Introduction to Phosphorus Removal

By

Brett Ward Municipal Technical Advisory Service University of Tennessee

1

Nutrient Removal

- More Complex: Advanced Treatment, Tertiary Treatment
 - Chemical/Physical Treatment
 - Biological Treatment
 - Traditional Treatment-Oxidation Process
 - Nitrogen Removal-Oxidation then Reduction
 - Phosphorus- Reduction then Oxidation
- Conflicting and often a delicate processes

AS Review- Plant Configurations

- Plug Flow-long basin
 - DO may vary
 - DO demand changes
 - Rate of metabolism changes
 - BOD drops
- Multi Ring Ditch
- ~Intermittent fed SBR

AS Review- Plant Configuration

- Complete Mix~ square
 - DO ~ equal
 - DO demand ~equal
 - BOD ~ equal
 - Rate of metabolism ~equal
- Single ring ditch
- ~Continuous fed SBR

Δ

Bacterial Habitat

- Different by design
- Different by operations & controls
- Operators must use the tools at their disposal to control the bacteria!

Three Different Habitats

What are Nutrients? Think Fertilizer

- Nutrients
 - Nitrogen and Phosphorus
 - Two main fertilizer elements needed for growing green plants.
 - They contribute to aquatic plant growth,
 - Excess plant growth clogs streams and,
 - When they die add a organic matter/BOD and nutrient load back onto the stream

How do you remove nutrients?

- Nitrogen
 - Biologically- nitrification followed by denitrification
 - Chemically- ammonia stripping, breakpoint Cl₂
- Phosphorus
 - Biologically-to ~ 0.5-1.0 mg/L
 - Chemically-with or without biological removal

PHOSPHORUS REMOVAL

Phosphorus Importance

- Essential for all life; human deficiency is rare
- Essential for crop production; deficiency in soil is common
- Maury Co, Tenn. was once a world leader in the production of phosphorus fertilizer

TN Plant Optimization Program (TNPOP)

9

Nitrogen/Phosphorus

- Both essential elements for life; human and plant
- Both available from food; human and plant
- Both are part of wastewater influent
- Both can be removed biologically or chemically
- But there is no gaseous form of phosphorus

Fate of Nutrients

- Nitrogen
 - Effluent
 - Sludge/Biosolids
 - Nitrogen Gas

- Phosphorus
 - Effluent
 - Sludge/Biosolids

Phosphorus Removal

- Influent Concentrations:
 - 6-20 mg/L common levels
- Common Effluent Levels
 - Secondary treatment~ 3-4 mg/L
 - With phosphorus removal ~ 1.0- 0.01mg/L
- Common Tennessee Limits ~ 0.5 mg/L
- Limits from other states $\sim 0.1 \text{ mg/L}$

Phosphorus Sources

- Sewage, urine
- Soaps & Detergents
- Corrosion control:
 - Water distribution
 - Boiler feed water
- Industrial Sources
 - Food Processing
 - Metal processing
 - Fertilizer mfg.

Phosphorus Forms

- Influent Total Phosphorus 6-20 mg/L
- Organic Phosphorus ~ 2-5 mg/L
 - Acid digestion converts this to Orthophosphorus for testing.
- Inorganic Phosphorus ~ 4-15 mg/L
 Orthophosphorus, PO₄³⁻ (reactive phosphorus)

Fate of Phosphorus

• Effluent

- Organic P in BOD & TSS
- Dissolved in the water
- Sludge or Biosolids
 - Organic P in the solids
 - Dissolved in the water

Low Effluent Phosphorus

• To achieve Low Effluent Phosphorus:

• Phosphorus must be high in the waste sludge and remain high when sludge or biosolids are removed from the plant.

Load Must Balance

• Influent: 100 lbs. Phosphorus

• Effluent 90 lbs. Phosphorus

- Waste Sludge 10 lbs. Phosphorus
 - Stored in Digester/Holding Tank or,
 - Removed in Sludge or Biosolids
 - Caution: Decant/Supernatant Phosphorus

Phosphorus does not just disappear.

- The Law of Conservation of Matter.
- It was discovered by Antoine Laurent Lavoisier about 1785.

• In a chemical reaction, or biochemical reaction, matter is neither created nor destroyed, though its form may change.

