Engineering Practicum

<table>
<thead>
<tr>
<th>Primary Career Cluster:</th>
<th>Science, Technology, Engineering, and Mathematics (STEM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Program Manager:</td>
<td>Deborah Knoll, (615) 532-2844, Deborah.Knoll@tn.gov</td>
</tr>
<tr>
<td>Course Code:</td>
<td>6141</td>
</tr>
<tr>
<td>Prerequisite(s):</td>
<td>Engineering Design II (6140) or Robotics & Automated Systems (6143)</td>
</tr>
<tr>
<td>Credit:</td>
<td>1</td>
</tr>
<tr>
<td>Grade Level:</td>
<td>12</td>
</tr>
<tr>
<td>Graduation Requirement:</td>
<td>This course satisfies one of three credits required for an elective focus when taken in conjunction with other STEM courses.</td>
</tr>
<tr>
<td>Programs of Study and Sequence:</td>
<td>This is the fourth course in the Engineering program of study.</td>
</tr>
</tbody>
</table>
| **Aligned Student Organization(s):** | SkillsUSA: http://www.tnskillsusa.com
Tracy Whitehead, (615) 532-2804, Tracy.Whitehead@tn.gov
Technology Student Association (TSA): http://www.tntsa.org
Tracy Whitehead, (615) 532-2804, Tracy.Whitehead@tn.gov |
| **Coordinating Work-Based Learning:** | Teachers who hold an active WBL certificate may offer placement for credit when the requirements of the state board's WBL Framework and the Department's WBL Policy Guide are met. For information, visit https://www.tn.gov/education/career-and-technical-education/work-based-learning.html. |
| **Available Student Industry Certifications:** | Certified Solidworks Associate (CSWA)-Academic
Autodesk Inventor Certified User |
| **Dual Credit or Dual Enrollment Opportunities:** | There are no known dual credit/dual enrollment opportunities for this course. If interested in developing, reach out to a local postsecondary institution to establish an articulation agreement. |
| **Teacher Endorsement(s):** | 013, 014, 015, 016, 017, 018, 047, 070, 078, 081, 125, 126, 127, 128, 129, 157, 210, 211, 212, 213, 214, 230, 413, 414, 415, 416, 417, 418, 232, 233,470, 477, 519, 531, 551, 552, 553, 554, 555, 556, 584, 585, 595, 596, 700,740, 760 |
| **Required Teacher Certifications/Training:** | Teachers who have never taught this course must attend training provided by the Department of Education. |

Approved April 10, 2015; Amended January 25, 2018
Course Description

Engineering Practicum is a capstone course intended to provide students with the opportunity to apply the skills and knowledge learned in previous *Engineering* courses within a professional, working environment. In addition to developing an understanding of the professional and ethical issues encountered by engineers and technologists in the workplace, students learn to refine their skills in problem solving, research, communication, data analysis, teamwork, and project management. The course is highly customizable to meet local system needs: instruction may be delivered through school laboratory training or through work-based learning arrangements such as internships, cooperative education, service learning, mentoring, and job shadowing. Upon completion of the practicum, students will be prepared for postsecondary study in engineering and technology fields.

*Note: Mastery of the following standards should be attained while completing an engineering design project in a practicum setting. Students are expected to use engineering notebooks to document procedures, design ideas, and other notes for the project throughout the course. The project should follow the engineering design process learned in previous courses.***

Work-Based Learning Framework

Practicum activities may take the form of work-based learning (WBL) opportunities (such as internships, cooperative education, service learning, and job shadowing) or industry-driven project-based learning. These experiences must comply with the Work-Based Learning Framework guidelines established in SBE High School Policy 2.103. As such, this course must be taught by a teacher with an active WBL Certificate issued by the Tennessee Department of Education and follow policies outlined in the Work-Based Learning Policy Guide available online at https://www.tn.gov/education/career-and-technical-education/work-based-learning.html. The Tennessee Department of Education provides a Personalized Learning Plan template to ensure compliance with the Work-Based Learning Framework, state and federal Child Labor Law, and Tennessee Department of Education policies, which must be used for students participating in WBL opportunities.

Program of Study Application

This is the fourth course in the *Engineering* program of study. For more information on the benefits and requirements of implementing this program in full, please visit the STEM website at https://www.tn.gov/education/career-and-technical-education/career-clusters/cte-cluster-stem.html.

