

DISCLAIMER: This document is guidance only and does not create legal rights or obligations. Agency decisions in any particular case will be made applying applicable laws and regulations to the specific facts. Mention of trade names or commercial products does not constitute an endorsement or recommendation for use.

EFFECTIVE DATE: November 18, 2024

SIGNATURES:

april suppo

April Grippo, Division Director DWR

Hannah	
Riether	

Digitally signed by Hannah Riether Date: 2024.11.15 10:12:42 -06'00'

Hannah Riether, PE Preparer

Karina Bynum Digitally signed by Karina Bynum Date: 2024.11.15 12:09:33 -06'00'

Karina Bynum, PhD, PE Reviewer

PURPOSE

The Erosion Prevention and Sediment Control (EPSC) Handbook serves as the primary technical reference for the design and implementation of EPSC measures to limit the export of sediment to surface waters in Tennessee. The last edition of the Handbook was completed in August 2012. This revision updates various technical specifications for EPSC measures based on the most current research.

REVISION HISTORY TABLE

Revision Number	Date	Brief Summary of Change
0	11/18/2024	Revision of 2012 EPSC Handbook Table of Contents, Chapter 1, and Chapter 2

Table of Contents

1.0 Introduction

- 1.1 Purpose
- 1.2 Erosion and Sediment Impairments to Water Quality
- 1.3 Regulations
 - 1.3.1 Water Resources Inventory
 - 1.3.2 Other Permits and Regulations

2.0 Stormwater Management

- 2.1 Hydrology and Drainage Calculations
 - 2.1.1 Runoff Volume
 - 2.1.2 Time of Concentration
 - 2.1.3 Peak Flow Rate
- 2.2 Estimating Sediment Yield
 - 2.2.1 RUSLE2
 - 2.2.1.1 Model
 - 2.2.1.2 Model Output and Summary
 - 2.2.1.3 Applicability
 - 2.2.2 Other Models
 - 2.2.3 Design Concepts for Structural Sediment Controls

3.0 Erosion Prevention and Sediment Control Plans

- 3.1 Purpose
 - 3.1.1 System Approach Design
- 3.2 Erosion Prevention and Sediment Control Stages
 - 3.2.1 Initial Stage
 - 3.2.2 Interim Stage
 - 3.2.3 Final Stage
- 3.3 Site Planning and Preparation
 - 3.3.1 Outfalls
 - 3.3.2 Stream Stabilization
 - 3.3.2.1 Bank Protection
 - 3.3.2.2 Bioengineered Bank Stabilization
 - 3.3.2.3 Temporary Instream Diversion
 - 3.3.2.4 Temporary Stream Diversion
 - 3.3.2.5 Temporary Construction Ford
 - 3.3.2.6 Temporary Culvert Crossing
 - 3.3.2.7 Utility Stream Crossing

Erosion Prevention and Sediment Control Handbook

- 3.3.3 Protected Areas
 - 3.3.3.1 High Visibility Fencing
 - 3.3.3.2 Riparian Buffer Zones
 - 3.3.3.3 Sensitive Areas
 - 3.3.3.4 Tree Preservation
- 3.3.4 Construction Exit
- 3.4 Pollution Prevention
 - 3.4.1 Chemical Storage
 - 3.4.2 Concrete Washout
 - 3.4.3 Dust Control
 - 3.4.4 Non-stormwater Discharges
 - 3.4.5 Tire Washing
 - 3.4.6 Trash and Debris
 - 3.4.7 Vehicle Maintenance
- 3.5 Construction Sequencing and Phasing

4.0 Erosion Prevention and Sediment Control Measures

- 4.1 Multipurposed Measures
 - 4.1.1 Summary Table
 - 4.1.2 Knowing What Measure to Use and When
- 4.2 Erosion Prevention
 - 4.2.1 Diversion Berm or Dike
 - 4.2.2 Diversion Channels
 - 4.2.3 Diversion Pipes and Culverts
 - 4.2.4 Grade Control
 - 4.2.5 Slope Drain
 - 4.2.6 Stabilization
 - 4.2.6.1 Channel and Swale Stabilization
 - 4.2.6.2 Compost Blanket
 - 4.2.6.3 Gravel Access Road Stabilization
 - 4.2.6.4 Hard Armoring
 - 4.2.6.5 Hydroseeding, Soil Binders, and Tackifiers
 - 4.2.6.6 Sod
 - 4.2.6.7 Soil Enhancements and Chemical Stabilization
 - 4.2.6.8 Stabilization with Plastic Covering: Emergency
 - 4.2.6.9 Stabilization with Straw or Mulch: Temporary
 - 4.2.6.10 Topsoil Stockpiling
 - 4.2.6.11 Erosion Control Blanket/Turf Reinforced Mat
 - 4.2.6.12 Vegetation and Landscaping: Permanent

Erosion Prevention and Sediment Control Handbook

- 4.2.6.13 Vegetation: Temporary
- 4.3 Runoff Velocity Control
 - 4.3.1 Benching and Terracing
 - 4.3.2 Channels and Swales
 - 4.3.3 Check Dam
 - 4.3.3.1 Enhanced Check Dam 4.3.3.2 Gabion Check Dam
 - 4.3.4 Energy Dissipator
 - 4.3.5 Flow Control Devices
 - 4.3.6 Level Spreader
 - 4.3.7 Riprap Apron
 - 4.3.8 Stilling Basin
 - 4.3.9 Surface Roughening
- 4.4 Sediment Control
 - 4.4.1 Brush Fabric Barrier
 - 4.4.2 Filter Berm
 - 4.4.3 Filter Strip
 - 4.4.4 Inlet Protection: Area
 - 4.4.4.1 Catch Basin Filter Assemblies
 - 4.4.5 Inlet Protection: Curb
 - 4.4.6 Inlet Protection: Filter Rings for Culverts
 - 4.4.7 Sediment Basin
 - 4.4.7.1 Flow Through Sediment Basin
 - 4.4.7.2 Batch Treatment Sediment Basin
 - 4.4.8 Sediment Trap
 - 4.4.9 Sediment Tubes, Wattles, and Socks
 - 4.4.10 Silt Fence
 - 4.4.10.1 Enhanced Silt Fence
 - 4.4.10.2 Super Silt Fence
 - 4.4.10.3 Silt Fence with Wire Backing
 - 4.4.11 Weep Berms
 - 4.4.12 Sediment Control Features and Elements
 - 4.4.12.1 Baffles
 - 4.4.12.1.1 Porous Baffles
 - 4.4.12.1.2 Solid Baffles
 - 4.4.12.2 Dewatering Structure
 - 4.4.12.3 Floating Turbidity Curtain
 - 4.4.12.4 Flocculants and Polymers

