

Introduction:

The following Instructional Materials Scoring Rubric for Mathematics is designed to score materials in the following categories:

- Instructional Focus
- Math Practices
- Aspects of Rigor
- Accessibility Features

Scoring:

Each section is to be scored using a 0, 1, or 2. For all sections, except for Rigor, use the following rubric when deciding on the appropriate rating:

- 0: The metric is not present within the material.
- 1: The metric is present within the material. The intent and/or frequency component of the metric is not fully met.
- 2: A rating of 2 indicates the metric is present and all aspects of the metric are fully met.

For Rigor:

- 0: The standard is not instructionally present within the material.
- 1: The standard is instructionally present but does not have an instructional focus on the indicated type of rigor.
- 2: The standard is instructionally present and has a clear instructional focus on the indicated type of rigor.

Note: Some standards appear under multiple aspects of rigor (i.e., Conceptual Understanding, Procedural Fluency, or Application). When scoring these standards, only score the part of the standard relevant to that aspect of rigor, which is identified by a bold, italics, larger font.

Gateway: The publisher must provide a Tennessee standards alignment guide as a part of the scope and sequence for the material. If this gateway is not met, the materials will not be scored.

Instructional Focus						
	0	1	2	Evidence		
Connections to content from prior grades are clearly identified and explicitly						
related to grade-level work.						
Materials embed a minimum of 3 tasks in every unit. Each task has multiple entry-						
points and can be solved using a minimum of 2 solution strategies and/or						
representations.						
Materials give students opportunities to work problems within each lesson. Each						
problem set:						
 Covers the full breadth of the standard(s) covered in the lesson 						
 Is aligned to on grade level expectations as identified in the standard(s) 						
Teacher resources indicate common student misconceptions in every unit and						
provide guidance on how to instructionally address the identified misconceptions.						
Materials provide educative supports (e.g., adult level explanations of the						
standards and strategies) in every lesson for teachers to ensure standards are						
taught accurately and to the appropriate level of rigor (i.e., conceptual						
understanding, procedural fluency, and application) as indicated by the standards.						
Materials develop student understanding of multiple representations (i.e.,						
concrete, representational, abstract) for relevant standards which are identified in						
the state's Instructional Focus Documents.						
Materials include problems and activities in every unit that connect two or more						
grade level standards in a domain (e.g., 4.OA.A.1 and 2.OA.A.2).						
Materials include problems and activities in every unit that connect two or more						
grade level domains. (e.g., 4.MD.A.2 and 4.OA.A.3)						
Materials provide opportunities for students to participate in a spiraled review in						
every unit.						
			Total			

Mathematical Practices					
Math Practices/Literacy Skills for Math Proficiency	0	1	2	Evidence	
Materials embed the eight math practice standards in every unit.					
Math practice standards are clearly identified in both teacher and student materials.					
Materials use appropriate math vocabulary which is aligned to the grade level standards.					
Materials support students in discussing and articulating mathematical ideas. Within each lesson students either write or verbally justify their thoughts.					
			Total		

Accessibility Features						
Digital Materials	0	1	2	Evidence		
All lessons within the materials are available in digital form and include a printable						
option.						
In every lesson, materials include recommended supports, accommodations, and						
modifications for Students with Disabilities and English Language Learners that will						
support their regular and active participation in accessing on grade level material						
(e.g., modifying vocabulary words within word problems, sentence starters, etc.).						
			Total			

Gateway: The publisher must provide a Tennessee standards alignment guide as a part of the scope and sequence for the material. If this gateway is not met, the materials will not be scored.

