DISTRIBUTION AND CONTEXT OF WORKED CRYSTALLINE ARTIFACTS FROM THE MIDDLE CUMBERLAND REGION OF TENNESSEE

Michael C. Moore,¹ Kevin E. Smith,² Aaron Deter-Wolf,³ and Emily L. Beahm⁴
DISTRIBUTION AND CONTEXT OF WORKED CRYSTALLINE ARTIFACTS FROM THE MIDDLE CUMBERLAND REGION OF TENNESSEE

Michael C. Moore,1 Kevin E. Smith,2 Aaron Deter-Wolf,3 and Emily L. Beahm4

Antiquarian and modern explorations within the Middle Cumberland region of Tennessee have uncovered vast quantities of ceramic, stone, bone, and shell artifacts. Objects made from mineral resources represent a modest percentage of the overall artifact assemblage. Specimens manufactured from crystals comprise a very small portion of the mineral sample, as only six worked crystalline artifacts are documented to date for the Middle Cumberland region. These specimens of fluorite and calcite consist of four earplugs, one bird effigy pendant, and one bead from four different Mississippian period sites. Fluorite and calcite deposits occur within the study area, but additional research is needed to determine whether these sources were used to make the Middle Cumberland items. The recovery of three earplugs (two of which are very unusual) and raw calcite crystals from the Castalian Springs mound complex comprises intriguing evidence for the production of crystalline objects as a site activity.

The middle Cumberland River valley in north-central Tennessee, more commonly called the Middle Cumberland region (Moore et al. 2006:90), encompasses drainages between the confluence of the Caney Fork and Cumberland Rivers to the east and the confluence of the Red and Cumberland Rivers to the west (Figure 1). This distinct region has been the subject of extensive antiquarian and modern explorations that focused upon the abundant Mississippian period mound centers, towns, villages, hamlets, and farmsteads established along the landscape (e.g., Beahm 2012; Butler 1981; Ferguson 1972; Jones 1876; Klippel and Bass 1984; Moore 2005; Moore and Smith 2001, 2009; Moore et al. 2006; Myer 1923; Putnam 1878; Smith 1992; Smith and Moore 1994; Smith et al. 2009; Thruston 1972; Walling et al. 2000). Recent consideration of these assorted investigations by means of creative insights and ever-developing technology has led to new avenues of interpretation regarding the settlement, subsistence, warfare, iconography, and cosmology of the Middle Cumberland Mississippian populations (e.g., Beahm and Smith 2012; Clinton and Peres 2011; Dye 2009; Hodge et al. 2010; Sharp et al. 2010; Sharp et al. 2011; Smith and Beahm 2011; Smith and Miller 2009; Steponaitis et al. 2011; Worne 2011).

Archaeological investigations of Mississippian sites across the Middle Cumberland region have yielded a substantial number of clay, stone, bone, and shell artifacts. Many of these items have been examined, photographed, and reported upon in some form over the past 140 years (e.g., Brain and Phillips 1996; Cox 1985; Moore and Smith 2009; Smith 1992; Smith and Miller 2009; Thruston 1972). Mineral specimens comprise a very modest percentage of the artifact assemblages from these study area sites. However, such items occur with enough frequency to be anticipated within most site collections. Mineral artifacts previously identified in study area site collections include copper, mica, galena, graphite, and hematite (Moore and Smith 2001, 2009; Smith and Moore 1999).

The six artifacts examined here (four earplugs, one bird effigy pendant, and one bead) represent the sum total of worked crystalline specimens documented to date within the Middle Cumberland region, and all were found on Mississippian period sites (DuVall & Associates 1993; Moore and Smith 2001; Myer 1923). Visual inspection of available specimens by the Tennessee State Geologist’s office determined the mineral crystals to be fluorite and calcite. Fluorite (calcium fluoride, CaF2) or fluorspar is a relatively soft and brittle mineral (4.0 on Mohs hardness scale) that occurs as cubical crystals with octahedral cleavage, glossy luster, and a wide range of colors (Jewell 1947:22). Calcite (calcium carbonate, CaCO3) has many of the same properties and colors as fluorite, although a
bit softer at 3.0 on Mohs hardness scale, but displays a rhombohedral cleavage (Jewell 1947:24).

While each of these crystalline objects is aesthetically appealing, their overall scarcity commands attention given the multitude of Mississippian cultural objects from the region. These crystal artifacts remain unstudied and essentially invisible in the current archaeological record, in stark contrast to the extensive documentation of other “exotic” Middle Cumberland Mississippian artifact resources such as marine shell and copper (e.g., Brain and Phillips 1996; Putnam 1882; Thruston 1972). This research seeks to remedy the relative anonymity of worked crystal artifacts from the Middle Cumberland region by (1) providing site provenience and accurate descriptions for documented specimens, along with some comparative discussion of crystal artifacts from adjacent regions; (2) assessing the availability of raw fluorite and calcite crystals within the Middle Cumberland region, along with possible factors that influenced the procurement of these materials; and (3) evaluating the possibility of crystal production at the Castalian Springs site.

Middle Cumberland Region Site Provenience and Artifact Descriptions

Six worked crystalline specimens comprise the focus of this study. These items were recovered from four Mississippian sites distributed across the Middle Cumberland region in Sumner, Davidson, and Williamson counties (Figure 2; Table 1). These site locations are (1) Castalian Springs, 40SU14; (2) Rutherford-Kizer, 40SU15; (3) Cheyenne Hills, 40DV195; and (4) an unrecorded location in Brentwood, Williamson County.

Castalian Springs (40SU14), Sumner County

Castalian Springs is a Mississippian mound complex established on a northern terrace of Lick Creek, a secondary tributary of the Cumberland River in southeast Sumner County. A series of investigations by William E. Myer in 1891, 1893, and 1916–17 yielded an abundance of site records and significant artifacts on which we base our current understanding of the site (Myer 1894, 1917, 1923). Myer’s work included the complete excavation of an oval burial mound (Mound 1) containing 92 stone-box graves. Artifacts recovered from this earthwork include the extraordinary collection of marine shell gorgets that have generated considerable research interest over the years (Brain and Phillips 1996; Galloway 1989; Knight et al. 2001; Smith and Beahm 2011).