Erosion Prevention and Sediment Control Handbook

- 4.4.12.5 Perforated Riser Pipe 4.4.12.6 Sediment Filter Bag
- 4.4.12.7 Skimmer

5.0 Equivalency and Treatment Trains

- 5.1 Justification and Calculations
- 5.2 Redundancy

6.0 Case Studies and Problem Solving

- 6.1 Site Specific SWPPPs
 - 7.1.1 Shallow Bedrock
 - 7.1.2 Sinkholes/Karst Areas
 - 7.1.3 Linear Construction
- 6.2 Enforcement Actions

7.0 Conversion of Temporary Controls to Permanent Stormwater Treatment

- 7.1 Bioswale
- 7.2 Detention Basin
- 7.3 Retention Basin
- 7.4 Regenerative Stormwater Conveyance
- 7.5 Weep Berms

Appendices

- Appendix A Example Drawings
- Appendix B Seed Mix Examples
- Appendix C SWPPP Templates
- Appendix D Checklists
- Appendix E Fact Sheets
- Appendix F Definitions

Chapter 1 - Introduction

1.1 Purpose

This *Erosion Prevention and Sediment Control (EPSC) Handbook* has been developed to provide comprehensive and standardized EPSC measures for use on construction sites to limit the export of sediment to surface waters in Tennessee. The Tennessee Construction General Permit [CGP; (TDEC)] is predominantly focused on pollution caused by exposed and destabilized soils; therefore, this handbook is designed to provide information on how to prevent, minimize, and treat sediment laden stormwater discharges during construction and site development. This handbook serves as the primary reference for the design and implementation of all such measures and practices under the CGP. This update of the handbook serves to be a more technical reference than the previous version (2012) by streamlining text and logical flow, expanding the list of EPSC measures, and updating various technical specifications for EPSC measures.

Site-specific stormwater pollution prevention plans (SWPPP) are required in order to receive coverage under the CGP. The SWPPP lays out the steps and techniques the operator will use to reduce pollutants in stormwater runoff leaving their construction site. The EPSC plans are design drawings that show the placement, size, and details of EPSC measures. This handbook is to be used as design guidance for the EPSC measures. More details of what is required in the SWPPP can be found in the permit.

1.2 Erosion and Sediment Impairments to Water Quality

Erosion is the process by which land surfaces are worn away by the impacts of raindrops or by the shear forces of stormwater. Stormwater is runoff generated during rainfall and snowmelt events that flows over land (i.e., does not infiltrate into the ground) or impervious surfaces such as paved streets, parking lots, and building rooftops. Erosion is a natural process which, in undisturbed conditions, occurs at extremely slow rates depending on rainfall, landscape characteristics, soil properties, and vegetation. However, human landdisturbing activities accelerate erosion rates several orders of magnitude from average rates of <1 ton per acre per year in forested or undisturbed settings to 7 tons per acre per year in developed settings and to approximately 200 tons per acre per year on construction sites (Borrelli et al., 2021; Nearing et al., 2017).

Eroded soils can be transported short distances when soil particles are detached by raindrop impact and longer distances when the detached particles are transported by stormwater. Additional soil particles can be detached and transported if the velocity of overland flow is increased due to intense storms, steep slopes, compacted soils, impervious areas, etc. If not

managed properly, overland flow will begin to concentrate and erode small channels or rills and will eventually form larger channels or gullies which, in turn, allow for larger shear forces and continued erosion.

Eroded soils travel in overland flow and are eventually discharged to receiving bodies of water. Once these soils enter larger bodies of water and the velocity of water slows, the soils begin to settle, a process known as sedimentation. Larger, coarser particles, such as gravels and sands, will settle much quicker than medium sized particles (silts) and fine particles (clays). Siltation is a condition where the natural bottom of a stream is covered in silts and clays. Sediment laden discharges from construction activities, if not managed properly, lead to adverse water quality, food web alterations, biologic suffocation, stream geomorphic changes, increased flooding, restrictions on navigation, and turbid waters which impact fish feeding and plant photosynthesis. Sediment is one of the top three causes of impairment within the state of Tennessee and United States surface waters. As such, there are 16 billion dollars in environmental damages due to sedimentation annually (Smith, 2018). Communities, construction and development companies, and industries help protect Tennessee's water resources by using stormwater controls, known as best management practices (BMPs), to limit sediment pollution and other pollutants that preferentially bind to sediments. These BMPs limit stormwater pollution by controlling it at its source.

1.3 Regulations

The National Pollutant Discharge Elimination System [NPDES; (CFR122)] program regulates stormwater discharges from three potential sources: municipal separate storm sewer systems (MS4s), industrial activities, and construction activities. Operators of these sources might be required to obtain coverage under the NPDES permit before they can discharge stormwater. The NPDES permitting mechanism is designed to prevent stormwater runoff from washing toxic or harmful pollutants into surface waters or infiltrating into groundwater sources.

The U.S. Environmental Protection Agency (EPA) has authorized the Tennessee Department of Environment and Conservation, Division of Water Resources (TDEC-DWR) to implement the NPDES program for the state of Tennessee, thereby regulating point and non-point sources of pollution. Construction stormwater is regulated under Tennessee's *General NPDES Permit for Discharges of Stormwater Associated with Construction Activities*, commonly known as the CGP (TDEC), and in some situations, under an individual permit.

CGP coverage is required when construction activities will disturb one or more acres of soil or disturb less than one acre of soil but are part of a larger common plan of development or sale that comprises at least one acre of cumulative land disturbance. CGP coverage is also required for projects of less than one acre of total land disturbance if TDEC has determined

Erosion Prevention and Sediment Control Handbook

that the stormwater discharge from a site is causing, contributing to, or is likely to contribute to a violation of a state water quality standard or has determined that the stormwater discharge is, or is likely to be a significant contributor of pollutants to waters of the state. The CGP requires: (1) EPSC measures to be used during construction; (2) setbacks from waterbodies (water quality riparian buffer zones); (3) a site specific SWPPP; (4) selfmonitoring site inspections; and (5) final stabilization before permit termination. Refer to the CGP for the requirements for obtaining coverage and where and how to submit the CGP Notice of Intent, SWPPP, and fee. More information can be found at TDEC's Construction Stormwater website: <u>https://www.tn.gov/environment/permits/waterpermits1/npdes-permits1/npdes-stormwater-permitting-program/npdes-stormwaterconstruction-permit.html</u>

In the early 1990's and then again in 2003, EPA finalized regulations requiring MS4 operators meet specific criteria to obtain coverage under an NPDES permit for their MS4's stormwater discharges. Check with the local jurisdiction early in the planning process to understand their construction stormwater requirements and how they may affect the site-specific SWPPP and EPSC plans. Both local and state requirements must be met. A list of Tennessee's designated MS4 programs can be found on TDEC's website: <u>https://www.tn.gov/environment/permits/water-permits1/npdes-permits1/npdes-stormwater-permitting-program/npdes-municipal-separate-storm-sewer-system--ms4--program.html</u>