Aspects of Rigor					
Conceptual Understanding: The materials support the intentional development	0	1	2	Evidence	
of students' conceptual understanding of key mathematical concepts, especially					
where called for in specific content standards or clusters.					
C.F.LF.A.1 Calculate limits (including limits at infinity) using algebra.					
C.F.LF.A.2 Estimate limits of functions (including one-sided limits) from graphs or					
tables of data. Apply the definition of a limit to a variety of functions, including					
piece- wise functions.					
C.F.LF.A.3 Draw a sketch that illustrates the definition of the limit; develop multiple					
real-world scenarios that illustrate the definition of the limit.					
C.F.BF.A.1 Describe asymptotic behavior (analytically and graphically) in terms of					
infinite limits and limits at infinity.					
C.F.BF.A.2 Discuss the various types of end behavior of functions; identify					
prototypical functions for each type of end behavior.					
C.F.C.A.1 Define continuity at a point using limits; define continuous functions.					
C.F.C.A.2 Determine whether a given function is continuous at a specific point.					
C.F.C.A.3 Determine and define different types of discontinuity (point, jump,					
infinite) in terms of limits.					
C.F.C.A.4 Apply the Intermediate Value Theorem and Extreme Value Theorem to					
continuous functions.					
C.D.CD.A.1 Represent and interpret the derivative of a function graphically,					
numerically, and analytically.					
C.D.CD.A.2 Interpret the derivative as an instantaneous rate of change.					
C.D.CD.A.3 Define the derivative as the limit of the difference quotient; illustrate					
with the sketch of a graph.					
C.D.CD.A.4 Demonstrate the relationship between differentiability and continuity.					
C.D.CD.B.5 Interpret the derivative as the slope of a curve (which could be a line) at					
a point, including points at which there are vertical tangents and points at which					
there are no tangents (i.e., where a function is not locally linear).					

C.D.CD.B.6 Approximate both the instantaneous rate of change and the average		
rate of change given a graph or table of values.		
C.D.CD.B.7 Write the equation of the line tangent to a curve at a given point.		
C.D.CD.B.8 Apply the Mean Value Theorem.		
C.D.CD.B.9 Understand Rolle's Theorem as a special case of the Mean Value		
Theorem.		
C.D.AD.A.1 Describe in detail how the basic derivative rules are used to		
differentiate a function; discuss the difference between using the limit definition of	of land	
the derivative and using the derivative rules.		
C.D.AD.A.2 Calculate the derivative of basic functions (power, exponential,		
logarithmic, and trigonometric).		
C.D.AD.A.3 Calculate the derivatives of sums, products, and quotients of basic		
functions.		
C.D.AD.A.4 Apply the chain rule to find the derivative of a composite function.		
C.D.AD.A.5 Implicitly differentiate an equation in two or more variables		
C.D.AD.A.6 Use implicit differentiation to find the derivative of the inverse of a		
function.		
C.D.AD.B.7 Relate the increasing and decreasing behavior of <i>f</i> to the sign of <i>f'</i> both	1	
analytically and graphically.		
C.D.AD.B.8 Use the first derivative to find extrema (local/relative and		
global/absolute).		
C.D.AD.B.9 Analytically locate the intervals on which a function is increasing,		
decreasing, or neither.		
C.D.AD.B.10 Relate the concavity of <i>f</i> to the sign of <i>f</i> " both analytically and		
graphically.		
C.D.AD.B.11 Use the second derivative to find points of inflection as points where		
concavity changes.		
C.D.AD.B.12 Analytically locate intervals on which a function is concave up,		
concave down, or neither.		
C.D.AD.B.13 Relate corresponding characteristics of the graphs of <i>f</i> , <i>f</i> ', and <i>f</i> ".		
C.D.AD.B.14 Translate verbal descriptions into equations involving derivatives and		
vice versa.		
C.D.AD.C.15 Model rates of change, including related rates problems. In each case,		
include a discussion of units.		