Myer investigated the site’s dominant feature, a very large rectangular platform mound measuring 200 ft (61.0 m) long and 11 ft (3.4 m) high that was attached to the eastern side of a 22-ft (6.7-m) high, flat-topped conical mound (Mound 2). A photograph from Myer’s 1923 unpublished manuscript includes a crystal earplug. He states, “The crystal dumb-bell shaped ear ornament, of fluorite, our No. 1165, shown in Figure 142 was a surface find in the old town, in the field near
Mound No. 2" (Myer 1923:461–462). This somewhat clear specimen was ground into an asymmetrical hourglass form and measures 23 mm in length and 16 mm in maximum diameter. Small grinding facets are visible along the exterior surface. Elsewhere in Myer’s unpublished notes, he references the discovery of two other earplugs at the site sometime in the 1880s: “He [Reuben Anglea] says his brother found 2 others like this about 30 years ago in this same field” (Ball 2011).

Mound 3, described by Myer as an oval mound measuring 7 ft (2.1 m) high and about 90 ft (27.4 m) across, yielded no evidence of burials but did uncover several beds of ash. This platform mound occurs just southwest of Mound 2. A 20-m-long cross-section of Mound 3 by the 2011 Middle Tennessee State University (MTSU) archaeological field school yielded evidence for two structures on the final mound summit, structures on two earlier summits, a premound structure and midden, and a structure adjacent to the western base.¹

During the MTSU investigations, two small calcite earplugs were recovered in the upper unit levels at opposite ends of the trench. One Mound 3 earplug is somewhat comparable in color and form to the Myer specimen but measures just half the size at 13.0 mm long and 7.4 mm wide (Figure 3A). This specimen was recovered from the plow zone directly above the floor of one of the final summit structures. The second earplug has a clear color similar to the other Castalian Springs objects but displays a completely unique form.

Table 1. Worked crystal artifacts from Tennessee Cumberland River sites (measurements in mm).

<table>
<thead>
<tr>
<th>Tennessee Sites</th>
<th>Artifac Type</th>
<th>Mineral</th>
<th>Color</th>
<th>Max. Length</th>
<th>Max. Width</th>
<th>Max. Diam.</th>
<th>Context</th>
</tr>
</thead>
<tbody>
<tr>
<td>Middle Cumberland</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Castalian Springs</td>
<td>Earplug</td>
<td>Fluorite/calcite</td>
<td>Clear</td>
<td>23.0</td>
<td>-</td>
<td>16</td>
<td>Surface, near Mound 2</td>
</tr>
<tr>
<td>Castalian Springs</td>
<td>Earplug</td>
<td>Calcite</td>
<td>Clear</td>
<td>13.0</td>
<td>7.4</td>
<td>-</td>
<td>Mound 3, Level 1/2; N1169E790</td>
</tr>
<tr>
<td>Castalian Springs</td>
<td>Earplug</td>
<td>Calcite</td>
<td>Clear</td>
<td>17.7</td>
<td>8.7</td>
<td>5.8⁴</td>
<td>Mound 3, Level 1/2; N1169E774</td>
</tr>
<tr>
<td>Castalian Springs (2)</td>
<td>Earplug/calcite</td>
<td>Unknown</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Surface⁵</td>
</tr>
<tr>
<td>Rutherford-Kizer</td>
<td>Bead</td>
<td>Calcite</td>
<td>Dk. yellow</td>
<td>17.0</td>
<td>5.6</td>
<td>9.1</td>
<td>Stone-box, Burial 70, 4 yrs.</td>
</tr>
<tr>
<td>Cheyenne Hills</td>
<td>Earplug</td>
<td>Calcite</td>
<td>Lt. yellow</td>
<td>20.4</td>
<td>13.4</td>
<td>-</td>
<td>Stone-box, Burial 19, adult</td>
</tr>
<tr>
<td>Brentwood</td>
<td>Pendant</td>
<td>Fluorite</td>
<td>Lt. yellow</td>
<td>25.4</td>
<td>16.6</td>
<td>-</td>
<td>Stone-box, adult</td>
</tr>
<tr>
<td>Old Town</td>
<td>Bead (5)</td>
<td>Fluorite/calcite</td>
<td>Unknown</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Stone-box</td>
</tr>
<tr>
<td>Lower Cumberland</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bannister’s Farm</td>
<td>Pendant⁶</td>
<td>Fluorite</td>
<td>Dk. yellow</td>
<td>17.0</td>
<td>-</td>
<td>12</td>
<td>Stone-box</td>
</tr>
<tr>
<td>Hogan</td>
<td>Pendant</td>
<td>Fluorite</td>
<td>Amethyst</td>
<td>27</td>
<td>-</td>
<td>-</td>
<td>Stone-box, burial 16, adult</td>
</tr>
<tr>
<td>Hogan</td>
<td>Pendant</td>
<td>Fluorite</td>
<td>Amethyst/white</td>
<td>30.0</td>
<td>26.0</td>
<td>15</td>
<td>Surface</td>
</tr>
</tbody>
</table>

¹ Tabular specimen.
⁴ Peabody Museum of Archaeology and Ethnology, Harvard University.
with an hourglass plan view and tabular profile (Figure 3B). This second item is 17.7 mm long, 8.8 mm wide, but just 5.8 mm thick. This specimen was recovered from the plow zone directly overlying the floor of another structure (designated Structure 5) that appears to be contemporaneous with active use of Mound 3.

Rutherford-Kizer (40SU15), Sumner County

The Rutherford-Kizer site was founded in southwest Sumner County along the western bank of Drakes Creek roughly five miles north of the Cumberland River. This fortified Mississippian mound center originally consisted of one large platform mound with several smaller structure and burial mounds. Edwin Curtiss explored the site on behalf of Harvard’s Peabody Museum of Archaeology and Ethnology (PMAE) in December 1878 (E. Curtiss to F. W. Putnam, 7 December 1878, PMAE Accession File 79-4A). Over a 10-day period he dug 108 burials and recovered a wide variety of artifacts, including shell-tempered vessels, marine shell gorgets, and copper artifacts (E. Curtiss, Rutherford’s Farm and Marshall’s Farm Field Notes, December 1878, PMAE Accession File 79-4A). Additional excavations were conducted by the Tennessee Division of Archaeology (TDOA) between September 1993 and September 1995 prior to construction of a residential subdivision within the southern site area (Moore and Smith 2001). In July 1995, TDOA personnel removed 25 graves from a stone-box cemetery just outside the palisade along the site’s southeast corner (Figure 4). One small crystal bead was recovered from the previously looted and severely disturbed grave of a young child approximately four years of age (Burial 70, see Figure 4). This item was identified as calcite at the time of recovery. The bead displayed a dark yellow color and measured 9.1 mm in diameter and 5.6 mm in width (Moore and Smith 2001:112). A small hole drilled in the center measured 2.5 mm in diameter. The bead appeared round in plan view but had a rather chunky profile with a sharp (almost 90-degree) angle created by the transition from the flattened surfaces and lateral edges. Numerous grinding facets were present along the exterior surface. This bead was reburied on site with the removed skeletal remains and other associated burial objects in accordance with Tennessee state law (Moore and Smith 2001:6).