Course Requirements

This capstone course aligns with the requirements of the Work-Based Learning Framework (established in Tennessee State Board High School Policy), with the Tennessee Department of Education's Work-Based Learning Policy Guide, and with state and federal Child Labor Law. As such, the following components are course requirements:

Course Standards

1) A student will have a Personalized Learning Plan that identifies their long-term goals, demonstrates how the Work-Based Learning (WBL) experience aligns with their elective
focus and/or high school plan of study, addresses how the student plans to meet and
demonstrate the course standards, and addresses employability skill attainment in the
following areas:
 a. Application of academic and technical knowledge and skills (embedded in course
 standards)
 b. Career knowledge and navigation skills
 c. 21st Century learning and innovation skills
 d. Personal and social skills

Safety

2) Accurately read and interpret safety rules, including but not limited to rules published by the
 National Science Teachers Association (NSTA), rules pertaining to electrical safety,
 Occupational Safety and Health Administration (OSHA) guidelines, and state and national
 code requirements. Be able to distinguish between the rules and explain why certain rules
 apply.

3) Identify and explain the intended use of safety equipment available in the classroom. For
 example, demonstrate how to properly inspect, use, and maintain safe operating
 procedures with tools and equipment. Incorporate safety procedures and complete safety
 test with 100 percent accuracy.

Career Exploration

4) Develop an informational annotated document, linked to bookmarked websites, illustrating
 the opportunities for students to investigate and experience engineering and technology
 while in school, focusing specifically on those programs offered by colleges and universities
 in Tennessee. For example, opportunities include job shadowing, internships, co-op
 programs, volunteer and community service, and part-time employment.

Employment Research and Preparation

5) Research and select a company or organization for a work-based learning project in an
 engineering or technology area of choice. Cite specific textual evidence from the
 organization’s literature, as well as independent news articles to summarize:
 a. The mission and history of the organization
 b. Headquarters and organizational structure
 c. Products or services provided
 d. Credentials required for employment and how they are obtained and maintained
 e. Policies and procedures
 f. Reports, newsletters, and other documents published by the organization
 g. Website and contact information

6) Search for the resumes of engineers and technologists retrieved from the websites of
 institutions, organizations, or professional networks. Discuss what is typically included in the
resumes of engineering and technology professionals, compare and contrast several examples, and create a personal resume modeled after elements identified in the search.

7) Conduct a job search and simulate the experience by researching local employment options. In preparation for a future career in engineering or technology, complete an authentic job application form and compose a cover letter following guidelines specified in the vacancy announcement.

8) Participate in a mock interview. Prior to the interview, prepare a paper that includes the following: tips on dress and grooming, most commonly asked interview questions, appropriate conduct during an interview, and recommended follow-up procedures. Upon completion of the interview, write a thank you letter to the interviewer in a written or email format.

Transferring Course Concepts to Practicum

9) Apply skills and knowledge from previous courses in an authentic work-based learning internship, job shadow, or classroom-based project. Where appropriate, develop, practice, and demonstrate skills outlined in previous courses.

10) Identify a problem faced by a local organization or company to define a project proposal. Incorporate organization or company interviews into the research, as well as engineering concepts from the prior three courses. Prepare a written project proposal including the problem definition; justification for why the problem is important to solve; design statement; criteria; constraints; information obtained through research; and deliverables.

11) Create and continually update a personal journal to document skills learned during the practicum and draw connections between the experience and previous course content by reflecting on:
 a. Tasks accomplished and activities implemented
 b. Positive and negative aspects of the experience
 c. How challenges were addressed
 d. Team participation in a learning environment
 e. Comparisons and contrasts between classroom and work environments
 f. Interactions with colleagues and supervisors
 g. Personal career development
 h. Personal satisfaction

Portfolio

12) Create a portfolio, or similar collection of work, that illustrates mastery of skills and knowledge outlined in the previous courses and applied in the practicum. The portfolio should reflect thoughtful assessment and evaluation of the progression of work involving the application of steps of the engineering design process (depending on the nature of the work-based learning project). The following documents will reside in the career portfolio:
 a. Career and professional development plan
 b. Resume
 c. List of responsibilities undertaken through the course
d. Examples of visual materials developed and used during the course (such as graphics, drawings, models, presentation slides, videos, and demonstrations)
e. Description of technology used, with examples if appropriate
f. Periodic journal entries reflecting on tasks and activities
g. Feedback from instructor and/or supervisor based on observations

Communication of Project Results

13) Apply all steps of the engineering design process to successfully generate a prototype, collect the relevant data, perform the necessary tests, interpret the results, make modifications to models or prototypes, and communicate results over the course of the project's duration. Produce a technical report documenting the findings of the project and justifying the final conclusions based on evidence obtained.

14) Upon completion of the practicum, develop a technology-enhanced presentation showcasing highlights, challenges, and lessons learned from the experience. The presentation should be delivered orally, but supported by relevant graphic illustrations, such as diagrams, drawings, and models of project findings, and/or physical artifacts that represent the outcome of the project (i.e., a prototype or 3-D model). Prepare the presentation in a format that could be presented to both a technical and a non-technical audience, as well as for a career and technical student organization (CTSO) competitive event.

Standards Alignment Notes

*References to other standards include:

 - Note: While not all standards are specifically aligned, teachers will find the framework helpful for setting expectations for student behavior in their classroom and practicing specific career readiness skills.