Department of .Education

Calculus Mathematics Instructional Materials Scoring Rubric

C.D.AD.C.16 Solve optimization problems to find a desired maximum or minimum				
value.				
C.D.AD.C.17 Use differentiation to solve problems involving velocity, speed, and				
acceleration.				
C.D.AD.C.18 Use tangent lines to approximate function values and changes in				
function values when inputs change (linearization).				
C.I.UI.A.1 Define the definite integral as the limit of Riemann sums and as the net				
accumulation of change.				
C.I.UI.A.2 Write a Riemann sum that represents the definition of a definite integral.				
C.I.UI.A.3 Use Riemann sums (left, right, and midpoint evaluation points) and				
trapezoid sums to approximate definite integrals of functions represented				
graphically, numerically, and by tables of values.				
C.I.UI.B.4 Recognize differentiation and antidifferentiation as inverse operations.				
C.I.UI.B.5 Evaluate definite integrals using the Fundamental Theorem of Calculus.				
C.I.UI.B.6 Use the Fundamental Theorem of Calculus to represent a particular				
antiderivative of a function and to understand when the antiderivative so				
represented is continuous and differentiable.				
C.I.UI.B.7 Apply basic properties of definite integrals (e.g. additive, constant				
multiple, translations).				
C.I.AI.A.1 Find antiderivatives that follow directly from derivatives of basic				
functions (power, exponential, logarithmic, and trigonometric).				
C.I.AI.A.2 Use substitution of variables to calculate antiderivatives (including				
changing limits for definite integrals).				
C.I.AI.A.3 Find specific antiderivatives using initial conditions.				
C.I.AI.B.4 Use a definite integral to find the area of a region.				
C.I.AI.B.5 Use a definite integral to find the volume of a solid formed by rotating a				
region around a given axis.				
C.I.AI.B.6 Use integrals to solve a variety of problems (e.g., distance traveled by a				
particle along a line, exponential growth/decay).				
Procedural Skill and Fluency: The materials provide intentional opportunities for	0	1	2	Evidence
students to develop procedural skills and fluencies, especially where called for in				
specific content standards or clusters				
C.F.LF.A.1 Calculate limits (including limits at infinity) using algebra.				

C.F.LF.A.2 Estimate limits of functions (including one-sided limits) from graphs or	
tables of data. Apply the definition of a limit to a variety of functions, including	
piece- wise functions.	
C.F.LF.A.3 Draw a sketch that illustrates the definition of the limit; develop multiple	le l
real-world scenarios that illustrate the definition of the limit.	
C.F.BF.A.1 Describe asymptotic behavior (analytically and graphically) in terms of	
infinite limits and limits at infinity.	
C.F.BF.A.2 Discuss the various types of end behavior of functions; identify	
prototypical functions for each type of end behavior.	
C.F.C.A.1 Define continuity at a point using limits; define continuous functions.	
C.F.C.A.2 Determine whether a given function is continuous at a specific point.	
C.F.C.A.3 Determine and define different types of discontinuity (point, jump,	
infinite) in terms of limits.	
C.F.C.A.4 Apply the Intermediate Value Theorem and Extreme Value Theorem to	
continuous functions.	
C.D.CD.A.1 Represent and interpret the derivative of a function graphically,	
numerically, and analytically.	
C.D.CD.A.2 Interpret the derivative as an instantaneous rate of change.	
C.D.CD.A.3 Define the derivative as the limit of the difference quotient; illustrate	
with the sketch of a graph.	
C.D.CD.A.4 Demonstrate the relationship between differentiability and continuity.	
C.D.CD.B.5 Interpret the derivative as the slope of a curve (which could be a line) at	at at a second se
a point, including points at which there are vertical tangents and points at which	
there are no tangents (i.e., where a function is not locally linear).	
C.D.CD.B.6 Approximate both the instantaneous rate of change and the average	
rate of change given a graph or table of values.	
C.D.CD.B.7 Write the equation of the line tangent to a curve at a given point.	
C.D.CD.B.8 Apply the Mean Value Theorem.	
C.D.CD.B.9 Understand Rolle's Theorem as a special case of the Mean Value	
Theorem.	
C.D.AD.A.1 Describe in detail how the basic derivative rules are used to	
differentiate a function; discuss the difference between using the limit definition of	of I I I I I I I I I I I I I I I I I I I
the derivative and using the derivative rules.	

