Primary Career Cluster: Architecture & Construction
Course Contact: CTE.Standards@tn.gov
Course Code(s): C17H16
Prerequisite(s): Mechanical, Electrical, & Plumbing Systems (C17H23)
Credit: 1
Grade Level: 11-12
Elective Focus - Graduation Requirements: This course satisfies one of three credits required for an elective focus when taken in conjunction with other Architecture & Construction courses.
POS Concentrator: This course satisfies one out of two required courses that meet the Perkins V concentrator definition, when taken in sequence in the approved program of study.
Programs of Study and Sequence: This is one of the third-level course options in the Mechanical, Electrical, & Plumbing (MEP) Systems program of study.
Aligned Student Organization(s): SkillsUSA: https://www.skillsusatn.org/
Coordinating Work-Based Learning: Teachers are encouraged to use embedded WBL activities such as informational interviewing, job shadowing, and career mentoring. For information, visit https://www.tn.gov/content/tn/education/career-and-technical-education/work-based-learning.html.
Available Student Industry Certifications: Students are encouraged to demonstrate mastery of knowledge and skills learned in this course by earning the appropriate, aligned department-promoted industry certifications. Access the promoted list here for more information.
Teacher Endorsement(s): 523, 532, 567, 580, 592, 701
Required Teacher Certifications/Training: None
Teacher Resources: https://www.tn.gov/education/career-and-technical-education/career-clusters/cte-cluster-architecture-construction.html

Course Description
Electrical Systems prepares students for careers as electricians across a variety of residential and commercial environments. Upon completion of this course, proficient students will be able to implement safety procedures and tools to perform operations with device boxes, conduit, raceway systems conductors, and cable. Students will read and interpret the National Electrical Code,
drawings, specifications, and diagrams to determine materials and procedures needed to complete a project. Students will calculate residential loads to recommend electrical hardware. Standards in this course also introduce basic troubleshooting procedures and power systems, and expand on principles of the construction industry, delving deeper into business and project management. Students will continue compiling artifacts for inclusion in their portfolios, which they will carry with them throughout the full sequence of courses in this program of study.

Program of Study Application
This is one of the third-level options in the Mechanical, Electrical, & Plumbing (MEP) Systems program of study. This course can feed into a fourth-level Construction Practicum course in which students apply the skills learned throughout the program of study toward the completion of an in-depth, semester- or year-long work-based learning (WBL) apprenticeship or internship. For more information on the benefits and requirements of implementing this program in full, please visit the Architecture & Construction website at https://www.tn.gov/education/career-and-technical-education/career-clusters/cte-cluster-architecture-construction.html.

Course Standards

Safety

1) Identify safety hazards on a jobsite and demonstrate practices for safe working. Accurately read, interpret, and demonstrate safety rules, including but not limited to rules pertaining to electrical safety, Occupational Safety and Health Administration (OSHA) guidelines, and state and national code requirements. Be able to distinguish between the rules and explain why certain rules apply. Recognize and employ universal construction signs and symbols such as colors, flags, stakes, and hand signals that apply to construction workplace situations. Research and evaluate construction company safety plans from local industry. Explain the need for jobsite security to prevent liability. Drawing from examples, create and implement a jobsite safety program in the class to ensure safe practices and procedures including jobsite security procedures.

2) Continue to maintain safety records and demonstrate adherence to industry-standard practices regarding general machine safety, tool safety, equipment safety, electrical safety, and fire safety to protect all personnel and equipment. For example, when operating tools and equipment, regularly inspect and carefully employ the appropriate personal protective equipment (PPE), as recommended by Occupational, Safety & Health Administration (OSHA) regulations. Incorporate safety procedures when operating tools and equipment, such as hand and power tools, ladders, scaffolding, and lifting equipment. Complete safety test with 100 percent accuracy.

3) Follow procedures to work safely around materials. Adhere to responsibilities for employees in material safety as outlined by the Hazard Communication Standard (HazCom), such as locating and interpreting material safety data sheets (MSDS). For example, obtain an MSDS for a given material from a supplier in the community. Demonstrate safe procedures to
move materials by planning the movement, properly lifting, stacking, and storing materials, and selecting proper materials-handling equipment.

4) Describe hazards involved when working with electricity and determine procedures to safeguard against them in the workplace, including ensuring power load balance, adhering to the appropriate use of ground-fault circuit interrupters (GFCIs) when working with power tools, and performing lockout/tagout procedures.

Tools & Equipment

5) Identify and select the proper tools and accessories, critique the readiness of the tools, use the tools to accomplish the desired tasks, and then return the tools and accessories to their proper storage. Research a new technology recently developed for the electrical industry. Write persuasively to convince an employer how the use of the technology could benefit the company, citing evidence from resources. For example, describe how a new power tool could improve efficiency for a technician.