The CGP requires a higher standard for design of EPSC measures, water quality riparian buffer zones (setbacks), and BMPs for construction stormwater discharges to Exceptional Tennessee Waters (ETWs) and waterbodies that have unavailable parameters for siltation. ETWs are surface waters designated by the TDEC-DWR as having the characteristics set forth at Tennessee Rules, Chapter 0400-40-03-.06(4). Waters with unavailable parameters means any segment of surface waters that has been identified by TDEC-DWR as failing to support one or more classified uses. The term unavailable parameters is not the same as unassessed. For example, if a stream has unavailable parameters, the stream has been assessed and cannot receive any more of the specified pollutant. This terminology has replaced what used to be termed an impaired stream. Therefore, the impairments would be the unavailable parameters of that stream. For the purpose of the CGP, the pollutant of concern is siltation. Thus, if there was a stream that had unavailable parameters for siltation, this would mean the stream is unable to take in anymore sediment; it is already impaired by sediment to the maximum degree possible, so the stream must have more conservative measures in place to ensure no further sediment pollution to the stream. Waters with unavailable parameters which are impaired for reasons other than sedimentation/siltation (such as nutrients, PCBs, Escherichia coli, etc.) are not required to meet the higher design standards unless sedimentation/siltation is also listed as a cause of impairment. To determine the

classification of receiving water bodies, utilize the TDEC-DWR construction stormwater permitting map viewer found at <u>https://tdeconline.tn.gov/dwrcgp/</u> and the list of known ETWs can be found at <u>https://dataviewers.tdec.tn.gov/dataviewers/f?p=2005:34304:3123833</u> 63635:.

Some MS4 programs may require a more conservative design for waterbodies that have unavailable parameters for other contaminants even if siltation is not listed. The more stringent requirements between the CGP and local ordinances must be followed.

Total maximum daily load (TMDL) means the sum of the individual wasteload allocations for point sources and load allocations for nonpoint sources and natural background (40 CFR 130.2(I)). TMDL is a study that quantifies the amount of a pollutant in a stream, identifies the sources of the pollutant and recommends regulatory or other actions that may be needed in order for the stream to recover from pollution. Coverage under the CGP can only be obtained if the SWPPP incorporates measures or controls consistent with the assumptions and requirements of the TMDL (if the TMDL is for sediment or urban runoff).

Tennessee's water quality is regulated through the Water Quality Control Act, T.C.A., §69-3-101, et seg., and Chapters 0400-40-03 (General Water Quality Criteria) and Chapter 0400-40-04 (Use Classifications for Surface Water) of Rules of the TDEC-DWR. These regulations outline designated uses for streams as well as the quality of all types of discharges. According to the state's antidegradation policy (Chapter 0400-40-06 of Rule of the TDEC-DWR), new discharges must not alter or degrade the quality of the receiving waterbody. If the quality of water can support either the propagation of fish, shellfish, and wildlife or recreational activities, then the water quality must be maintained and protected unless TDEC-DWR finds that the degradation of the water quality is necessary to accommodate important economic or social development in the area. The CGP contains specific discharge quality criteria for such activities. First, the construction activity shall be carried out in such a manner that will prevent violations of water quality criteria as stated in the TDEC Rules. This includes, but is not limited to, the prevention of any discharge that causes a condition in which visible solids, deposits, or turbidity impairs the usefulness of waters of the state for any of the uses designated for that water body. Second, there shall be no distinctly visible floating scum, oil, or other matter contained in the stormwater discharge. Third, the stormwater discharge must not cause an objectionable color contrast in the receiving stream. Lastly, the stormwater discharge must result in no materials in concentrations sufficient to be hazardous or otherwise detrimental to humans, livestock, wildlife, plant life, or fish and aquatic life in the receiving stream.

Erosion Prevention and Sediment Control Handbook

1.3.1 Water Resources Inventory

An inventory of all water resources (streams, rivers, lakes, wetlands, etc.) must be completed and clearly shown on the EPSC plans. A formal process for determining jurisdictional streams and wet weather conveyances in Tennessee is called hydrologic determination (Rule 0400-4-03 as provided for in Public Chapter 464 of 2009). A hydrological determination must be completed by a certified TN-Qualified Hydrologic Professional (QHP) and submitted to TDEC-DWR for concurrence of the findings on site. Wetlands must be identified and delineated by wetland professionals. Wetland delineation must be submitted to the TDEC-DWR for concurrence, and the confirmed delineation must be included in the water resources inventory. This documentation and process prevents water resources from being destroyed/altered without permitting or mitigation. The water resource inventory on the EPSC plans also indicate what water resources are on the site, where the riparian buffer zones will be placed/conserved, what may be impacted due to construction, and if any additional permits may be required.

1.3.2 Other Permits and Regulations

A person who wishes to make an alteration to a stream, river, lake, or wetland must first obtain a water quality permit. Physical alterations to properties of waters or the state require an Aquatic Resource Alteration Permit (ARAP; Chapter 0400-40-04 Aquatic Resource Alteration). Depending on the extent of the impact on the water resource, these permitted activities fall into two categories: those that can be authorized under a general permit and those that require an individual ARAP. Many, if not most, of the activities requiring an ARAP also require coverage under the CGP. The majority of alterations that require an ARAP will also require a U.S. Army Corps of Engineers (USACE) Section 404 permit and possibly a Section 10 permit for projects that include the discharge of dredged or fill material into waters of the U.S. including wetlands. USACE should be contacted directly to determine if acquiring these permits are required for the proposed site. When a 404 certification is required from USACE, a 401 certification must first be obtained from the TDEC. General ARAPs provide a streamlined means for the TDEC-DWR to approve activities considered to result in minor impacts. Some General ARAPs require prior TDEC notification or approval before beginning the activity; others only require that the activity be conducted in accordance with the conditions of the General ARAP. Individual Permits are required when an activity does not qualify for coverage under a General Permit. Only projects that demonstrate the least impactful practicable alternative to the proposed activity will be eligible for coverage by an Individual Permit. More information on each permit type can be found at TDEC's ARAP website: https://www.tn.gov/environment/permit-permits/waterpermits1/aquatic-resource-alteration-permit--arap-.html.

Underground injection control (UIC) applications must be submitted to TDEC-DWR, Drinking Water Unit when emplacing any fluids into the subsurface via a discrete point of injection (e.g., sinkhole, rock crevice/crack, dug hole, drilled shaft, etc.). Wells are divided into six classifications depending on their use and risk for groundwater contamination, wherein construction of a well used for stormwater management would be considered a Class V injection well. More information regarding UIC and well classification can be found at TDEC's UIC website: <u>https://www.tn.gov/environment/program-areas/wr-water-resources/water-quality/underground-injection-control--uic-.html</u>.