Plant Phosphorus Routes

20

Biological Phosphorus Removal

- Three Steps
 - Pass-through Phos
 - Assimilative Removal
 - Enhanced Biological
 Phosphorus Removal
 (EBPR)

1. Pass-Through Phosphorus

Low: BOD, TSS = Lower Phosphorus

• Keep effluent BOD & TSS low! Filters help.

High: BOD, TSS = Higher Phosphorus

TN Plant Optimization Program (TNPOP)

22

2. Assimilative Phosphorus

- Keep a lower MLSS, MCRT, & younger sludge, that is waste more!
- 10 day SRT= 22,000 lbs
- 40 day SRT= 13,000 lbs
- 70 day SRT= 10,000 lbs
- More lbs wasted, more Phosphorus removed

Plant Phosphorus Routes

24

Nutrient Removal Conflict

- Phosphorus Removal
 Lower MLSS, MCRT, sludge age
- Ammonia Removal
 Higher MLSS, MCT, sludge age

Balancing Act: Lowest MLSS/MCRT/ sludge age that will fully nitrify. Watch ammonia levels; you may have to accept higher effluent ammonia to get low Phosphorus.

Bacteriological Conflict

Parameter	Nitrifiers	Denitrifiers	ΡΑΟ
Preferred SRT	Long	Short	Short
F/M	Low	High	High
ORP (DO)	High	Low	Very low \rightarrow High
rbCOD	No	Yes	Yes: VFA
NO _X -N	Ok	Must	No ¹
Temperature sensitivity	Very high	Moderate	Low

1 - When conditions for secondary release are not present.

Developed after Metcalf and Eddy (2014); EPA (2010); Downing et al. (2009); Kang et al. (2008); Brown et al. (2007); Oleszkiewicz and Barnard (2006).

Canadian Water Network, March 2015

3. Enhanced Biological Phosphorus Removal, EBPR

- Phosphorus Accumulating Organisms, PAO's
- Heterotrophic, Obligate Aerobes
 - Feed on CBOD
 - Must have Oxygen
 - But have a unique metabolic capacity

Candidatus Accumulibacter phosphatis (blue cells)

PAO's Unique Metabolic Capacity

- PAO- phosphorus accumulating organisms
- Also called Luxury Uptake of Phosphorus
- Process includes:
 - Anaerobic zone where phosphorus is released
 - Aerobic zone- Luxury Uptake of Phosphorus
- There are many variations of this basic flow

Biological Phosphorus Removal

- PAO bacteria
- To enhance their proliferation they must be cycled through two habitates
 - Anaerobic (release)
 stage
 - Aerobic (luxury uptake) stage

PAO Metabolism

Anaerobic Zone, two processes

Substrate = CBOD Facultative Bacteria, not POA's Acetate is a VFA

PHB= Polyhyroxybutyrate, stored energy using VFA's and O_4 from stored PO₄

P is released

Aerobic Zone

Oxygen present PHB is metabolized releasing CO_2 and water, aerobic metabolism like all other heterotrophs for maintenance and growth (new cells)

Phos & O_2 taken in to form new PHB or PO₄ (luxury uptake)

This should give low P water and high P- PAO's/cells/MLSS/solids TN Plant Optimization Program (TNPOP) Intro to Phosphorus Removal Brett Ward-MTAS

Plant Phosphorus Routes

Three Stage A²/O Process

BIOLOGICAL NUTRIENT REMOVAL (BNR)

(1970's)

RAS should have little O_2 or NO_3 , Nitrate Recycle to remove NO_3

Waste Sludge High in Phosphorus

TN Plant Optimization Program (TNPOP)

Enhanced Biological Phosphorus Removal

• EBPR is known for "process instability"

- Requires more:
 - Careful operations
 - Process control testing
 - Communications and teamwork

Other Phos Removal Processes

- Three Stage A²/0
- Five Stage Bardenpho
- University of Cape Town (UCT)
 - Also UCT with Virginia Initiative Process
- Johannesburg and Modified Johannesburg processes
- All have some pattern of Anaerobic/Aerobic

34

Biological Phosphorus Removal

- Anaerobic zone
- ~ 2 hours HDT
- Fermenter for VFA's but IBOD is down so adding Alum
- Reducing environment needed, ORP, -150 to -250 mV