Cheyenne Hills (40DV195), Davidson County

The Cheyenne Hills site consists of a Mississippian stone-box cemetery on a low bluff overlooking the...
Cumberland River floodplain in northeast Davidson County (DuVall & Associates 1993). Twenty-six graves were identified and removed in July 1992 by a private consulting firm prior to construction of a residential subdivision (Figure 5). Burial 19 contained the disturbed remains of an adult of unknown age and sex, as well as a complete crystal earplug under a side-stone that had tilted inward (Figure 6A).

The consultant referred to this artifact as quartz crystal (DuVall & Associates 1993:25), but a subsequent examination revealed the mineral source to be calcite. This translucent specimen exhibits just a hint of yellow color and a somewhat symmetrical hourglass shape. Small grinding facets are present along the exterior surface. The earplug measures 20.4 mm long and 13.4 mm in maximum width. The central constriction has a maximum diameter of 9.1 mm.

Brentwood, Williamson County

The City of Brentwood is located in north-central Williamson County near the Davidson County border. Grading activity on a Brentwood hilltop around 1980 exposed a Mississippian stone-box burial. Mr. John Dowd, recipient of the 2012 Crabtree Award from the Society for American Archaeology, went to the construction area to investigate the discovery. Dowd observed a single adult stone-box grave already dug by looters. A follow-up examination of the disturbed coffin recovered a crystal pendant (Figure 6B) from one of the grave corners (John Dowd, personal communication, 2010).

This pendant, presently in a private collection, was examined by the authors and determined to be a bird effigy of light yellow fluorite that displays a prominent beak, breast/abdomen, and tail feathers. The head is plain but exhibits a drilled hole in place of the eyes. Two legs extend from the pendant base, one slightly longer than the other. The tail feathers angle outward away from the body. The exterior surface shows the same grinding facets observed on previously described artifacts. In addition, select artistic details around the beak, tail feathers, and legs appear cut as well as ground. This artifact measures 25.4 mm high, 16.6 mm wide, and 17.0 mm thick. The drilled eye holes have a maximum diameter of 4.6 mm, and the tail measures 13.0 mm wide. The longer leg measures 2.5 mm in length.

Other Possible Specimens from the Middle Cumberland Region

William Clark’s nineteenth-century account of his Middle Tennessee explorations included a brief discussion of the Old Town site (40WM2), a fortified Mississippian mound center and cemetery on the Harpeth River in northern Williamson County (Clark 1878). Of interest to this research is his reference to “five beautiful oblong beads of amber” found in a stone-box grave (Clark 1878:275). He described these beads as “two inches long, and in the center one-half
Edwin Curtiss made a similar error by describing the fluorite pendant he recovered from Bannister’s Farm in Stewart County as made of amber (Moore and Smith 2009:101, 308).

Worked Crystal Artifacts Adjacent to the Middle Cumberland Region

Lower Cumberland Region of Tennessee

Explorations by Edwin Curtiss on behalf of Harvard’s Peabody Museum during April 1879 concentrated on sites along the lower Cumberland River in Stewart County, Tennessee (Moore and Smith 2009). Bannister’s Farm represents a Mississippian mound site located on Dyer Creek near its confluence with the Cumberland River, roughly 50 km west of the Middle Cumberland region boundary. Curtiss dug 26 stone-box graves from the northeastern corner of a mound of unknown dimensions and shape (Moore and Smith 2009:160). Grave 24 contained the fragmentary remains of a child as well as a crystal pendant (Moore and Smith 2009:161). A review of the Peabody Museum Collections online system shows this dark yellow specimen has a spherical body with a suspension loop. Curtiss described this artifact as an “amber nose drop” in his field notes (E. Curtiss, Excavation Notes for Sites on Cumberland River, Stewart Co, PMAE Accession File 79-4), but the Peabody Museum catalog sheet logged this item as fluorspar (PMAE Collections Online, PM 79-4-10/18352). Online measurements note a maximum length of 17 mm and body diameter of 12 mm (see Table 1).

Two fluorite artifacts were reported from the Hogan site (40SW24), located near the town of Dover approximately 40 km downstream from the Middle Cumberland region boundary (see Table 1). This large Mississippian period village and stone-box cemetery overlooked the northern bank of the Cumberland River. Our best site information comes from the 1962 University of Tennessee site exploration prior to the creation of Lake Barkley that included the removal of 20 Mississippian stone-box graves (Morse 1963). Burial 16 contained an (apparent) adult female with

Figure 5. Plan map of 40DV195 stone-box cemetery with Burial 19 (redrafted from DuVall & Associates 1993:Figure 3).

inch in diameter ... smoothly bored ... though showing some cracks were still entire ... showed a fine polish ... and would have been prized by our ladies very highly” (Clark 1878:275). The authors suggest these beads were not made of amber but of fluorite or calcite. Edwin Curtiss made a similar error by describing the fluorite pendant he recovered from Bannister’s Farm in Stewart County as made of amber (Moore and Smith 2009:101, 308).

The second Hogan specimen, collected by an area resident from the site surface, was described by Morse (1963:119) as

a scalloped amethyst-colored fluor spar pendant ... varies between 2.6 and 2.7 cm in diameter. A central biconical perforation is 7 mm in diameter. Each of the eight evenly arranged scallops around the outer edge is 7 mm wide and 3 mm high. A 3 mm in diameter perforation had been drilled into the center of one scallop from each side for suspension.

(Morse 1963:127)

The vast majority of worked fluorite artifacts adjacent to the Middle Cumberland region study area...
derive from the lower Ohio River region of southern Illinois, western Kentucky, and southern Indiana (e.g., Black 1967; Boles 2011, 2012; Cole et al. 1951; Muller 1986a). This result is not surprising given the rich fluorite deposits within the region (Kentucky Geological Survey 2008; Reinertsen and Masters 2010).

