Distribution Systems Mathematical

Formulas

5th Edition

Fleming Training Center
Murfreesboro, TN
Area. 2
C-factor 7
Conversion Factors 1
Disinfection 6
Dosage 4
Flow. 2
Flow Conversion Chart 3
Force 7
Hydrant Flow 7
Leak Test 8
Meter Accuracy 7
Metric Conversions 6
Pounds 4
Power 4
Pressure 7
Pumps 5,6
Temperature 2
Volume 2

Conversion Factors

1 acre	$=$	$43,560 \mathrm{ft}^{2}$
1 foot of head	$=$	0.433 psi
1 psi	$=$	2.31 feet of head
1 yd3	$=$	$27 \mathrm{ft}^{3}$
1 gal	$=$	3.785 Liters
1 gallon of water	$=$	8.34 lbs
1 cubic foot of water	$=$	7.48 gallons
1 lb	$=$	453.6 grams
1 mile	$=$	$10,000 \mathrm{mg} / \mathrm{L}$

$$
\text { Converting } \mathrm{mg} / \mathrm{mL} \text { to }{ }^{\mathrm{lb} / \mathrm{gal}}
$$

To use this diagram: First, find the box that coincides with the beginning units (i.e. $\mathrm{mg} / \mathrm{mL}$). Then, find the box that coincides with the desired ending units (i.e. lbs/gal). The numbers between the starting point and ending point are the conversion factors. When moving from a smaller box to a larger box, multiply by the factor between them. When moving from a larger box to a smaller box, divide by the factor between them. For final number, divide top number by bottom number.

Area

Rectangle:
Circle:
Triangle:
Area, $\mathrm{ft}^{2} \quad=\quad$ (length, ft$)($ width, ft$)$
Area, $\mathrm{ft}^{2}=(0.785)(\text { Diameter, } \mathrm{ft})^{2}$
Area, $\mathrm{ft}^{2}=(0.5)($ base, ft$)($ height, ft$)$

Volume

Rectangle:
Volume, $\mathrm{ft}^{3}=\quad$ (length, ft)(width, ft$)(\mathrm{depth}, \mathrm{ft})$
Cylinder:
Cone:
Volume, $\mathrm{ft}^{3}=(0.785)(\text { Diameter, } \mathrm{ft})^{2}($ depth or length, ft$)$
Volume, $\mathrm{ft}^{3}=\frac{(0.785)(\text { Diameter, } \mathrm{ft})^{2}(\text { height, } \mathrm{ft})}{3}$
Volume, gallons $=\left(\right.$ volume, $\left.\mathrm{ft}^{3}\right)\left(7.48 \mathrm{gal} / \mathrm{ft}^{3}\right)$

	Temperature
${ }^{\circ} \mathrm{C}$	$=$
${ }^{\circ} \mathrm{F}$	$=$

$\mathrm{Q}=($ Area $)$ (Velocity)
Q (channel), cfs $=\quad$ (width, ft$)($ depth, ft$)($ Velocity, fps$)$
Q (pipeline), cfs $=(0.785)(\text { Diameter, } \mathrm{ft})^{2}($ Velocity, fps)
Velocity, fps $=\frac{\text { Distance, } \mathrm{ft}}{\text { Time, sec }}$
Average Flow, MGD $\quad=\quad$ sum of daily flows, MGD
Number of daily flows

Flow Conversions

To use this diagram: First, find the box that coincides with the beginning units (i.e. gpm). Then, find the box that coincides with the desired ending units (i.e. cfs). The numbers between the starting point and ending point are the conversion factors. When moving from a smaller box to a larger box, multiply by the factor between them. When moving from a larger box to a smaller box, divide by the factor between them.

		Power
1 Horsepower	$=$	746 watts or 0.746 kilowatts
Power, watts	$=$	(volts)(amps)
Amps, single-phase	$=$	$\frac{(746)(\text { horsepower) }}{\text { (volts)(\% efficiency, as decimal)(power factor) }}$
Amps, three-phase	$=$	$\frac{(746) \text { (horsepower) }}{(1.732)(\text { volts)(\% efficiency, as decimal)(power factor) }}$
Horsepower	$=$	$\frac{(\text { volts })(\mathrm{amps})}{746}$
Kilowatts, single-phase	$=$	$\frac{(\text { volts)(amps)(power factor) }}{1000}$
Kilowatts, three-phase	$=$	$\frac{(\text { volts })(\text { amps })(\text { power factor })(1.732)}{1000}$
Power Factor	$=$	$\frac{\text { watts }}{\text { (volts)(amps) }}$