Anaerobic Zone

Biological Phosphorus

- Oxidation Ditch
 - Off/On cycles
 - 90 on, DO~2 ORP ~300
 - 60 off, ORP ~ -100mV
 - Subsurface mixing
 - DO controlled and ORP monitored
 - Limits TN=8, TP=2
Other Technology and Methods

- Many proprietary nutrient removal methods
- Side stream treatment processes
 - Treat part of the flow to develop PAO's then add them to the full flow
 - Treat internal flows such as digester supernatant

Side Stream Anaerobic System

Influent

Athens Utility Board, 2018

- WAS recycle to old thickener, then to ditch
- 2nd trial, to middle ring
- Success with no Chemicals
- Winter Performance is better
- Ortho P < DL

39

AUB- North Mouse Creek

- WAS holding tank
 - ORP = 200 mV
 - Side stream fermenter
 - 6000 gpd returned
 - Eff Ortho P < DL

Madisonville

- Aeromod Plant
 - Headworks
 - Anaerobic Zone
 - Selector
 - Aerobic- Off/On Zones
 - Clarifiers

Madisonville

- Anaerobic Zone
 - Sewage only
 - Air Mixed 5 minutestwice per day
 - ORP -300 to -200 mV
- Selector
 - RAS added
 - Subsurface mixing
 - ORP -200 to -100 mV

Madisonville

- Effluent
 - Total Phosphorus 3.0 0.3 mg/L
 - Total Nitrogen ~ 4.0
 - CBOD ~ 5
 - TSS ~6

Baileyton

- Low Pressure CSvery septic influent-VFA's ~ 100 mg/L
- Preaeration Ferm Zone
 - MLSS recycle
 - Did not work?????
- Aeration off/on
 - -10 hr off- 4/2/4
 - TP < 2.0 lbs (< 5 mg/L)

Baileyton Lessons Learned

- Keep Trying
- Onsite Testing Valuable
- Phos Removal may not follow the books
- Digesters: decant & dewatering impact effluent
- TDEC will change limits

Cookeville- Success!

- 4 Oxidation Ditches
- 6 Brush Rotors each
- Rotating Brush Rotor operation
- Settled Blanket-Ferm Zone.

Cookeville- Success

- Initial Side Stream
- Layered Ditch
- ORP testing

ORP-Oxidation Reduction Potential

- ORP Measurements
 - pH meter with OPR probe, use mV scale
 - Only "quick" and insightful parameter for unaerated treatment units

ORP: Classic & Practitioners Values

- Ignore Positive Values use DO Meter
- Denit ~ -50 to -150 mV
- Fermentation Zone
 ~ -200 to -300 mV

TN Plant Optimization Program (TNPOP)

Practitioners ORP Values

ORP Condition	ORP mV	Process Ranges	Process
Mildly Negative	+50		
	0	Classic Anoxic Zone	Anoxic Zone
	-50		
	-100	Extended Anoxic Zone	
Moderately Negative	-150	Classic Ferm Zone	
	-200	Extended Ferm Zone	Fermentaion Zone
	-250		
	-300	· · · · · · · · · · · · · · · · · · ·	
Strongly Negative	-350	↑	
	-400	Fully Anaerobic	Anaerobic (Methane) Zone
	-450		
	-500	↓ ↓	

ORP & Metabolic Processes

Influent & Phos. Removal

- $\geq 20 \text{ mg/L BOD}_5 / 1 \text{ mg/L TP removed}$ - 30-40: 1 may be better
- $\geq 15 \text{ mg/L sBOD}_5 / 1 \text{ mg/L TP removed}$
- 7.5 mg/L VFA / 1 mg/L TP removed
 - 5-10 mg/L range
 - ->25 mg/L VFA needed in Ferm. Zone
 - Lack of VFA a common point of failure

Fermentation Zone

- Dissolved Oxygen = 0.0 mg/L
- ORP = -250 mV, perhaps -300 mV
- Mixing: 1-2.5 hp/ 50,000 gallons

– Bernard recommends as low as 0.65 hp / 50,000gallons

- HDT 1-3 hours, with prefermentor ~ 1 hour
- SRT 4-5 days

Fermentation Zone

- Various Shapes & Flow Patterns
- Two Purposes
 - VFA Formation- Slow
 - VFA Uptake- Fast
 - Can be two tanks
- Flexibility- Swing Tanks

