Disruptive Transportation Technologies

Rich Davies

Deputy Director

Sustainable Transportation Program

ORNL is managed by UT-Battelle for the US Department of Energy

Internal Combustion Engines Options no longer limited to conventional combustion

Low Reactivity Fuel

Advanced Compression Ignition

Range of Fuel Properties TBD (depends on combustion mode)

Mixing Controlled CI

High Reactivity Fuel

Opportunities with co-optimization of fuel and engine technologies

Multi-laboratory Co-Optima initiative addresses three core questions for the light-duty, medium-duty, and heavy-duty sectors:

- 1. What fuel properties maximize engine performance?
- 2. How do engine parameters affect efficiency?
- 3. What **fuel and engine combinations** are sustainable, affordable, and scalable?

"Researching engines and fuels as a system offers the opportunity to improve the affordability and efficiency of future gasoline engines for American families and businesses."

- EERE Principal Deputy Assistant Secretary Daniel Simmons, February 2018

Current Trend for Battery Electric Vehicles

Current Status:

- 350 420 V
- 20- 30 kWh battery packs
- 50 kW PHEVs
- 100 kW BEVs

Chevy Bolt

Future :

- 800V+ light/heavy duty power electronics and electric motors
- 720- 800 V
- 100-250 kWh battery packs
- 350kW at 800V electric drive

GM Autonomy Concept

Electric or Hybrid-Electric Heavy Vehicle

800 V+ Light Duty Vehicles

100-250 kWh battery packs

Wireless Charging at ORNL

η_{INV}=98.493% η_{TRF}=99.048% η_{COILS}=97.297% η_{RECT}=99.431% 21.173 kW 20.853kW 20.655 kW 20.237 kW 20.122 kW DC Link **HF Inverter Output** Trf. Output Secondary Coil **Rectifier Output** (Inverter Input, (Trf. Input, Element 2) (Primary Coil, (Rectifier Input, (Battery Input, Element 1) Element 3) Element 6) Element 5) D. V_{dc} HF Primary and Bridge Rectifier & HF Inverter Transformer Secondary Coils Filter

η_{DC-to-DC}=95.037% (No PFC)

- Toyota RAV4 EV with ORNL Wireless Charging System: ~95%, 20kW, 162mm; Extended to 35kW
- Working on a bi-directional wireless charging system for a UPS Truck: 20kW to the battery, 6.6kW to the grid
- 100kW wireless charging demonstrated. Working towards the goal of 200kW+

Real-Time Data and Simulation for Optimizing Regional Mobility using HPC

Jibonananda Sanyal, Hussain Aziz, Phil Nugent, Budhendra Bhaduri, and Rich Davies

- Energy savings targeted through congestion management
- Use of HPC to create a 'digital twin' with real-time situational awareness of regional metropolitan highways,
- cyber physical control system with high-speed bidirectional communication and control of the highway infrastructure and connected vehicles
- Target achieving a 20% energy savings in a region
- Replicated region-by-region to commercialize the approach across the entire U.S.
- Over the next 10 years, reduce overall mobilityrelated energy consumption by 20% and recover \$100
 Billion of lost productivity in congestion.

Overview of the real-time situational awareness and mobility optimization system

Map of Chattanooga with data from CDOT illustrating the locations of the traffic signals.

Phased implementation plan

Phase 1 (Year 1) Situational Awareness

- Visualize real-time data
- Quantify baseline energy consumption
- Estimate energy savings for identified corridors

With the TDOT and CDOT

partners

Identify how to bridge to operations
Run the paperwork
Identify/address security risks

Phase 2 (Year 2) Simulation-based signal control

highlighted.

The CBD area traffic lights are distinguished and

 Develop signal control optimization
 Simulation driven
 Machine Learning driven

Demonstrate feasibility

Demonstrate on city infrastructure

|- Understand infrastructure needs |- Understand control logic |- Understand & degrade gracefully Out years

Phase 3

Scale-up to other areas Connected freight

Phase 4

Light duty commercial; WAZES partnership; Transport "App"

Phase 5

Autonomous Vehicles; Advanced powertrain

Oak Ridge National Laboratory, National Renewable Energy Laboratory, Tennessee Department of Transportation, Chattanooga Department of Transportation