TDEC-DWR Safe Dams Program is responsible for conducting inspections, maintaining an inventory of dams within the state, reviewing plans, and issuing certifications of operation, alteration, and construction of dam projects. With regards to this document, a EPSC measure would be considered a dam, and therefore must be regulated, if the structure can impound at least 30 acre-feet of water or is, at minimum, 20 feet in height (measured from the downstream toe elevation to the low point of the dam crest). Under rule 0400-45-02, "any such barrier which is or will be less than six (6) feet in height, regardless of storage capacity, or which has or will have a maximum storage capacity not in excess of fifteen (15) acre-feet, regardless of height, shall not be considered a dam." All non-federal dams are required to have a certificate of approval from the Commissioner to construct, alter, or operate an impoundment. Non-federal dams may also require other environmental permits, such as an ARAP or a USACE 404 Permit, even though the dam may not be subject to the Safe Dams Act. More information be found TDEC's safe dams website: can at https://www.tn.gov/environment/program-areas/wr-water-resources/water-guality/safedams-program.html.

The Tennessee Valley Authority (TVA) is a federal agency serving several purposes: to improve navigability and provide for flood control of the Tennessee River; to provide for reforestation and the proper use of marginal lands in the Tennessee Valley; and to provide for the agricultural and industrial development of the valley. The TVA Act, Section 26A, requires that TVA approval be obtained before carrying out any construction activities that affect navigation, flood control, or public lands along the shoreline of TVA reservoirs, in the Tennessee River, or in the Tennessee River's tributaries. TVA 26A is designed to ensure that construction along the shoreline does not have a negative effect on the agency's management of the river system. Permit approvals for construction under Section 26A are considered federal actions and are, therefore, subject to the National Environmental Policy Act and other federal laws. Typical structures and projects that require TVA Section 26A approval include boat docks, piers, boat ramps, bridges, culverts, commercial marinas, barge terminals and mooring cells, water intake and sewage outfalls, and fill or construction within

the floodplain. For more information on TVA 26A permits, refer to their website: <u>https://www.tva.com/environment/shoreline-construction-permits</u>.

1The NPDES program regulates stormwater discharges from certain *industrial* activities. Operators of these sources might be required to obtain coverage under a NPDES permit before they can discharge stormwater. Industrial stormwater discharges are primarily regulated under the *NPDES Tennessee Stormwater Multi-Sector General Permit for Industrial Activities* (TMSP) and in some situations under an NPDES individual permit. Requirements of the TMSP are separated by standard industrial classification or SIC code. For more information refer to TDEC's website: <u>https://www.tn.gov/environment/permit-permits/water-permits1/npdes-permits1/npdes-stormwater-permitting-program/npdes-industrial-stormwater-general-permit.html</u>

The Endangered Species Act, U.S. Fish and Wildlife Service, and National Invasive Species Council all impose contingencies for construction if the construction would disrupt an ecosystem that contains threatened and endangered species of fish, wildlife, and plants; does not comply with the Migratory Bird Treaty Act, Marine Mammal Protection, or harms a species on the list of federally endangered or threatened species; and if construction has the potential to cause or promote the introduction of invasive species, respectively. These three acts impose contingencies for performance of construction; however, they do not impact the process of obtaining a CGP. Refer to the National Heritage Inventory Program's website for full compliance with the Endangered Species Act (https://www.tn.gov/environment-/program-areas/na-natural-areas/na-natural-heritage-inventory-program.html); the Fish and Wildlife Service's website for full compliance with their stipulations (www.tws.gov/); and the National Invasive Species Council's website to prevent the introduction of new species (https://www.usda.gov/topics/invasive-species).

References:

- Borrelli, P., Alewell, C., Alvarez, P., Anache, J. A. A., Baartman, J., Ballabio, C., Bezak, N., Biddoccu, M., Cerdà, A., & Chalise, D. (2021). Soil erosion modelling: A global review and statistical analysis. *Science of The Total Environment*, *780*, 146494.
- CFR122. EPA Administered Permit Programs: The National Pollutant Discharge Elimination System.
- Nearing, M. A., Xie, Y., Liu, B., & Ye, Y. (2017). Natural and anthropogenic rates of soil erosion. *International Soil and Water Conservation Research*, *5*(2), 77-84.
- Smith, P. M. (2018). Monitoring and Assessment of Sediment Basins at Highway Construction Sites.

- TDEC. Tennessee Construction General Permit. <u>https://www.tn.gov/environment/permit-</u>
- <u>permits/water-permits1/npdes-permits1/npdes-stormwater-permitting-</u> <u>program/npdes-stormwater-construction-permit.html</u>

Chapter 2 - Stormwater Management

2.1 Hydrology and Drainage Calculations

There are a variety of BMPs that can be designed to capture, store, and treat stormwater runoff from construction sites. Commonly, EPSC measures and BMPs are categorized by their purpose and classified as: stabilization, pollution prevention, erosion prevention, runoff velocity control, sediment control, or stream protection practices, or a combination of the categories. Further, EPSC measures can be structural (i.e., physical structures with engineering design) or nonstructural (i.e., implemented methodologies through planning and policies) practices. Regardless of their classification, many structural EPSC measures are sized by their projected hydrologic or hydraulic capacity. In some scenarios, sizing, or design of EPSC measures may be governed by regulations, hydrologic/hydraulic calculations, or a combination of the two. The following information is presented under the assumption that the designer is proficient with watershed delineations, hydrology, hydraulics, and stormwater runoff. Detailed information may be located in the *Tennessee Department of Transportation Drainage Manual* (TDOT) and the *National Engineering Handbook* [NEH (NRCS, 1967-2019)].

Estimating the peak flow and volume of runoff from a construction site assists in calculating erosion potential, flow routing, and required sediment treatment from EPSC measures. Estimating the maximum flow rate leaving a construction site will guide the sizing of inlets, outlets, and emergency spillways of the EPSC measures. Therefore, accurate, predictive methodologies for both runoff volume and peak flow rates are critically important in the sizing and design of such measures. Hydrologic procedures for the National Resource Conservation Service (NRCS) Technical Release (TR)-55 method are recommended for design and outlined in the following subsections; however, other hydrologic methodologies such as the Rational method (Schueler, 1987), Small Storm Hydrology method (Pitt, 1994), or Green-Ampt method (Green & Ampt, 1911), may be suitable alternatives in particular scenarios for hydrologic computations. For example, the Rational method may be useful for calculating peak flows (more) quickly and relating those flows to peak velocities. This approach may be of interest since peak velocities are directly related to erosive forces and eroded sediments; therefore, the Rational method is also outlined in Section 2.1.3. Common hydrologic software for the NRCS TR-55 methodology include WinTR-55, HEC-HMS, and HydroCAD® which were developed by the United States Department of Agriculture (USDA), the United States Army Corp of Engineers (USACE), and HydroCAD Software Solutions LLC. Computer based software may be a more practical approach than hand calculations due to reduced computation time and the ability to rapidly reanalyze site specific scenarios by changing key inputs.