N Department of Calculus Mathematics Instructional Education	al Materials Scoring Rubric
C.D.AD.A.2 Calculate the derivative of basic functions (power, exponential,	
logarithmic, and trigonometric). C.D.AD.A.3 Calculate the derivatives of sums, products, and quotients of basic	
functions.	
C.D.AD.A.4 Apply the chain rule to find the derivative of a composite function.	
C.D.AD.A.5 Implicitly differentiate an equation in two or more variables	
C.D.AD.A.6 Use implicit differentiation to find the derivative of the inverse of a	
function.	
C.D.AD.B.7 Relate the increasing and decreasing behavior of <i>f</i> to the sign of <i>f'</i> both analytically and graphically.	
C.D.AD.B.8 Use the first derivative to find extrema (local/relative and	
global/absolute).	
C.D.AD.B.9 Analytically locate the intervals on which a function is increasing,	
decreasing, or neither.	
C.D.AD.B.10 Relate the concavity of <i>f</i> to the sign of <i>f</i> " both analytically and	
graphically.	
C.D.AD.B.11 Use the second derivative to find points of inflection as points where	
concavity changes. C.D.AD.B.12 Analytically locate intervals on which a function is concave up,	
concave down, or neither.	
C.D.AD.B.13 Relate corresponding characteristics of the graphs of <i>f</i> , <i>f'</i> , and <i>f''</i> .	
C.D.AD.B.14 Translate verbal descriptions into equations involving derivatives and	
vice versa.	
C.D.AD.C.15 Model rates of change, including related rates problems. In each case, include a discussion of units.	
C.D.AD.C.16 Solve optimization problems to find a desired maximum or minimum	
value.	
C.D.AD.C.17 Use differentiation to solve problems involving velocity, speed, and	
acceleration.	
C.D.AD.C.18 Use tangent lines to approximate function values and changes in	
function values when inputs change (linearization).	
C.I.UI.A.1 Define the definite integral as the limit of Riemann sums and as the net	
accumulation of change.	
C.I.UI.A.2 Write a Riemann sum that represents the definition of a definite integral.	

C.I.UI.A.3 Use Riemann sums (left, right, and midpoint evaluation points) and				
trapezoid sums to approximate definite integrals of functions represented				
graphically, numerically, and by tables of values.				
C.I.UI.B.4 Recognize differentiation and antidifferentiation as inverse operations.				
C.I.UI.B.5 Evaluate definite integrals using the Fundamental Theorem of Calculus.				
C.I.UI.B.6 Use the Fundamental Theorem of Calculus to represent a particular				
antiderivative of a function and to understand when the antiderivative so				
represented is continuous and differentiable.				
C.I.UI.B.7 Apply basic properties of definite integrals (e.g. additive, constant				
multiple, translations).				
C.I.AI.A.1 Find antiderivatives that follow directly from derivatives of basic				
functions (power, exponential, logarithmic, and trigonometric).				
C.I.AI.A.2 Use substitution of variables to calculate antiderivatives (including				
changing limits for definite integrals).				
C.I.AI.A.3 Find specific antiderivatives using initial conditions.				
C.I.AI.B.4 Use a definite integral to find the area of a region.				
C.I.AI.B.5 Use a definite integral to find the volume of a solid formed by rotating a				
region around a given axis.				
C.I.AI.B.6 Use integrals to solve a variety of problems (e.g., distance traveled by a				
particle along a line, exponential growth/decay).				
Applications: The materials support the intentional development of students'	0	1	2	Evidence
ability to utilize mathematical concepts and skills in engaging applications,				
especially where called for in specific content standards or clusters.				
C.F.LF.A.1 Calculate limits (including limits at infinity) using algebra.				
C.F.LF.A.2 Estimate limits of functions (including one-sided limits) from graphs or				
tables of data. Apply the definition of a limit to a variety of functions, including				
piece- wise functions.				
C.F.LF.A.3 Draw a sketch that illustrates the definition of the limit; develop multiple				
real-world scenarios that illustrate the definition of the limit.				
C.F.BF.A.1 Describe asymptotic behavior (analytically and graphically) in terms of				
infinite limits and limits at infinity.				
C.F.BF.A.2 Discuss the various types of end behavior of functions; identify				
prototypical functions for each type of end behavior.				
C.F.C.A.1 Define continuity at a point using limits; define continuous functions.				

