An Overview of Incremental Sampling Methodology and Its Current and Future Applications

Jacob Gruzalski
Overview of Incremental Sampling Methodology

- Objective – Provide an overview of incremental sampling methodology (ISM)
 - Present ISM basics and its origins
 - Discuss the advantages of ISM
 - Discuss the fundamentals of sampling
 - Present and discuss the “7 basic sampling errors”
 - Discuss the implementation of an ISM program
 - Highlight the importance of planning...again and again and again
Overview of Incremental Sampling Methodology

Technical and Regulatory Guidance

Incremental Sampling Methodology
Overview of Incremental Sampling Methodology

SHOW ME THE MONEY!
Overview of Incremental Sampling Methodology

- All collected data have errors.
- Nobody can afford absolute certainty.
- The Quality System seeks balance based on risk.
Overview of Incremental Sampling Methodology

- Extract/Digestate
- Analytical Subsample
- Analysis
- 12.3 ppm Result
- Field Subsample
- Field Sample
- 12.3 ppm
- 12.3 ppm

--- = extrapolation of analytical sample result back to decision unit
Overview of Incremental Sampling Methodology

1. Develop / Refine Conceptual Site Model
 - Identify Data Quality Objectives
 - Stakeholder meeting, Systematic planning
 Consider end-use of data

2. Planning
 - Is the decision based on a mean or UCL?
 - No: Implement other preferred sample collections strategy
 - Yes: Develop Decision Units (size, depth, location)

3. Implementation
 - Develop ISM Protocol
 (# of increments, # of replicates)
 - Field Sampling
 - Laboratory Processing

4. Assessment
 - Are data sufficient for decision making?
 - No
 - Yes: Implement risk assessment, remediation decision, and risk management
Overview of Incremental Sampling Methodology

Four Basic Principles in sampling and analysis:

1. Samples must be representative of the population unit being tested.
2. Procedures for sampling and analysis influence each other so plans for sampling and analysis are codependent.
3. QC samples must be representative of the samples being analyzed.
4. QC samples are used to provide an assessment of the kinds and amounts of bias and imprecision in data from analysis of the samples.
Overview of Incremental Sampling Methodology
Overview of Incremental Sampling Methodology

<table>
<thead>
<tr>
<th>Factor leading to error</th>
<th>Sampling error</th>
<th>Error results from</th>
<th>How to control</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compositional heterogeneity (CH)</td>
<td>Fundamental error (FE)</td>
<td>Size and compositional distribution of the particles</td>
<td>Increase the sample mass and/or reduce the size of the particles</td>
</tr>
<tr>
<td>Distributional heterogeneity (DH)</td>
<td>Grouping and segregation error (GSE)</td>
<td>Heterogeneous distribution of particles within the population</td>
<td>Increase the mass of the sample or increase the number of increments</td>
</tr>
<tr>
<td>Large-scale heterogeneity</td>
<td>Long-range heterogeneity fluctuation error (CEₐ)</td>
<td>Changes in concentration across space or over time</td>
<td>Reduce the spatial interval between samples</td>
</tr>
<tr>
<td>Periodic heterogeneity</td>
<td>Periodic heterogeneity fluctuation error (CEₐ)</td>
<td>Periodic changes in concentration over time</td>
<td>Change the spatial and/or temporal interval between samples</td>
</tr>
<tr>
<td>Identifying the correct increment geometry</td>
<td>Increment delimitation error (DE)</td>
<td>Incorrect shape (in all three dimensions) of the sample or increment selected for extraction from the population</td>
<td>Use correct sampling plan design and correct sampling equipment that can sample the entire thickness of the population</td>
</tr>
<tr>
<td>Shape of the sample extraction device and nature of the soil</td>
<td>Increment extraction error (EE)</td>
<td>Incorrect extraction of the sample or increment because the sampling device is too small</td>
<td>Use correct sampling equipment that does not push larger particles aside, and use correct sampling protocols</td>
</tr>
<tr>
<td>Loss or gain of contaminants during sample handling</td>
<td>Preparation error (PE)</td>
<td>Contamination loss or gain due to alteration, evaporation, degradation, cross-contamination, mistake, or fraud</td>
<td>Use appropriate sample handling, preservation, transport, and preparation measures</td>
</tr>
</tbody>
</table>
Overview of Incremental Sampling Methodology

- True mean concentration = estimated mean concentration +/- total errors
- ISM is not always the answer
- Most action levels are derived from risk-based models. In general comparing mean concentrations for an area are appropriate to compare to these action levels
- US EPA DQO or Army Corp Technical Project Planning
Overview of Incremental Sampling Methodology

- Sampling Unit – the volume of material represented by a single ISM sample. Define scale of ISM sample.
- DU define the scale of the decision based on sampling.
- If a single sample for analysis is taken from Area A, then there is 1 SU for Area A (Area A = the SU).
- If 30 increments from Area A are combined into a single composite samples for analysis. Area A has 1 SU (1 data result generated from entire Area A).
Overview of Incremental Sampling Methodology

Figure 2-12. Illustration of the effects of device design on particle sizes in a sample. *Source: Gerlach and Nocerino 2003.*
Overview of Incremental Sampling Methodology

Just as with discrete sampling, a variety of sampling methods may be implemented with ISM sampling. One of the more common approaches in ISM is systematic random sampling (a.k.a., systematic grid sampling [Gilbert 1987]), where the DU is divided in a grid pattern, a random sampling location is identified within the first grid cell, and then samples

Simple random sampling, systematic random sampling, and systematic grid sampling yield unbiased estimates of the mean. The systematic sampling patterns ensure relatively even spatial distribution of samples across the site and are generally easier to implement in the field.

Figure 4-7. Systematic random sampling/systematic grid sampling with a random start (Serpentine).

Figure 4-8. Random sampling within grids.

Figure 4-9. Simple random sampling within the entire DU.
Overview of Incremental Sampling Methodology
Overview of Incremental Sampling Methodology
Overview of Incremental Sampling Methodology

- Conclusion

- ISM is a proven sampling approach that has the potential to save time and resources
- ISM requires planning with all stakeholders
- ISM will not be suitable in all situations, but the fundamentals of representative samples and data quality are
- Sampling error should be considered during planning and when evaluating analytical data
Thank You

QUESTIONS?

Jacob Gruzalski, Credentials
Associate Principal Geoscientist

865.376.7590
jgruzalski@envstd.com