Erosion Prevention and Sediment Control Handbook

2.1.1 Runoff Volume

The NRCS runoff curve number (CN) method is the most commonly implemented runoff volume estimation method in the United States. In this method, runoff depth (Q_{CN} [inches]) is a function of precipitation depth (P [inches]), the maximum potential retention in a watershed (S [inches]), and the initial abstractions within the watershed (I_a [inches]), provided that P > I_a (Eqn 1). When I_a ≥ P, all rainfall is captured within the watershed, and no runoff is produced.

$$Q_{CN} = \frac{(P - I_a)^2}{(P - I_a) + S}$$
 (Eqn 1)

Maximum potential retention is an empirically derived variable (Eqn 2). Initial abstraction is also empirically derived and is assumed to have a constant, linear relationship with S (Eqn 3). This linear relationship (λ) is typically set at 0.2, meaning no runoff occurs until 20% of the watershed's ability to retain water has been filled.

$$S = \frac{1000}{CN_{comp}} - 10$$
(Eqn 2)

$$I_a = \lambda \times S \tag{Eqn 3}$$

The CN_{comp} variable accounts for watershed heterogeneity in terms of land use and hydrologic soil group (HSG). More specifically, individual CNs are a function of specific land use and HSG; they can be found in tables provided in the NRCS TR-55 manual (Cronshey, 1986). When a given watershed has more than one land use or more than one HSG, individual CNs can be area weighted to obtain a composite curve number (CN_{comp}) as shown in Eqn 4, where i represents a distinct combination of land use and HSG.

$$CN_{comp} = \frac{\sum_{i=1}^{l} (CN_i \times A_i)}{\sum_{i=1}^{l} A_i}$$
(Eqn 4)

The CN_{comp} can be further adjusted to account for variability arising from soil moisture conditions, canopy cover density, stages of growth for vegetation, temperature, rainfall intensity, and rainfall duration. Collectively, these sources of variability are termed antecedent runoff conditions (ARC) and applying the ARC factor to the CN_{comp} is an optional process that is dependent on professional judgment. ARC is divided into three classes: class

Erosion Prevention and Sediment Control Handbook

I for dry conditions, class II for average conditions, and class III for wet conditions. Some works advise converting the CN_{comp} from case II to case I or III based on previous rainfall (Ward & Trimble, 2003). Rough guidelines are that conditions may be considered dry (ARC I) if the precipitation during the previous five days was less than 0.5 inches during the dormant season or 1.4 inches during the growing season; conditions may be considered wet (ARC III) if the precipitation during the previous five days was more than 1.1 inches during the dormant season or 2.1 inches during the growing season. Tables to convert the ARC II CN_{comp} to ARC I or ARC III are provided in NEH-10 (NRCS & USDA, 2004). However, there is relatively little evidence to suggest applying ARC corrective factors is appropriate. Simpson et al. (2023) discovered ARC corrective factors adjusted the CN_{comp} too severely therefore, professional judgement is advised when implementing ARC factors in development projects. Case III is the most conservative estimate, followed, by case II. More conservative estimates are recommended in the design process to ensure adequate storage volumes.

The overarching process for the NRCS TR-55 composite CN method for calculating runoff volume is outlined:

- Determine the area which drains to an outlet of interest (i.e., determine the watershed of interest).
- Identify and classify the specific soils, soil types, and land uses within the watershed boundary.
- Obtain CNs for each distinct combination of land use and HSG; calculate CN_{comp} (Eqn 4).
- Determine if an ARC factor should be applied.
- Calculate S and I_a (Eqns 2 & 3).
- Determine the design P value which is site specific precipitation depth acquired from National Oceanic and Atmospheric Administration (NOAA) Atlas 14 that correlates with the design storm that can be found in the construction general permit [CGP, (TDEC)].
- Calculate Q_{CN} (Eqn 1).
- Determine the runoff volume by multiplying $Q_{\mbox{\tiny CN}}$ with the watershed area and a unit conversion factor.

Further, other CN methodologies exist beyond the composite approach. These include the distributed CN and discrete CN approach (Simpson et al., 2023) as well as modifying λ (Hawkins et al., 2009). These methodologies have proven to be more accurate than the composite method under specific watershed and rainfall conditions. While the composite CN approach is the most commonly implemented CN methodology, these other approaches may be viable alternatives, given professional judgement.

Erosion Prevention and Sediment Control Handbook

2.1.2 Time of Concentration

Estimating peak flow rates relies on a timing component. This timing component is known as the time of concentration (T_c) which can be defined as the time it takes for water to travel from the hydrologically most distant point in a watershed to the watershed outlet. Therefore, the peak flow rate will occur during a storm's maximum intensity over a duration that matches the watershed's T_c . Estimating T_c can be influenced by a number of variables including watershed surface roughness, shape, size, and slope as well as rainfall characteristics.

The NRCS TR-55 methodology for estimating T_c consists of summing the travel time (TT) of all flow types that may occur within a watershed: sheet flow (SF), shallow concentrated flow (SCF), and open channel flow (OCF). SF occurs over plane surfaces (e.g. a parking lot, grass field), typically has a maximum flow depth of 0.1 feet, travels in a wavelike manner, and has a maximum flow length of 100 feet. The travel time of SF is calculated utilizing the empirical relationship shown in Eqn 5.

$$TT_{SF} = \frac{0.007 \times (nl)^{0.8}}{(P_2)^{0.5} \times S^{0.4}}$$
(Eqn 5)

In Eqn 5, TT_{SF} is the travel time of sheet flow (hours), n is the Manning's roughness coefficient (unitless), I is the length of the longest sheet flow path (feet, maximum of 100 ft), P₂ is the 2-year, 24-hour rainfall depth (inches), and S is the average slope of the longest sheet flow path (ft/ft). P₂ can be acquired from NOAA Atlas 14 for a specific location. The n variable can be looked up in tables in the NRCS TR-55 manual or NEH-15 (Cronshey, 1986; NRCS & USDA, 2008).

SCF is flow that occurs in a defined channel with a flow depth between 0.1 and 0.5 feet and is estimated by calculating the average velocity through the specific channel. Velocity equations for specified channels are provided in NEH-15 (NRCS & USDA, 2008), and the travel time of shallow concentrated flow (TT_{SCF}) can be calculated by dividing the length of the channel by the average velocity and converting units as required.

OCF occurs in defined channels where surveyed cross-sectional data has been obtained, channels are visible on aerial imagery, or flow/stream- lines appear on hydrologic websites such as the United States Geological Survey (USGS), National Hydrography Database (NHD), or StreamStats. Manning's Equation (Eqn 6) is used to estimate the average velocity throughout the length of OCF, and similarly to SCF, that velocity is used to estimate the travel time of OCF (TT_{OCF}) by dividing the length of OCF by velocity and converting units.

Erosion Prevention and Sediment Control Handbook

$$V = \frac{1.49}{n} \times r^{2/3} \times S^{1/2}$$
(Eqn 6)

In Manning's Equation (Eqn 6), r is the hydraulic radius (feet), which is found by dividing the cross-sectional area of flow by the wetted perimeter. The hydraulic radius can be a complex variable to calculate; therefore, the designer is referred to "The open channel flow calculator[©]" developed at the University of Auburn for computations in triangular, rectangular, trapezoidal, or circular culverts (Fang, 2007). For computations in arched or elliptical pipes, the designer is referred to Perez et al. (2015).