Department of . Education

Calculus Mathematics Instructional Materials Scoring Rubric

C.F.C.A.2 Determine whether a given function is continuous at a specific point.	
C.F.C.A.3 Determine and define different types of discontinuity (point, jump, infinite) in terms of limits.	
C.F.C.A.4 Apply the Intermediate Value Theorem and Extreme Value Theorem to	
continuous functions.	
C.D.CD.A.1 Represent and interpret the derivative of a function graphically,	
numerically, and analytically.	
C.D.CD.A.2 Interpret the derivative as an instantaneous rate of change.	
C.D.CD.A.3 Define the derivative as the limit of the difference quotient; illustrate	
with the sketch of a graph.	
C.D.CD.A.4 Demonstrate the relationship between differentiability and continuity.	
C.D.CD.B.5 Interpret the derivative as the slope of a curve (which could be a line) at	t
a point, including points at which there are vertical tangents and points at which	
there are no tangents (i.e., where a function is not locally linear).	
C.D.CD.B.6 Approximate both the instantaneous rate of change and the average	
rate of change given a graph or table of values.	
C.D.CD.B.7 Write the equation of the line tangent to a curve at a given point.	
C.D.CD.B.8 Apply the Mean Value Theorem.	
C.D.CD.B.9 Understand Rolle's Theorem as a special case of the Mean Value	
Theorem.	
C.D.AD.A.1 Describe in detail how the basic derivative rules are used to	
differentiate a function; discuss the difference between using the limit definition of	
the derivative and using the derivative rules.	
C.D.AD.A.2 Calculate the derivative of basic functions (power, exponential,	
logarithmic, and trigonometric).	
C.D.AD.A.3 Calculate the derivatives of sums, products, and quotients of basic	
functions.	
C.D.AD.A.4 Apply the chain rule to find the derivative of a composite function.	
C.D.AD.A.5 Implicitly differentiate an equation in two or more variables	
C.D.AD.A.6 Use implicit differentiation to find the derivative of the inverse of a	
function.	
C.D.AD.B.7 Relate the increasing and decreasing behavior of <i>f</i> to the sign of <i>f'</i> both	
analytically and graphically.	

Department of . Education

Calculus Mathematics Instructional Materials Scoring Rubric

CDADB 8 Lice the first derivative to find extreme (level/relative and	
C.D.AD.B.8 Use the first derivative to find extrema (local/relative and	
global/absolute).	
C.D.AD.B.9 Analytically locate the intervals on which a function is increasing,	
decreasing, or neither.	
C.D.AD.B.10 Relate the concavity of f to the sign of f'' both analytically and	
graphically.	
C.D.AD.B.11 Use the second derivative to find points of inflection as points where	
concavity changes.	
C.D.AD.B.12 Analytically locate intervals on which a function is concave up,	
concave down, or neither.	
C.D.AD.B.13 Relate corresponding characteristics of the graphs of <i>f</i> , <i>f</i> ', and <i>f</i> ".	
C.D.AD.B.14 Translate verbal descriptions into equations involving derivatives and	
vice versa.	
C.D.AD.C.15 Model rates of change, including related rates problems. In each case,	, , , , , , , , , , , , , , , , , , , ,
include a discussion of units.	
C.D.AD.C.16 Solve optimization problems to find a desired maximum or minimum	
value.	
C.D.AD.C.17 Use differentiation to solve problems involving velocity, speed, and	
acceleration.	
C.D.AD.C.18 Use tangent lines to approximate function values and changes in	
function values when inputs change (linearization).	
C.I.UI.A.1 Define the definite integral as the limit of Riemann sums and as the net	
accumulation of change.	
C.I.UI.A.2 Write a Riemann sum that represents the definition of a definite integral.	
C.I.UI.A.3 Use Riemann sums (left, right, and midpoint evaluation points) and	
trapezoid sums to approximate definite integrals of functions represented	
graphically, numerically, and by tables of values.	
C.I.UI.B.4 Recognize differentiation and antidifferentiation as inverse operations.	
C.I.UI.B.5 Evaluate definite integrals using the Fundamental Theorem of Calculus.	
C.I.UI.B.6 Use the Fundamental Theorem of Calculus to represent a particular	
antiderivative of a function and to understand when the antiderivative so	
represented is continuous and differentiable.	
C.I.UI.B.7 Apply basic properties of definite integrals (e.g. additive, constant	
multiple, translations).	

Department of .Education

Calculus Mathematics Instructional Materials Scoring Rubric

C.I.AI.A.1 Find antiderivatives that follow directly from derivatives of basic			
functions (power, exponential, logarithmic, and trigonometric).			
C.I.AI.A.2 Use substitution of variables to calculate antiderivatives (including			
changing limits for definite integrals).			
C.I.AI.A.3 Find specific antiderivatives using initial conditions.			
C.I.AI.B.4 Use a definite integral to find the area of a region.			
C.I.AI.B.5 Use a definite integral to find the volume of a solid formed by rotating a			
region around a given axis.			
C.I.AI.B.6 Use integrals to solve a variety of problems (e.g., distance traveled by a			
particle along a line, exponential growth/decay).			
		Fotal	