Denitrification in Activated Sludge Processes

Larry W. Moore

TN Plant Optimization Program (TNPOP)

Organisms and Their Sources of Energy (or Food)

• Heterotrophic - use organic carbon

- CBOD removing organisms
- Denitrifying organisms
- Bio-P organisms
- Autotrophic use inorganic carbon
 Nitrifying organisms

Organisms and Their Means of Respiration

- Aerobic use elemental oxygen
- Anoxic use nitrate (NO₃) or nitrite (NO₂)
- Anaerobic use other terminal electron acceptors (SO₄, CO₂) or none at all
- Facultative two or more means of respiration
- Fermentative no terminal electron acceptor

Terminal Electron Acceptors and Their Products

- Oxygen (O_2) \rightarrow H₂O and CO₂
- Nitrate $(NO_3^-) \rightarrow N_2$, H_2O , and CO_2
- Sulfate $(SO_4^{=}) \rightarrow H_2S, H_2O, \text{ and } CO_2$

• Carbon dioxide (CO₂) \rightarrow CH₄, H₂O, and CO₂

Denitrification

- Heterotrophic
- Anoxic (facultative)

Adding an Anoxic Zone

Comments about Anoxic Zone

Requirements:

- Mixed, but un-aerated
- Nitrification in aerobic zone
- Mixed liquor recycle

Comments about Anoxic Zone

Uses:

- Nitrogen removal
- Alkalinity recovery
- CBOD removal (some)

Biological Nitrogen Removal is Optimized by an Environment that ...

- Provides the right source of energy
- Ensures the right means of respiration

Minimizing DO in Anoxic Zone

- Avoid aeration at the inlet zone
 - don't allow a cascading influent
 - eliminate primary effluent flow splitting turbulence
- Eliminate mixer vortex if possible
- Avoid back mixing from the aerobic zone

Effect of DO on Denitrification Rates

<u>DO Conc, mg/L</u>	Denitrification Rate
0.0	100%
0.1	40%
0.2	20%
0.3	10%
> 0.3	Negligible

Denitrification: Biochemical Reactions

Methanol as external carbon source:

 $6NO_3^{-} + 5CH_3OH \rightarrow 3N_2 + 5CO_2 + 7H_2O + 6OH^{-}$

Denitrification Reactions

For one gram of NO₃-N that is denitrified:

2.47 g of methanol (~3.7 g of COD) are consumed

0.45 g of new cells are produced

3.57 g of alkalinity are formed

TN Plant Optimization Program (TNPOP)

Denitrification: Biochemical Reactions

Sewage as carbon source:

 $C_{10}H_{19}O_3N + 10NO_3^{-} \rightarrow 5N_2 + 10CO_2 + 3H_2O + 10OH^{-} + NH_3$

Factors Affecting Denitrification

- Substrate degradability
- pH
- Dissolved oxygen
- Temperature

Oxygen Savings with Denitrification

For every gram of NO₃-N that is reduced to nitrogen gas, 2.86 grams of oxygen are saved.

Comments about Denitrification

 Rate of denitrification depends on nature and concentration of the carbonaceous organics being degraded

Rate_{methanol} ≥ Rate_{sewage} >> Rate_{endog resp}

 Denitrification is a zero order reaction with respect to nitrate down to very low nitrate concentrations

TN Plant Optimization Program (TNPOP)

Single-Sludge Denitrification

- To avoid the operating costs of using methanol as the carbon source, it is more cost-effective to use the organics available in raw sewage.
- These systems are referred to as "combined carbon oxidation / nitrification / denitrification" or "single-sludge."
- These systems have lower capital and operating costs than separate stage nitrification / denitrification systems

Single-Sludge Denitrification

Two carbon sources are used:

- Endogenous decay of the activated sludge microbes
- Wastewater influent to the activated sludge process

Single-Sludge Denitrification

Advantages:

- It uses only one clarifier
- No external carbon source is required
- It has lower neutralization chemical requirements
- It has lower oxygen requirements

Disadvantage:

Need for pumping equipment and energy for recycling high volumes of mixed liquor

Single-Sludge Denitrification Using Endogenous Decay

Single-Sludge Denitrification Using Endogenous Decay

Disadvantages:

- Very low denitrification rate due to relatively low availability of carbon from endogenous decay and in the secondary effluent
- Potential for some ammonia-N release due to the decay and lysis of biomass
- Need a large anoxic reactor because of low denitrification rate

Single-Sludge Denitrification Using Influent Organic Content

Single-Sludge Denitrification Using Influent Organic Content

- Many process configurations
- Minimizes ammonia-N release
- Higher denitrification rate
- Uses alternating aerobic/anoxic zones

Single-Sludge Denitrification Using Influent Organic Content

Expected Effluent Quality:

BOD₅ TSS Ammonia-N NO_x-N Total N 5 - 15 mg/L 10 - 20 mg/L < 1 mg/L 5 - 7 mg/L 6 - 10 mg/L

Four Stage Bardenpho Process

Four Stage Bardenpho Process

- Uses both wastewater carbon and endogenous decay carbon for denitrification
- Carbon present in raw waste is used to denitrify the recycled nitrate in first anoxic zone
- Ammonia in raw waste passes through first anoxic zone to be nitrified in first aerobic zone
- Nitrified mixed liquor flows from first aerobic zone to be denitrified at lower rate in second anoxic zone (endog resp)
- Final aerobic zone allows release of N₂ gas, improves sludge settleability, and oxidizes residual ammonia-N 27 of 42 **Denitrification in Activated Sludge Processes**

Four Stage Bardenpho Process

Expected Effluent Quality:

BOD₅ TSS Ammonia-N NO_x-N Total N 5 - 15 mg/L 10 - 20 mg/L < 1 mg/L 1 - 3 mg/L 2 - 5 mg/L

Modifying Existing WWTPs to Achieve Nitrogen Removal

Performance of Single-Sludge Denitrification

- Can achieve high N removals (85% to 95%)
- Does not necessarily enhance sludge settleability in final clarifier
- Uses carbon source in influent
- Reduces the energy requirements for BOD removal from the wastewater (2.86 lb O₂ equivalent per lb of NO₃-N removed)
- About one-half of alkalinity required for nitrification is produced in anoxic zone

WWTP Changes to Achieve Nitrification-Denitrification

- Modify rectangular aeration basin with baffles to provide anoxic and aerobic zones
- Modify oxidation ditch to provide anoxic and aerobic zones
- Modify oxidation ditch operation with on/off aeration cycles to achieve denitrification
- Modify SBR system to include anoxic and aerobic cycles
- Modify step-feed system to include alternating anoxic and aerobic zones anoxic and aerobic zones at referencesses

Conventional Activated Sludge

Add an Anoxic Zone using Baffle, Mixed Liquor Return, and Mixing

Before and After Effluent Quality

Effluent Quality:

BOD₅ TSS Ammonia-N NO_x-N Total N *SVI

Before 5 - 25 mg/l 10 - 25 mg/l 1 - 5 mg/l8 - 15 mg/l 10 - 20 mg/l 125 - 225

<u>After</u>

- 5 15 mg/l
- 10 20 mg/l
- 1 2 mg/l
- 3 9 mg/l
- 5 12 mg/l
- 50 125

* impacts on mixed liquor at one facility

Oxidation Ditch Before Modification

Oxidation Ditch After Modification

Intermittent Aeration for N Removal in Oxidation Ditch

- Cycle time for on/off operation of aerators may vary
- Process control with DO and ORP monitoring
- When aerator is off, must provide mixing
- During off period, oxidation ditch becomes anoxic reactor, and nitrate is consumed as bacteria degrade BOD
- ORP data are used to terminate off cycle and start aeration

Change in ORP and DO in On/Off Operation

Factors Affecting On/Off Operation

- Oxidation ditch HRT
- Influent flow rate
- TKN and BOD concentrations
- Number of on/off cycles per day
- Ditch MLSS concentration

Nitrogen Removal in SBRs

- Use anoxic and aerobic cycles to effectively remove nitrogen
- Cycles are:
 - Fill (anoxic)
 - React (aerobic/anoxic)
 - Settle
 - Decant

Nitrogen Removal in SBRs

Expected Effluent Quality:

BOD₅ TSS Ammonia-N NO_x-N Total N 5 - 15 mg/l 10 - 20 mg/l < 1 mg/l 3 - 10 mg/l 5 - 12 mg/l

N Removal in Step-Feed Process