2.1.3 Peak Flow Rate

For its simplicity, the rational method is the most commonly used methodology to predict peak flow rates in the United States. It is an empirical relationship between peak discharge (q_p) , rainfall intensity (i), a runoff coefficient (C), and drainage area (A) (Eqn 7).

$$q_{p} = C_{comp} \times i \times A$$
 (Eqn 7)

The rainfall intensity can be calculated for a given recurrence interval (e.g., 2 years or 5 years) for a duration equal to the watershed time of concentration, T_c . Lookup tables in Chapter 4 of TDOT's Drainage Manual can be used to determine C values based on surface types and conditions within the drainage area (TDOT). When multiple surface types or conditions are present within the drainage boundary area-weighting the C values is appropriate to obtain C_{comp} , a similar process as depicted in Eqn 4. In Eqn 7, the variables q_p , i, and A have units of cfs, in/hr, and acres, respectively, while C is unitless. The Rational method was developed for use when drainage areas are less than 600 acres (Kuichling, 1889); however, caution and engineering judgement are advised once watersheds exceed 10 acres.

The NRCS-TR 55 Graphical Peak Discharge method relates a unit peak discharge (q_p) multiplied with watershed area (A_m) , runoff depth (Q_{CN}) and a ponding factor (F_p) to peak discharge (q_p) (Eqn 8).

$$q_p = q_u \times A_m \times Q_{CN} \times F_p$$
 (Eqn 8)

In this equation, q_p is expressed in cubic feet per second (cfs), while q_u , A_m , and Q_{CN} (Eqn 1) are expressed in cubic feet per second per square mile per inch (csm/in), square miles (mi²), and inches, respectively. F_p is governed by the percent area within the watershed that is ponds or swamps and can be looked up in tables in the NRCS TR-55 manual (Cronshey, 1986). The q_u variable is dependent upon T_c , appropriate rainfall distribution, P (ref. NOAA atlas 14), and I_a (Eqn 3). Utilizing the original NRCS TR-55 methodology, the rainfall distribution is Type II for the entire state of Tennessee and q_u can be determined from graphics (NRCS, 1986) or hydrologic software. More recently, NOAA has created more refined and updated rainfall

Erosion Prevention and Sediment Control Handbook

distributions, in lieu of the NRCS Type II distribution. Within the Ohio Valley geographic region, NOAA has defined four rainfall distributions: Type A, B, C, and D, all of which are represented in the state of Tennessee. These rainfall distributions are pre-loaded in certain hydrologic models (e.g., HydroCAD®) making the calculation of the q_u variable simple. Other software (e.g., WinTR-55) do not have the updated NOAA rainfall distributions incorporated into the models at this time. However, in WinTR-55, users can input custom rainfall distributions. Appendix A of the Georgia Soil and Water Conservation Commission Manual for Erosion and Sediment Control provides resources to implement NOAA rainfall distributions in the NRCS models (GSWCC, 2016).

2.2 Estimating Sediment Yield

Sediment yield is a critical design element for EPSC measures on construction sites in regard to sediment storage capacity and maintenance. Erosion potential is dependent on four primary factors: soil erodibility, vegetative cover, topography, and climate. Understanding the parameters affecting soil loss helps with construction stormwater management by informing planners which project stages have the largest predicted soil losses. One of the most well-known models for estimating long-term soil loss is the Universal Soil Loss Equation (USLE), which was developed in the 1950s by the United States Department of Agriculture's Agricultural Research Service (USDA-ARS), Soil Conservation Service (SCS, now known as NRCS), and Purdue University. The USLE model is on its second revision, the Revised Universal Soil Loss Equation 2 (RUSLE2), which was developed in the 1990s. Though the use of RUSLE2 is recommended for calculating soil loss on any development project, it is especially useful when site specific designs are required. The CGP (TDEC) requires that site specific calculations be completed to design temporary sediment basins with a contributing drainage area of 25 acres or greater.

2.2.1 RUSLE2

2.2.1.1 Model

The RUSLE2 model is freely available at the USDA-ARS website and is recommended for use opposed performing hand calculations (https://fargo.nserl.purdue.eduas to /rusle2_dataweb/RUSLE2_Index.htm). Foster and Toy (2005) and Toy and Foster (2007) are excellent resources for learning the software. The RUSLE2 model calculates sediment loss on slopes from rill and interrill erosion on an annual basis. The interrill erosion process (also known as sheet erosion), starts with raindrop impact detaching soil particles (i.e., sediment), thereby allowing the particles to move across the soil surface. Interrill erosion forms rills on the hill slope. Sediment is transported through the rills down the slope until the runoff slows enough to allow the deposition on either the land surface or in concentrated flow areas such as channels. Specific variables for RUSLE2 include annual erosivity (R), soil erodibility (K),

slope length and steepness (LS), cover management factor (C), and a support practices factor (P) all of which are used to predict the average soil loss (A) from rill and interrill erosion (Eqn 9).

$$A = R \times K \times LS \times C \times P$$
 (Eqn 9)

Each variable in the RUSLE2 equation is determined based on a set of empirical equations and is dependent on a number of factors. Computation of variables requires caution and time; therefore, use of the model is advised. A brief explanation of the variables is provided, but for further specifics, the user is referred to the RUSLE2 user's manual (USDA, 2001).

The R-factor quantifies the amount and rate of runoff likely associated with rain by assessing raindrop impact on soil. This is impacted by weather, climate, and seasonal variations in temperature, rainfall, and wind. The R-factor has units of hundreds of [ft × tonf × in × (ac × $hr × yr)^{-1}$] and has typically been expressed as an annual average. However, in RUSLE2 the R-factor can be multiplied by a fractional amount of erosion to obtain daily, weekly, monthly, etc. values.

The K-factor is the rate of soil loss per rainfall erosion index plot, has a unit of $[ton \times ac \times hr \times (hundreds of ac \times ft \times tonf \times in)^{-1}]$, and is influenced by temperature, precipitation, and intrinsic soil properties. In general, soils with high clay or sand content have lower values of K. In high clay soils, this low value is because the attraction forces between clay particles are often stronger than the forces applied to soils by raindrops. In sandy soils, it is due to the high infiltration capacity. Conversely, silty soils typically yield moderate to high values of K because particles can be easily detached by the forces imparted by raindrop impact and the soils are unable to infiltrate rainfall at a high enough rate.

Topography is accounted in RUSLE2 by considering the horizontal distance from the origin of overland flow to the point where either (1) the slope gradient decreases enough for deposition to begin or (2) runoff enters a defined channel and becomes concentrated (slope length). Topography is also accounted for by the gradient of the slope length (slope steepness). Slope length is typically limited to 400 feet, although longer sections may be applicable in certain scenarios. Together, slope length (feet) and steepness (%) are used to obtain a unitless LS factor from tables in Renard (1997) or within the RUSLE2 model.