The most spectacular of these fluorite items are arguably the carved human figurines. Perhaps the best-known object is the “Adonis of Newburgh” or “Little Green Man” figurine from the Angel site in southwestern Indiana (Black 1967; Schilling and Baumann 2012; Wolforth and Wolforth 2000). This male figurine, measuring 23.5 cm in height, was carved from a single piece of yellow fluorite and discovered in Mound F fill by a 1940 WPA crew. Four comparable male fluorite figurines are known from adjacent locations, including the Anna and Cahokia figures from southern Illinois, the Tolu figure from western Kentucky, and the Obion figure from northwestern Tennessee (Boles 2011, 2012; Bostrom 2007; Garland 1992; Wolforth and Wolforth 2000). Yet another figurine fragment of unknown sex known as the MNH Head has been reported from an unspecified site in southern Illinois (Emerson 1982). These figurines have been interpreted as temple statuary and ancestral figures from which a group claimed descent (Smith and Miller 2009; Wolforth and Wolforth 2000). Interestingly, these statues of fluorite are very similar to statues of stone and wood recovered from the Tennessee–Cumberland River drainages (Smith and Miller 2009).

Additional fluorite specimens uncovered at Angel include owl effigy pendants, cylindrical pendants, and beads (Black 1967:445; Schilling and Baumann 2012). Past research at the Kincaid site has recovered ear/lip plugs, beads, and a human head effigy pendant (Boles 2012:85; Cole et al. 1951:Plate 25A&B; Kincaid Mounds Support Organization 2012; Schwegman 2011).

Recent research has considerably expanded the breadth of fluorite artifact types represented at prehistoric sites across the lower Ohio River valley (Boles 2011, 2012). Documented specimens exhibit a diverse range of ear/lip plug, bead, pendant, owl effigy pendant, and human effigy pendant styles. These items include a representative sample of earplugs recorded from sites in Crittenden, Ballard, and Hickman Counties, Kentucky (Boles 2011:246–247). The dominant earplug form was made of (primarily purple) fluorite and displayed a “mushroom” appearance with a cylindrical body and one flared end (Figure 7). A few of the “mushroom” specimens were made of yellow and white/translucent fluorite. Several hourglass-shaped earplugs of purple and yellow fluorite were also present.

Comparative Observations

Some general observations are worth noting about the characteristics of Middle Cumberland region artifacts recorded to date, and how they contrast with comparable specimens from these adjacent regions. For example, artifacts from the Middle Cumberland region are clear to yellow in color, with purple noticeably absent (see Table 1). A second observation is there appears to be regional differences in select artifact forms. Owls comprise the dominant fluorite bird effigy
from lower Ohio River region sites (Boles 2012). These figures are easily identified as owls by their ear tufts and/or distinctive pointed beaks, while other traits (flat to prominent breast/abdomen, presence of tail feathers and wings) appear variable. The Brentwood bird effigy pendant in Figure 6B is clearly not an owl as it exhibits a very different form (songbird?). This specimen lacks ear tufts, displays a prominent upper and lower beak, and has tail feathers that angle away from the body. Finally, the hourglass-shaped earplugs from Castalian Springs and Cheyenne Hills represent a minor crystal earplug form when compared to examples from the lower Ohio River region (Boles 2011, 2012; Schwegman 2011). As previously mentioned, the primary lower Ohio River form is mushroom shaped with a cylindrical body and one flared end ranging from triangular to round (see Figure 7).

Fluorite and Calcite Resources in the Middle Cumberland Region

The Illinois-Kentucky Fluorspar District of southeastern Illinois and western Kentucky, located about 150 km northwest of the Middle Cumberland region, is widely recognized as the premier fluorite deposit in the country (Kentucky Geological Survey 2008; Reinertsen and Masters 2010). About three-quarters of all fluorite mined in the United States between the late nineteenth and mid-twentieth centuries originated from this locale. But by the 1990s fluorite mining had ended due to competition and cheaper imports from foreign producers. Notable fluorite deposits are also known for many of the far western states as well as select midwestern and eastern states (Batty et al. 1947; Boyer et al. 1997; Minerals Zone 2005).

Of significance for this study is that fluorite and calcite deposits are also present within Middle Tennessee, and specifically in the Middle Cumberland region (Floyd 1965; Jewell 1947). Much of the region occupies the Central Basin physiographic province, an elliptical depression characterized by gently rolling to hilly terrain and meandering streams (Miller 1974; see Figure 1). The Central Basin (and transition zone with the adjacent Eastern Highland Rim physiographic province) is underlain by deep deposits of Ordovician limestone with shear faults and fissures that serve as locations for mineral veins. These veins are generally vertical, range from a few inches to about 6 ft in width, and tend to be located in the northern half of the Central Basin (Floyd 1965:51; Jewell 1947:18). This northern half of the Central Basin coincides with the Middle Cumberland region and is immediately adjacent to the Central Tennessee Ba-F-Pb-Zn District, which lies within the Eastern Highland Rim (Mindat.org 2013).

Mineral veins within the region are composed primarily of barite (barium sulfate) and fluorite, along with variable percentages of other minerals, including calcite, galena (lead sulfide), and sphalerite (zinc sulfide). Fluorite within the study area occurs as well-formed but irregular grains or masses that are generally white or yellow in color (Floyd 1965:51–53; Jewell 1947:22–23). Small amounts of purple fluorite are present along cracks or cavity linings. Calcite from the region is described as coarsely crystalline but well formed (Jewell 1947:24). The color is generally translucent to white, but shades of other colors are also possible (notably yellow, brown, and purple).

Figure 2 notes that modern mines with mineral crystals occur in the general vicinity of all four Mississippian sites that yielded crystalline artifacts (Hardeman and Miller 1959). Such mines are notably present just east of the Castalian Springs site and include the renowned Elmwood and Gordonsville mines in Smith County along the Highland Rim.
boundary (Seal et al. 1985). However, the important issue to consider is whether local Mississippian period residents could access the fluorite and calcite crystals, as these mineral veins are reported to extend 60 m or more below ground surface (Jewell 1947:18). The Tennessee State Geologist's office states the larger fluorite and calcite crystals from modern mines come from deposits too deep to access without heavy equipment (Michael Hoyal, personal communication, 2011).

There is no evidence to suggest indigenous residents were surface mining these materials, as no ancient crystal quarry or surface spoil sites have been recorded within the Middle Cumberland region. Exposed mineral veins have been noted in select surface locations such as creek beds, weathered bluffs, and eroded hills; and fluorite and calcite crystals can be found in stream gravels and geodes (Jewell 1947). However, these sources yield crystals that are fractured, too small to work, or what has been described as “gravel” spar (Jewell 1947:20).