Optional

Aerobic Zone

- Dissolved Oxygen: 1-6 mg/L
 - 3.0 mg/L being the most frequently recommended
 - Higher values because of nitrification
 - Higher values recommended at head end to satisfy high initial oxygen demand
 - PAO oxygen uptake is rapid
 - Lower residual (0.25-0.5 mg/L) is recommended at Clarifier end to prevent DO transport to Ferm. Zone

Activated Sludge Biomass

- MCRT- 8-15 Days
 - 10 Days ***
- More Assimilative Uptake
- Less opportunity for Secondary Release
- PAO:VFA (VFA's often low)

Wasting from Aerator

- Operators #1 AS Control Method
- EBPR Wasting
 - Fully Aerobic
 - Uptake is Complete

Digester Phos. Return

Aerobic Digesters

- Keep the Phos in the Sludge
 - Avoid Secondary Release
 - JJ&G- 6hr anoxic/2hr aerobic, BNW???
 - Low MCRT
 - Move sludge or biosolids out ASAP
 - Volatile Solids Reduction releases P

Secondary Release

- Great effort to "train" PAO's into a cycle of release and uptake.
- Given the right condition release can occur where we do not want it to happen-secondary release.
 - Digesters, Anoxic Zones, Clarifier Blankets, RAS wells, Oversized Ferm. Zone.
 - Test internal processes and flows!

Glycogen Accumulating Organisms

- GAO's compete with PAO's for VFA's but do not remove phosphorus.
- Competition Factors- GAO's Prefer:
 - Higher Temperatures
 - Lower pH
 - Longer MCRT
 - Very high organic loading

60

EBPR- Known for "process instability"

Know the Basics and Theory

Know your Plant

Test, Test, Test

Experiment- Notify TDEC

Ask for Help

Phosphorus Removal

• Permit Limits ?

Long-term Limits, Pounds

- BOD/TSS Pass Through
- Assimilative Removal
- Enhanced Biological Phosphorus Removal

• Chemical Phosphorus Removal

Chemical Phosphorus Removal

- Common Chemicals
 - Aluminum & Ferric
 - Lime, pH>11
 - Proprietary Products
- Need feed equipment
- Mixing
- Alkalinity
- Effluent filters improve removal

Intro to Phosphorus Removal Brett Ward-MTAS

Chemical Precipitation of Phos.

- Coagulation- chemicals added which change the electromagnetic forces between suspended particles
- Flocculation- gentle mixing to build floc which will settle or be more easily filtered
- Sedimentation/Filtration- removal of the Phosphorus floc from the water

Chemical Process Equipment

- Chemical Storage- Bulk tanks, day tanks, piping, valves, containment
- Chemical Feeding- Dry, liquid
- Mixing- Flash Mix, Flocculation
- Settling/Filters
- Chemical Sludge- with WAS to solids processing

65

Process Operations

- Proper equipment operation
- Calibration of feed equipment
- Monitoring- more that ever!
 - pH, Alkalinity, Ortho & Total Phosphorus
 - Influent & Effluent and also through the process
- Process Adjustments- Flow, Loading, Performance

Chemical Phosphorus RemovaL

- Alum dose ~ 1.75gallons alum/lbs P
- Ferric Sulfate ~1.3 gallons ferric sulfate /lbs P
- Varies with:
 - Alkalinity, pH
 - Limit to meet

Chemical Phosphorus Removal

- Ferric Sulfate, 24 gpd in 0.24MGD, fed into influent interceptor, meeting a 0.5 mg/L limit
- SBR with BioP removal to ~1.0 mg/L then alum @ 60 gpd into 1.5MGD to reach 0.5 mg/L limit.

68

Athens Utility Board, Original

- Limits
 - TN=5mg/L,TP= 1mgL
- Ditch Rings
 - Outer- anoxic
 - Middle, DO~1.0
 - Inner, DO ~2.0
- Ferric Chloride added to clarifier center well
 - 60-120 gpd into 2.0
 MGD

Phosphorus Removal

• Filters

- TSS will contain 1-7%
 Phosphorus
- Effluent filters improve removal with or without chemical addition
- Plants constructed to remove P will have filters.
- Flow Equalization

Floc. basin and filters

Phosphorus Removal

- May be a limited parameter in the future.
- Two main removal methods.
- Phosphorus only leaves the plant in effluent or sludge.
- Retrofits may be chemical or biological.

• Operator Knowledge in Key.

Questions, Comments, Discussion