The C-factor is a unitless variable reflecting the effect of cover crops and management practices (e.g., vegetation type, growth, application of biomass, crop rotation, conservation tillage, and surface roughness) on erosion rates. The C-factor is split into subfactors including canopy, ground cover, surface roughness, ridges, below ground biomass, soil consolidation, and antecedent soil moisture in which a set of predetermined equations are used to calculate their interactions related to soil loss.

Erosion Prevention and Sediment Control Handbook

The P-factor describes the ratio of soil loss with a specific support practice to the corresponding loss with upslope and downslope tillage. It is a unitless variable calculated from a product of P subfactors for individual support practices that can be standalone practices or used in series.

The product of all RUSLE2 variables is average soil loss expressed in tons per acre per year. However, decomposition of the R and K variables allows the user to better refine soil loss estimates for a user-specified timeframe. The average loss can also be viewed as the net sum of soil losses related to the following four processes:

- soil loss on the eroding portion the slope;
- soil detachment on the entire slope;
- conservation planning soil loss; and
- sediment delivery for the slope length.

2.2.1.2 Model Output and Summary

RUSLE2 provides multiple model outputs that can be used for gauging performance and for planning different management scenarios. One output value is the average soil loss for the user-specified timeframe. Soil loss values can be compared for different management scenarios and different timeframes to determine if the construction project's EPSC measures or construction timing can help reduce estimated soil losses. RUSLE2 also outputs a critical slope length that indicates the maximum slope length before a contouring management practice (such as silt fence) begins to fail. If the actual slope length is greater than the critical slope length, the slope may be more vulnerable to failures of EPSC measures. Cover management systems that increase slope roughness or ground cover can increase the critical slope length. It is desirable for the actual slope length to be less than the critical slope length for erosion control applications. Model users should carefully review RUSLE2 model input and output information to check that the results are reasonable and consistent with accepted values from the user's manual.

2.2.1.3 Applicability

The RUSLE2 model can be used for planning, implementing, and designing EPSC measures as well as for construction planning and sequencing. Scenarios where RUSLE2 are particularly useful are listed below:

- Calculating a baseline estimated soil loss for comparison with other scenarios;
- Comparing slope erosion rates at various stages of construction;
- Ranking EPSC measures erosion control performance;
- Calculating estimated sediment yields for phased and timed projects to minimize soil exposure during rainfall events;
- Diverting runoff away from potential high erosion areas;

Erosion Prevention and Sediment Control Handbook

- Reducing overland flow path length where EPSC measures do not provide desired functionality;
- Displaying positive effects of stabilizing disturbed areas with vegetation, ground cover, biomass, etc.;
- Selecting local vegetation types for long term erosion control;
- Adding flat segments at the end of overland flow paths to promote sediment deposition; and
- Implementing sediment trapping devices.

RUSLE2 output may be used to evaluate the relative effectiveness of different EPSC measures; however, RUSLE2 does NOT apply in the following scenarios:

- Concentrated flow areas (e.g., gullies, ditches, streams);
- Undisturbed forestland;
- Erosion by piping;
- Erosion caused by snowmelt;
- Erosion by mechanical processes (mass movement such as landslides, movement by tillage operations);
- Organic soils;
- Slope lengths longer than 1000 feet;
- Slopes steepness greater than 100%;
- Sediment basins beyond small, simple designs; or
- Diversion engineering designs.

2.2.2 Other Models

As previously mentioned, RUSLE2 is suggested when determining annual site-specific sediment storage volume. Site specific sediment loadings are required when the contributing drainage area to an outfall is greater than 25 acres. While various methodologies may be applicable, only one alternative (the sediment yield ratio) is outlined below. However, another model, the Modified Universal Soil Loss Equation (MUSLE), is mentioned and supplemented with a reference (Williams, 1975). MUSLE is an adjustment from USLE by incorporating runoff factors, making it applicable to individual rainfall events, rather than giving annual or long-term averages.

When intrinsic soil properties of the area to be disturbed are known (from local studies and tests), a simple sediment yield ratio relating the disturbed area with sediment yield can be implemented. In this instance, the bulk density of the sediment must be considered to obtain a sediment yield in tons. When local studies have not been conducted, a general rule is that one inch of disturbed/exposed soil will erode over a given acre per year, yielding 3,618 cubic feet of soil loss per acre of disturbed area per year. Therefore, when using this ratio for

Erosion Prevention and Sediment Control Handbook

temporary sediment basin calculations, the sediment storage should be sized to hold the sediment yield of 3,618 cubic feet per acre of disturbed area. In addition, the basin and outlet structure must be sized to detain the runoff from the entire drainage area and treat the design storm that is required in the CGP (the 2yr, 24hr or 5yr, 24 hr storm event). Use of the sediment yield ratio is limited to when there is sufficient knowledge on the soils, drainage basin, and climate. This generalized rule should not be used for areas that are over 25 acres; instead, a site-specific design must be completed for the sediment storage required for sediment control measures (such as temporary sediment basins).

2.2.3 Design Concepts for Structural Sediment Controls

To limit the discharge of sediment from construction site developments, erosion prevention practices and sediment control practices are implemented. The design of sediment control practices relies on the predicted volume (or weight) of eroded soils (i.e., the resultant calculation from RUSLE2, MUSLE, sediment yield ratio, etc.), among other factors. These practices are designed to trap, and store suspended sediment carried by surface water from a construction site until maintenance operations remove the trapped sediment. A common sediment control practice utilized in Tennessee is a temporary sediment basin. These basins are required when the total drainage area to an outfall is greater than or equal to 10 acres or, if discharging runoff to a surface body of water with unavailable parameters for siltation or is listed as an Exceptional Tennessee Water, when the drainage area is greater than or equal to 5 acres. To view the status of receiving waters for a designation of unavailable parameters for siltation in Tennessee, consult the Construction General Permit Map viewer at https://tdeconline.tn.gov/dwrcgp/. To view the current list of Exceptional Tennessee Waters, consult TDEC's data viewer at https://dataviewers.tdec.tn.gov/dataviewers/ f?p=2005:34304:9725246335398:. Other sediment control practices [e.g., sediment trap, silt fence, check dams, etc. (Section 4.4)] can be implemented in series, combination, or alone to provide sediment trapping and stormwater treatment. These alternates may be necessary when site conditions make temporary sediment basins infeasible (Section 5 and 6).

For temporary sediment basins, the efficiency and effectiveness of trapping and storing sediment not only depends on the geometry and size of the practice but also the design components (sediment and water storage, forebay, principal spillway, outlet pipe and protection, emergency spillway, and dam embankment) and soil characteristics. The design procedures and functions of these components are specified in Section 4.4.7.