A possibility to consider is that fluorite and calcite crystals were recovered from local caves. The karst topography of the outer Central Basin and surrounding Highland Rim physiographic provinces results in numerous caves and sinkholes throughout the Middle Cumberland region. Of 863 karst features recorded in the Central Basin, the highest concentration of passable caves is located southeast of Nashville along the Eastern Highland Rim escarpment (Shofner et al. 2001; Tennessee Division of Natural Areas 2013). Figure 2 notes the presence of several caves in the immediate vicinity of modern mineral mines.

Prehistoric cave mining for such materials as chert, gypsum, selenite, epsomite, mirabilite, satinspar, and salt has been documented north of the study area in Indiana and Kentucky (see summaries by Barrier and Byrd [2008] and Crothers et. al [2002]). Wyandotte Cave in southern Indiana was exploited for aragonite, epsomite, and chert during the Late Archaic through Middle Woodland periods (Munson and Munson 1990). In Kentucky, Indian Salts Cave and the Mammoth Cave system contain evidence of Woodland period mineral extraction (e.g., Barrier and Byrd 2008; Crothers et. al 2002; Munson et al. 1989; Tankersly 1996; Watson 1974).

Direct evidence of prehistoric cave mining in Tennessee has been documented at three sites to date. Big Bone Cave and Hubbards Cave are situated along the intersection of the Eastern Highland Rim and Cumberland Plateau physiographic provinces in southeastern Middle Tennessee adjacent to the Middle Cumberland region. Prehistoric mining for gypsum and selenite at Big Bone Cave occurred during the Early Woodland period (Crothers 2001), while dates from Hubbards Cave point to mineral extraction during the Middle Woodland period (Pritchard 2008). Third Unnamed Cave, located east of the study area on the upper Cumberland Plateau, has yielded evidence of Terminal Archaic period chert mining (Franklin 2001, 2008).

Caves throughout Tennessee and the interior Southeast continued to be explored, decorated, and used as burial locations throughout the Mississippian period (e.g., Cressler 1999; Douglas et al. 2008; Faulkner 1998; Faulkner et al. 1984; Simek and Cressler 2008). The indirect association of radiocarbon dates with excavated pits at several sites suggests clay mining occurred in some caves during late prehistoric times (Faulkner and Simek 2001; Simek et al. 2001). However, there is no direct evidence to date of Mississippian period mineral extraction from caves in these areas.

If Mississippian inhabitants of the Middle Cumberland region were indeed mining fluorite and calcite from caves, they may have done so using similar technology and techniques associated with Woodland period mineral extraction. Obtaining selenite, which forms as individual crystals in dry, sulfate-rich alluvial settings, required the excavation of cave sediments using tools such as digging sticks and bivalve shells (Munson et al. 1989). Although fluorite and calcite crystals form in faults and fissures, these minerals could occur within cave sediment as a result of infill and ceiling breakdown. Artifacts recovered from Salts and Mammoth Cave show gypsum and satinspar were dislodged through battering with expedient hammerstones (Crothers et al. 2002; Munsen et al. 1989). Fluorite and calcite crystals potentially exposed in fissures or on cave walls would likely not be collected using these same techniques. These minerals would have been extracted more carefully, perhaps using stone chisels, in an effort to collect sound parent material. Since these crystals have very similar properties (including hardness and color), it is unlikely that one resource would have been intentionally selected over the other.

Social Context

The Rutherford-Kizer, Cheyenne Hills, and Brentwood crystal artifacts comprise mortuary goods recovered from Mississippian stone-box graves. The Cheyenne Hills earplug and Brentwood bird effigy pendant were associated with adults (age and sex unknown), and the Rutherford-Kizer bead was recovered from the disturbed burial of a four-year-old child. While these three artifacts are conclusively associated funerary objects, there appears to be something different happening at the Castalian Springs site. None of the three earplugs derive from a mortuary setting. The Myer earplug was a surface find and could have
conceivably been associated with a burial, but the other two specimens were tiny objects apparently deriving from the disturbed floors of two structures associated with Mound 3.

Artifacts fashioned from fluorite and calcite may have functioned as markers of elevated social status or held ritual significance, or both, by the later portion of the Archaic period in the Midcontinent. This is shown by the association of calcite beads with mortuary activity (Nolan and Fishel 2009; Perino 1968; Wiant et al. 2009) and the circulation of fluorite artifacts through Archaic trade networks stretching from Illinois to northern Louisiana and Florida (e.g., Boles 2012; Lien et al. 1974; Webb 1968). Both worked and unworked crystalline artifacts have also been recovered from Woodland period contexts (Boles 2012; Cowan and Greber 2002; Fortier 2001; Fortier et al. 1989), where they appear to have had “mostly non-utilitarian functions” (Fortier 2008:29).

During the Mississippian period, worked and unworked fluorite/calcite crystals are recovered alongside other exotic and prestige goods, including quartz crystals, marine shell, hematite, copper, mica, tobacco pipes, and flint clay figurines. This suite of material is associated with elite burials and residences and mound activity at Cahokia and other sites throughout the middle Mississippi and lower Ohio valleys (Baltus and Baires 2012; Pauketat 1998a, 1998b; Pauketat and Koldehoff 2002; Pickering and Rackerby 2004 Strezewski 2003; Trubitt 1996). The recovery of fluorite beads at houses throughout the area surrounding Kincaid (Muller 1986b, 1987), and of failed fluorite beads alongside evidence of shell bead manufacture in a house on the Fingerhut Tract at Cahokia (Koldehoff 1995), suggests that crystalline artifacts were created and distributed through the same networks responsible for the dissemination of other exotic and prestige goods.

Beads, plummets, ear plugs, and other items of personal adornment crafted from calcite and fluorite likely served as indicators of individual standing in Mississippian society, while the previously described crystalline figurines carried iconographic significance. However, the raw material from which these artifacts were manufactured was also imbued with ritual and social value. The recovery of raw and lightly worked fluorite, calcite, quartz, and plagioclase crystals from sites including Cahokia (e.g., Pauketat et al. 2002, Pauketat and Koldehoff 2002), BBB Motor Works (Emerson 1995), Emmons Cemetery (Morse et al. 1961), and Dickson Mounds (Strezewski 2003) suggest that crystals played an important, albeit poorly defined, role in Mississippian ritual life in the Middle Mississippi Valley (Emerson 1989, 1995).