Pumps, cont

Static Head, ft
$=\quad$ suction lift, $\mathrm{ft}+$ discharge head, ft
Static Head, $\mathrm{ft} \quad=\quad$ discharge head, ft - suction head, ft
Friction Loss, ft
Total Dynamic Head, ft
Cost, \$/hr
$=\quad(0.1)($ static head, ft$){ }^{* *}$ use this formula in absence of other data**
$=\quad$ static head, $\mathrm{ft}+$ friction losses, ft
$=\quad($ motor hp$)(0.746 \mathrm{~kW} / \mathrm{hp})($ cost, $\$ / \mathrm{kW}-\mathrm{hr})$

Metric Conversions

Primary Unit

mega (M)	kilo (k)	hecto (h)	deka (da)	no prefix	deci (d)	centi (c)	milli (m)	micro (μ)
1,000,000	1,000	100	10	1	$1 / 10$	${ }^{1} / 100$	$1 / 1,000$	$1 / 1,000,000$

meter - linear measurement
liter - volume measurement
gram - weight measurement

Disinfection

Cl_{2}, lbs

HTH, lbs	$=\frac{(\text { dosage, } \mathrm{mg} / \mathrm{L})(\text { volume, MG)(8.34 lbs/gal) }}{\% \text { chemical purity, expressed as decimal }}$
Bleach, gal	$=\quad \frac{(\text { dosage, } \mathrm{mg} / \mathrm{L})(\text { volume, MG) }}{\% \text { \% concentration, bleach, expressed as decimal }}$
Bleach, gal (dilution)	$=\quad \frac{(\% \text { desired conc., expressed as decimal)(desired volume, gal) }}{\% \text { concentration, bleach, expressed as decimal }}$
HTH, lbs (solution mix)	$=\quad \frac{(\% \text { desired conc, expressed as decimal)(desired vol, gal)(8.34 lbs/gal) }}{\% \text { available HTH, expressed as decimal }}$

Distribution

Pressure, psi	$=$	$\frac{\text { pressure head, } \mathrm{ft}}{2.31 \mathrm{ft} / \mathrm{psi}}$
Pressure, psi	=	(pressure head, ft)(0.433 psi/ft)
Pressure head, ft	$=$	(pressure, psi)(2.31 ft/psi)
Pressure head, ft	$=$	$\frac{\text { pressure, } \mathrm{psi}}{0.433 \mathrm{psi} / \mathrm{ft}}$
C Factor	$=$	flow, gpm (193.75)(diameter, ft) ${ }^{2.63}$ (slope) ${ }^{0.54}$
Slope	$=$	energy loss, ft distance, ft
Slope	$=$	head loss, ft distance, ft
Slope	=	$\frac{\text { (pressure drop, } \mathrm{psi})(2.31 \mathrm{ft} / \mathrm{psi})}{\text { distance, } \mathrm{ft}}$
Meter accuracy, \%	$=$	(volume of water registered, gal)(100) actual volume, gal
Flow from hydrant, gpm	$=$	
Flow from hydrant, gpm	$=$	(27)(nozzle ID, in $)^{2}(\sqrt{\text { pitot pressure, psi }}$)
Uplift force, lbs	$=$	(area, ft^{2})(pressure, $\mathrm{lbs} / \mathrm{ft}^{2}$)
Pressure, lbs/ft ${ }^{2}$	$=$	($62.4 \mathrm{lbs} / \mathrm{ft}^{3}$)(height, ft)
Uplift force, lbs	$=$	(62.4 lbs/fft ${ }^{3}$)(volume, ft^{3})

Leak Test

Ductile Iron

Allowable leakage, gph
$\mathrm{L}=\frac{S D \sqrt{P}}{133,200}$

Where: L = allowable leakage, gph
$\mathrm{S} \quad=\quad$ length of pipe tested, ft
D $\quad=$ diameter of pipe, in
$\mathrm{P} \quad=\quad$ average test pressure, psig

PVC Pipe
Allowable leakage, gph
$\mathrm{L}=\frac{N D \sqrt{P}}{7400}$
Where $\mathrm{L}=$ allowable leakage, gph
$\mathrm{N} \quad=\quad$ number of joints in the length of pipeline tested
$\mathrm{D}=$ diameter of the pipe, in
$\mathrm{P} \quad=\quad$ average test pressure, psig

Number of joints $=$ pipeline length, ft pipe section, ft /joint

