- more that ever!
 - pH, Alkalinity, Ortho & Total Phosphorus
 - Influent & Effluent and also through the process
- Process Adjustments- Flow, Loading, Performance
Chemical Phosphorus Removal

- Alum dose ~ 1.75 gallons alum/lbs P
- Ferric Sulfate ~ 1.3 gallons ferric sulfate /lbs P
- Varies with:
 - Alkalinity, pH
 - Limit to meet
Chemical Phosphorus Removal

- Ferric Sulfate, 24 gpd in 0.24 MGD, fed into influent interceptor, meeting a 0.5 mg/L limit
- SBR with BioP removal to ~1.0 mg/L then alum @ 60 gpd into 1.5 MGD to reach 0.5 mg/L limit.
Athens Utility Board, Original

- **Limits**
 - TN=5mg/L, TP=1mg/L

- **Ditch Rings**
 - Outer- anoxic
 - Middle, DO~1.0
 - Inner, DO~2.0

- **Ferric Chloride added to clarifier center well**
 - 60-120 gpd into 2.0 MGD
Phosphorus Removal

• Filters
 – TSS will contain 1-7% Phosphorus
 – Effluent filters improve removal with or without chemical addition
 – Plants constructed to remove P will have filters.

• Flow Equalization

Floc. basin and filters
Phosphorus Removal

- May be a limited parameter in the future.
- Two main removal methods.
- Phosphorus only leaves the plant in effluent or sludge.
- Retrofits may be chemical or biological.

- Operator Knowledge in Key.
Questions, Comments, Discussion