Similar raw material significance has been attributed to marine shell artifacts from the Mississippian period. Marine shells were conceptualized as the scales of the Great Serpent, alternately manifested as the Underwater Panther, the Horned Water Serpent, or the Piasa (Lankford 2007a). Artifacts manufactured from these materials thereby carried innate symbolism extending beyond their ability to signal individual status or function as a canvas for the display of iconographic symbols. Instead, marine shell artifacts served as ritual locatives invoking both the Great Serpent and the Beneath World of the layered Mississippian cosmos (Deter-Wolf and Peres 2014; Lankford 2007b). In this same manner, ethnographic and ethnohistorical data suggest that calcite, fluorite, and other crystals recovered from Mississippian contexts were intimately associated with the Great Serpent (see also the discussions in Emerson [1997] and Hudson [1976]).

The Cherokee and Creek conceptualized crystals as scales of Uktena, the Horned Serpent (Hudson 1976; Mooney 1900). Uktena’s forehead also bore a large, red-tinted crystal called Ululàští’ti (“transparent,” Mooney 1900:297) that was believed to be particularly potent (Hudson 1976; Mooney 1900). Both individual scales and fragments of the Ululàští’ti could be procured from caves or through confrontation with Uktena. These relics acted as conduits of the Horned Serpent’s power and bestowed their bearer with the ability to harness and direct supernatural energy. Consequently, crystals were important elements of a shaman’s ritual paraphernalia and were used for divination and protection from malevolent forces (Gilbert 1943; Hudson 1976; Mooney 1900). Among the historic Cherokee, Creek, and Seminole, crystals were also carried by adult men as a form of personal medicine to ensure success in hunting and procreation (Hudson 1976; Mooney 1900). According to Mooney (1900), powerful crystals were buried with their owners. Although the crystals described above are likely quartz rather than fluorite or calcite, it is not unreasonable to assume shared significance between crystalline minerals.

A Consideration of Crystal Production at the Castalian Springs Mound Center

An interesting outcome from the 2005–11 MTSU field school excavations at Castalian Springs is the recovery of numerous raw calcite crystals. Ongoing water-screen processing of soil samples has retrieved these crystals from select excavation units across the site area (Table 2). Figure 8 clearly indicates that certain site locations contain more raw calcite crystals than others, namely, Mound 3, the area east/southeast of Mound 1, and the southern site area. This distribution, along with the three earplugs that represent 75 percent of the known earplug sample from the study area, raises the question of whether the earplugs were manufactured at
the Castalian Springs site. Along with that prospect would be the presence of one or more crystal “workshops” or “crafting locales” as defined by Boles (2012:72). These possibilities deserve additional scrutiny as the 2005–11 water-screen samples continue to be processed and tabulated.

Crystal (fluorite) production has been defined as an activity at several sites in the lower Ohio River region, including Kincaid Mounds in southern Illinois and Angel Mounds in southwest Indiana (Boles 2012; Schilling and Baumann 2012). Documentation of crystal (calcite) production at Castalian Springs would be the first of its kind within the Middle Cumberland region. Past site excavations across the study area have yielded the occasional quartz crystal or galena cube, but no raw calcite/fluorite crystals, and certainly not in the quantity discovered at Castalian Springs (Moore and Smith 2009; Smith and Moore 1999).

Twenty of the 21 calcite specimens retrieved to date comprise raw crystals that do not show any obvious evidence of alteration such as grinding or cutting actions (Figure 9A; see Table 2). One crystal does display evidence of grinding along the lateral edges, but it is not a finished product. Of the 20 unworked crystals, just one has the sufficient mass to produce an earplug of the size found by Myer. However, five are large enough to fabricate the (N1169/E790) earplug from Mound 3, and 11 are big enough to make the second (N1169/E774) Mound 3 earplug. The remaining specimens could be used to make smaller items such as beads. Several tiny and irregular crystals may represent debris from initial manufacturing processes. A speculative progression of crystal production at Castalian Springs, from parent material to finished product, is presented in Figure 9B.

Considerations for Future Research

This research has documented six worked crystal specimens for the Middle Cumberland region as well as the recovery of calcite crystals from the Castalian Springs site area. These items were identified through a review of the Tennessee site information files, interviews with local informants, and examinations of private collections. Other such artifacts may be revealed through vigilant searches of additional local, state, and perhaps national repositories.

Sourcing studies should be pursued to evaluate whether the Middle Cumberland artifacts derive from locally available crystals or nonlocal sources such as the Illinois-Kentucky Fluorspar District. Analysis methods including x-ray fluorescence, neutron activation, and mass spectrometry may successfully yield unique source signatures. Field recovery of local mineral crystals will be necessary to gather baseline data and should include surveys of Middle Cumberland region caves, sinkholes, and mines. Such surveys should focus upon the vicinity of the Castalian Springs site to identify potential sources for the calcite crystals recovered to date.

Finally, the recovery of raw calcite crystals at Castalian Springs has brought to light the possibility of a site activity (crystal production) unique to the Middle Cumberland region. Fluorite crystal production in the lower Ohio River region has been suggested to occur primarily at mound centers based upon the presence of recorded worked and unworked pieces (Boles 2012). Boles (2012:72) uses “workshop” and “crafting locale” to characterize these production locations, where a workshop is “a locale where craft production is evident and the level of such activity

Table 2. Raw calcite crystals from 2005–11 MTSU excavations at Castalian Springs (measurements in mm).