The geometry can impact the treatment efficiency especially when it comes to stormwater's flow path in a temporary sediment basin. Longer flow paths from the inlet to outlet allow more time for finer sediments to settle out of the stormwater before exiting the sediment basin. Generally, settling velocity estimates are 3.28×10^{-3} to 3.28×10^{-1} feet per second for

Erosion Prevention and Sediment Control Handbook

sands, 3.28×10⁻⁵ to 3.28×10⁻³ feet per second for silts, and less than 3.28×10⁻⁵ feet per second for clays. However, these ranges can vary based on factors such as water turbulence, particle size and density, and temperature (Winterwerp & Kranenburg, 2002). Depending on the particle size to be removed in a sediment basin, the required retention time of that particle varies drastically (Table 1), thereby influencing the flow path length.

Particle	Approximate	Settling	Depth of	Settling	Settling	Settling
Туре	Particle Size (µm)	Velocity (ft/s)	Basin (ft)	Time (s)	Time (min)	Time (hr)
Sand	202	3.28E-02	4	122	2	0.03
Silt	20	3.28E-04	4	12192	203	3
Clay	6	3.28E-05	4	121920	2032	34
Clay	2	3.28E-06	4	1219200	20320	339

Table 1: Example settling times for sand, silt, and clay are shown for comparison.

The table above is only shown as an example to compare the settling time for different soil types. In no way does this table show the required settling time to meet regulatory requirements for a sediment basin design. The comparison shows that the finer particles can take upwards of 10,000 times longer to settle than coarse particles.

Effective EPSC measure design and sizing depend on accurate analyses of runoff volume, peak flow rates, and sediment yield, informed by established hydrologic methodologies and supported by computational tools for efficient and precise scenario evaluation. Ultimately, the responsibility for ensuring a compliant and effective design rests with the design engineer.

Erosion Prevention and Sediment Control Handbook

References:

- ALSWCC. (2018). Alabama Handbook for Erosion Control, Sediment Control and Stormwater Management on Construction Sites and Urban Areas.
- Cronshey, R. (1986). *Urban hydrology for small watersheds*. US Department of Agriculture, Soil Conservation Service, Engineering Division.
- Fang, X. (2007). The open channel flow calculator. https://www.eng.auburn.edu/~xzf0001/Handbook/Channels.html
- Foster, G. R., & Toy, T. (2005). User's Reference Guide: Revised Universal Soil Loss Equation Version 2.
- Green, W. H., & Ampt, G. (1911). Studies on Soil Phyics. *The Journal of Agricultural Science*, *4*(1), 1-24.
- GSWCC. (2016). Manual for Erosion and Sediment Control in Georgia.
- Hawkins, R., Ward, T., Woodward, D., & Van Mullem, J. (2009). Curve number hydrology: State of practice, 106. *Reston, VA: ASCE*.
- Henn, J. B., Metzger, M. E., Kwan, J. A., Harbison, J. E., Fritz, C. L., Riggs-Nagy, J., Shindelbower, M., & Kramer, V. L. (2008). Development time of Culex mosquitoes in stormwater management structures in California. *Journal of the American Mosquito Control Association*, 24(1), 90-97.
- Kuichling, E. (1889). The relation between the rainfall and the discharge of sewers in populous districts. *Transactions of the American Society of Civil Engineers*, *20*(1), 1-56.
- NCDEQ. (2013). North Carolina Erosion and Sediment Control Planning and Design Manual.
- NRCS. (1967-2019). *National Engineering Handbook: Part 630 Hydrology*. <u>https://www.hydrocad.net/neh/630contents.htm</u>
- NRCS. (1986). *Urban hydrology for small watersheds.* (Technical Release 55), Issue (Washington DC.).
- NRCS, & USDA. (2004). *Estimation of direct runoff from storm rainfall* (National Engineering Handbook Ch10, Issue 630).
 - https://irrigationtoolbox.com/NEH/Part630_Hydrology/H_210_630_10.pdf
- NRCS, & USDA. (2008). *Time of Concentration* (National Engineering Handbook Ch15, Issue 630). <u>https://irrigationtoolbox.com/NEH/Part630_Hydrology/NEH630-ch15draft.pdf</u>
- ODNR. (2006). Rainwater and Land Development: Ohio's Standards for Stormwater Management, Land Development and Urban Stream Protection.
- PADEP. (2012). Erosion and Sediment Pollution Control Program Manual.
- Perez, M. A., Butler, C. G., & Fang, X. (2015). Compute critical and normal depths of arch and elliptical pipes. *Journal of Irrigation and Drainage Engineering*, *141*(9), 06015001.
- Pitt, R. (1994). Small storm hydrology. University of Alabama, Birmingham. Unpublished manuscript. Presented at Design of Stormwater Quality Management Practices, Madison, Wl. May, 17, 19.

Erosion Prevention and Sediment Control Handbook

- Renard, K. G. (1997). *Predicting soil erosion by water: a guide to conservation planning with the Revised Universal Soil Loss Equation (RUSLE)*. US Department of Agriculture, Agricultural Research Service.
- SCDHEC. (2014). BMP Handbook.
- Schueler, T. R. (1987). *Controlling urban runoff: A practical manual for planning and designing urban BMPs*. Metropolitan Washington Council of Governments Washington, DC.
- Simpson, I. M., Winston, R. J., Tirpak, R. A., Dorsey, J. D., Stagge, J. H., & Hathaway, J. M. (2023). Hydrologic responses of single land use urban and forested watersheds and their implications to improving urban drainage design. *Journal of Hydrology*, 620, 129430.
- TDEC. Tennessee Construction General Permit. <u>https://www.tn.gov/environment/permit-permits/water-permits1/npdes-permits1/npdes-stormwater-permitting-program/npdes-stormwater-construction-permit.html</u>
- TDOT. *Drainage Manual*. Retrieved from <u>https://www.tn.gov/tdot/roadway-design/design-standards/drainage-manual.html</u>
- Toy, T., & Foster, G. R. (2007). *Soil-Loss Estimation for Construction Lands Using RUSLE 2.0* (ICEA Training Course).
- USDA. (2001). *Revised Universal Soil Loss Equation Version 2 Handbook*. <u>https://www.nrcs.usda.gov/sites/default/files/2022-10/RUSLE2%20Handbook_0.pdf</u>
- Ward, A. D., & Trimble, S. W. (2003). *Environmental hydrology*. Crc Press.
- Williams, J. R. (1975). Sediment-yield prediction with universal equation using runoff energy factor¹. Present and Prospective Technology for Predicting Sediment Yield and Sources: Proceedings of the Sediment-Yield Workshop, USDA Sedimentation Laboratory, Oxford, Miss., Nov. 28-30, 1972,
- Winterwerp, J. C., & Kranenburg, C. (2002). *Fine sediment dynamics in the marine environment*. elsevier.
- Zawarus, P. (2022). Green Infrastructure for Mosquito Control. In *Architectural Factors for Infection and Disease Control* (pp. 109-125). Routledge.