<table>
<thead>
<tr>
<th>Catalog No.</th>
<th>North</th>
<th>East</th>
<th>Level</th>
<th>Max. Length</th>
<th>Max. Width</th>
<th>Max. Thick</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>05-01-014*</td>
<td>1006</td>
<td>998</td>
<td>2</td>
<td>10.7</td>
<td>7.5</td>
<td>6.3</td>
<td>Clear color</td>
</tr>
<tr>
<td>05-01-015*</td>
<td>998</td>
<td>3/4</td>
<td></td>
<td>16.7</td>
<td>14.8</td>
<td>9.3</td>
<td>Clear color</td>
</tr>
<tr>
<td>05-01-021*</td>
<td>982</td>
<td>5</td>
<td>19.0</td>
<td>11.2</td>
<td>6.0</td>
<td></td>
<td>Clear/light purple color</td>
</tr>
<tr>
<td>05-01-027*</td>
<td>982</td>
<td>6</td>
<td>18.7</td>
<td>14.3</td>
<td>10.4</td>
<td></td>
<td>Clear color</td>
</tr>
<tr>
<td>05-01-057*</td>
<td>988</td>
<td>5</td>
<td>19.4</td>
<td>17.8</td>
<td>10.6</td>
<td></td>
<td>Clear color</td>
</tr>
<tr>
<td>06-26-008</td>
<td>938</td>
<td>2</td>
<td>7.0</td>
<td>6.6</td>
<td>2.8</td>
<td></td>
<td>Clear color</td>
</tr>
<tr>
<td>06-26-012</td>
<td>964</td>
<td>2</td>
<td>13.8</td>
<td>12.5</td>
<td>6.9</td>
<td></td>
<td>Clear color</td>
</tr>
<tr>
<td>06-26-030</td>
<td>936</td>
<td>5</td>
<td>19.6</td>
<td>11.5</td>
<td>8.2</td>
<td></td>
<td>Clear color</td>
</tr>
<tr>
<td>06-26-033</td>
<td>938</td>
<td>5</td>
<td>19.4</td>
<td>17.8</td>
<td>10.6</td>
<td></td>
<td>Clear color</td>
</tr>
<tr>
<td>06-26-054</td>
<td>972</td>
<td>1</td>
<td>14.1</td>
<td>10.5</td>
<td>7.2</td>
<td></td>
<td>Clear color; 1 of 2 specimens</td>
</tr>
<tr>
<td>06-26-054</td>
<td>972</td>
<td>1</td>
<td>11.6</td>
<td>6.8</td>
<td>4.4</td>
<td></td>
<td>Clear color; 2 of 2 specimens</td>
</tr>
<tr>
<td>06-26-092</td>
<td>966</td>
<td>1</td>
<td>13.3</td>
<td>12.3</td>
<td>7.0</td>
<td></td>
<td>Clear color; 1 of 3 specimens</td>
</tr>
<tr>
<td>06-26-092</td>
<td>966</td>
<td>1</td>
<td>13.2</td>
<td>8.3</td>
<td>5.3</td>
<td></td>
<td>Clear color; 2 of 3 specimens</td>
</tr>
<tr>
<td>06-26-092</td>
<td>966</td>
<td>1</td>
<td>11.0</td>
<td>9.5</td>
<td>4.3</td>
<td></td>
<td>Clear color; 3 of 3 specimens</td>
</tr>
<tr>
<td>06-26-093</td>
<td>968</td>
<td>1</td>
<td>11.3</td>
<td>7.4</td>
<td>7.8</td>
<td></td>
<td>Clear color</td>
</tr>
<tr>
<td>06-26-148</td>
<td>970</td>
<td>2</td>
<td>11.5</td>
<td>8.5</td>
<td>9.2</td>
<td></td>
<td>Clear color; Str. 1 wall trench (F20)</td>
</tr>
<tr>
<td>07-07-012</td>
<td>984</td>
<td>2</td>
<td>13.7</td>
<td>8.9</td>
<td>5.1</td>
<td></td>
<td>Clear color</td>
</tr>
<tr>
<td>07-07-012</td>
<td>984</td>
<td>2</td>
<td>10.1</td>
<td>8.3</td>
<td>8.0</td>
<td></td>
<td>Clear color</td>
</tr>
<tr>
<td>08-21-144</td>
<td>702</td>
<td>2</td>
<td>12.1</td>
<td>8.9</td>
<td>9.2</td>
<td></td>
<td>Clear color; ground edges</td>
</tr>
<tr>
<td>11-04-156</td>
<td>792</td>
<td>2</td>
<td>8.8</td>
<td>7.2</td>
<td>2.8</td>
<td></td>
<td>Clear color</td>
</tr>
<tr>
<td>11-04-160</td>
<td>792</td>
<td>2</td>
<td>8.1</td>
<td>7.0</td>
<td>4.7</td>
<td></td>
<td>Yellow color</td>
</tr>
</tbody>
</table>

* These artifacts from 2005 test units (south of Hwy. 25) using different grid system than 2006–11 work.
appears excessive for household consumption and little to no household or domestic debris is evident.” A crafting locale “is just the opposite where household debris is quite evident and the level of production is consistent with household consumption” (Boles 2012:72). A fluorite workshop at Kincaid Mounds was delineated inside the palisade northeast of Mound 10 based on the recovery of substantial amounts of fluorite artifacts with production tools (including blades, drills, and abraders) over a burned structure (Boles 2012:72–73). Fluorite production at Angel Mounds is suggested for the East Village area, where 80 percent (51 of 63) of the recorded fluorite specimens in that area were found in nonmortuary contexts such as palisade trenches, structure postholes, and a pit feature (Schilling and Baumann 2012). Schilling and Baumann (2012:7) suggest fluorite production/use was available to most site residents, and fluorite items “were not necessarily ‘prestige goods’ based on composition alone.”

The authors are confident that some type of crystal (calcite) production was underway at the Castalian Springs mound center. Resources were available as the site was established within an area rich in mineral vein deposits (see Figure 2). Also, three of the four earplugs known for the study area have been recovered from this site, along with a substantial number of unworked (and one partially worked) crystals previously unknown from other mound centers in the Middle Cumberland region. Spatial distribution of the crystals recovered to date illustrates the heaviest concentration to be east-southeast of Mound 1, with secondary concentrations on Mound 3 and in the southern site area (see Figure 8). Is the concentration east-southeast of Mound 1 associated with a wall-trench structure exposed in the vicinity during the 2006–7 seasons? Also, the crude and variable forms of the Mound 3 earplugs are intriguing. Does this represent evidence of site residents making their own crystal earplugs, thereby suggesting household crystal production? Or are these specialized forms for some as yet unknown purpose? There are numerous possibilities and scenarios to consider, but at this time it is premature to characterize the nature of the crystal production (i.e., workshop vs. crafting locale) until all soil samples have been processed and all artifacts have been tabulated.
Notes

Acknowledgments. The authors would like to thank John Dowd for sharing his recollection of events surrounding the recovery of the Brentwood locality bird pendant and Mark Clark for allowing the authors to photograph the pendant. Rick Taylor shared important details about the Cheyenne Hills earplug with the senior author at the time of discovery. Jeff Chapman and Bobby Braly (Frank H. McClung Museum, University of Tennessee) alerted the authors to the Hogan site specimen. We extend our appreciation to Steve Boles for kindly sharing his thesis research results regarding lower Ohio River region fluorite sources and artifacts. Mike Hoyal, Assistant State Geologist with the Tennessee Geological Survey, provided the mineral identifications. Julie Moore sketched the earplug images in Figure 7.

1 Analysis of the Mound 3 excavation results are ongoing (Smith et al. 2012).
2 The specific hilltop remains unknown. Mr. Dowd (personal communication, 2010) recalls the locale was near a substantial Mississippian occupation in Brentwood, most likely the Arnold (40WM5) site.
3 The material type will remain a mystery as Clark (1878:275) noted these items were stolen.
4 A state number has not been assigned as the site’s exact location has yet to be defined.
5 The 2006 and 2007 field seasons exposed a wall trench structure (designated Structure 1) and a series of reconstruction efforts just east of Mound 1. Analyses of the structure and associated artifacts are ongoing.

References Cited

Ball, Donald B.
2011 Materials from Castalian Springs, Sumner County, Tennessee, Inventoried in Record of Relics No. 2 by William Edward Myer. Copy on file, Middle Cumberland Mississippian Survey Project, Department of Sociology and Anthropology, Middle Tennessee State University, Murfreesboro.

Baltus, Melissa R., and Sarah E. Baires

Barrier, Casey R., and Myrisa K. Byrd

Batty, J. V., H. D. Snedden, G. M. Potter, and B. K. Shibler

Beahm, Emily L.
2012 Exploring the Eastern Limits of the Middle Cumberland Region: Recent Testing at Two Mississippian Mound Sites in Smith County, Tennessee. Paper presented at the 24th annual meeting of Current Research in Tennessee Archaeology, Nashville.
SOUtheastern archaeology 33(1) SuMMer 2014

Bostrom, Peter A.

Clark, W. M.

Clinton, Jennifer M., and Tanya M. Peres

Cressler, Alan, Jan F. Simek, Todd M. Ahlman, J. L. Bennett, and Jay D. Franklin

1999 Prehistoric Mud Glyph Cave Art from Alabama. Southeastern Archaeology 18(1):35–44.

Crothers, George

Dye, David H.

2009 War Honors and Tattoos: Mississippian Soul Capture, Dedication, and Recycling. Paper presented at the 66th annual meeting of the southeastern archaeological conference, Mobile, AL.

Emerson, Thomas E.

Faulkner, Charles H.

Faulkner, Charles H., Bill Deane, and Howard H. Earnest, Jr.

Faulkner, Charles H., and Jan F. Simek

CRYSTALLINE ARTIFACTS FROM TENNESSEE

Ferguson, Robert B. (editor)
1972 The Middle Cumberland Culture. Publications in Anthropology No. 3. Vanderbilt University, Nashville.

Floyd, Robert J.

Fortier, Andrew

Fortier, Andrew, Thomas O. Maher, Joyce A. Williams, Michael C. Meinkoth, Kathryn E. Parker, and Lucretia S. Kelley

Franklin, Jay D.

Galloway, Patricia (editor)

Garland, Elizabeth Baldwin

Gilbert, William Harlan

Hardeman, William D., and Robert A. Miller

Hodge, Shannon C., Michael K. Hampton, and Kevin E. Smith

Hudson, Charles

Jewell, W. B.

Jones, Joseph
1876 Explorations of the Aboriginal Remains of Tennessee. Smithsonian Contributions to Knowledge 22(259):1-171.

Kentucky Geological Survey

Kincaid Mounds Support Organization

Klippel, Walter E., and William M. Bass (editors)

Knight, Vernon James, Jr., James A. Brown, and George E. Lankford

Lankford, George E.

Lien, Paul M., Ripley P. Bullen, and Clarence H. Webb

Miller, Robert A.

Mindat.org

Minerals Zone

Mooney, James

Moore, Michael C.

2006 One Hundred Years of Archaeology at Gordontown: A Fortified Mississippian Town in Middle Tennessee. Southeastern Archaeology 25:89-109.

Moore, Michael C., and Kevin E. Smith
2001 Archaeological Excavations at the Rutherford-Kizer Site: A Mississippian Mound Center in Sumner County,

CRYSTALLINE ARTIFACTS FROM TENNESSEE

Sharp, Robert V., Kevin E. Smith, and David H. Dye
2010 The Classic Braden Style and Its Legacy in the Nashville Basin. Paper presented at the 75th annual meeting of the Society for American Archaeology, St. Louis, MO.

Shofner, Gregory A., Hugh H. Mills, and Jason E. Duke

Simek, Jan F., and Alan Cressler

Simek, Jan F., Alan Cressler, Charles H. Faulkner, Todd M. Ahlman, Brad Creswell, and Jay D. Franklin

Smith, Kevin E.

Smith, Kevin E., and Emily L. Beahm
2011 Through the Looking Glass: Mississippian Iconography through the Lens of the Castalian Springs Mounds, Sumner County, Tennessee. Paper presented at the 68th annual meeting of the Southeastern Archaeological Conference, Jacksonville, FL.

Smith, Kevin E., and Michael K. Hampton

Smith, Kevin E., and James V. Miller

Smith, Kevin E., and Michael C. Moore

Smith, Kevin E., Michael C. Moore, and Stephen T. Rogers
2009 The Enigma of the Noel Cemetery: Thruston’s “Ancient Metropolis of the Stone Grave Culture.” Paper presented at the 66th annual meeting of the Southeastern Archaeological Conference, Mobile, AL.

Steponaitis, Vincas P., Vernon James Knight, Jr., George E. Lankford, Robert V. Sharp, and David H. Dye

Strezewski, Michael

Tankersly, Kenneth B.

Tennessee Division of Natural Areas

Thruston, Gates P.

Trubitt, Mary Beth D.

Walling, Richard, Lawrence Alexander, and Evan Peacock
2000 The Jefferson Street Bridge Project: Archaeological Investigations at the East Nashville Mounds Site (40Dv4) and the French Lick/Sulphur Dell (40Dv5) Site, in Nashville, Davidson County, Tennessee. Publications in Archaeology No. 7. Tennessee Department of Transportation, Office of Environmental Planning and Permits, Nashville.

Watson, Patty Jo

Webb, Clarence H.

Wiart, Michael D., Kenneth B. Farnsworth, and Edwin R. Hajic

Wolforth, Thomas R., and Lynne Mackin Wolforth

Worne, Heather A.

41