6) Distinguish among the various types and uses of electrical test equipment. Determine the appropriate test equipment for a given situation and environment and the procedures necessary for safe use. Utilizing test equipment such as a voltmeter, inspect and test an electrical wiring system for compliance according to drawings, specifications, and code requirements.

Construction Industry Principles

7) Locate and assess requirements for performing electrical work including local, state, and national requirements. Interpret electrical codes, and determine inspection procedures and other applicable portions of the law. Visit the Tennessee Contractor’s Licensing Board’s website and analyze its policies and requirements. Explain how such policies impact local construction businesses.

8) Consult a variety of sources to describe alternatives to traditional project delivery methods, such as the design-build and construction management-related methods, distinguishing among the roles and relationships of various construction personnel in each scenario. Examine the project delivery method of an actual company. Develop a company profile with supporting graphics the company could share with a client, describing the services provided and explaining the project delivery method used by the company.

National Electrical Code (NEC©)

9) Describe the purpose and layout of the National Electrical Code (NEC©). Create a chart to illustrate what is and is not covered by the NEC©, citing evidence from NEC© Article 90. Navigate, read, and interpret the NEC© to determine requirements for a given electrical installation. For example, interpret the NEC© to compare and contrast the box requirements for a device box to support a wall receptacle with those for a box to support a lighting fixture.

Device Boxes
10) Distinguish among the various types of device boxes, such as metallic and nonmetallic device boxes. For a variety of given residential and/or commercial applications, select appropriate device boxes according to drawings, specifications, and code requirements. Steps should include identifying the proper box type and size; and determining the minimum size pull or junction box for conduit entering and exiting (both for a straight pull and at an angle).

11) Utilize the proper tools, equipment, and procedures to safely perform installation of a variety of device boxes according to drawings, specifications, and code requirements.

Hand Bending

12) Describe the procedures, techniques, and tools for hand bending and installing conduit. Implement geometric principles to plan and use a hand bender to make 90 degree bends, back-to-back bends, offsets, kicks, and saddle bends. For example, use trigonometric ratios of right triangles to determine the offset angle of an offset bend and use the calculation to accurately create the bend.

13) Apply the appropriate tools, equipment, and procedures to safely cut, ream, and thread conduit. For example, ream the inside edge of a piece of conduit using a hand reamer.

Raceway Systems

14) Explain the function of raceway systems, including acting as a grounding conductor. Distinguish among the various types of raceways, fittings, and conduit bodies available for raceway systems. Analyze a given environment and select the appropriate materials and installation methods for a raceway system, citing evidence from textbooks and codes. For example, recommend the appropriate raceway materials and installation method for a wood frame building of given parameters, drawing on evidence from codes such as the National Electrical Code (NEC®).

15) Outline the methods and procedures used to install various raceway systems, including terminating conduit. Accurately connect conduit to a box according to code requirements, explaining the need for a proper connection based on grounding requirements and protection of the wires. Apply the appropriate tools and procedures to install flexible raceway systems.

Conductors & Cables

16) Building on knowledge of conductors from *Mechanical, Electrical, & Plumbing Systems*, read and interpret the NEC® and other instructional texts to determine the allowable ampacity of conductors for a variety of given applications. Include the insulation and jacket material, conductor size and type, number of conductors, temperature rating, and voltage rating of each. Describe possible consequences of improper conductor selection or installation, citing evidence from resources such as textbooks or trade journals.
17) Describe the proper methods and procedures for installing conductors in a raceway system, noting potential hazards that exist when conductors are installed incorrectly. Employ tools and procedures to safely install conductors in a raceway system and verify the installation is performed according to code requirements.

Construction Drawings & Specifications

18) Building on knowledge of construction drawings and specifications from *Mechanical, Electrical, & Plumbing Systems*, read and interpret electrical drawings and specifications, including detail drawings and equipment schedules, to create a list of materials needed for a given electrical project. For example, analyze a lighting plan, light fixture schedule, and specifications for a residence to determine the materials needed to install the lighting system.

19) Explain the relationship between construction drawings and specifications. For example, describe how both the construction drawings and specifications provide information about the raceway system indicated for a given building. Examine construction drawings and specifications to determine the requirements for a raceway system in a given building.

20) Describe processes by which construction professionals obtain clarification from architects regarding construction documents, such as by the use of requests for information (RFI's). Write a request for information (RFI) as would a construction professional to an architect to request clarification for a detail of the construction documents, such as the selection of a product.

Residential Electrical Services

21) Evaluate and recommend proper electrical hardware for a residential building. For example, for a residential dwelling with a given floor plan and schedule of major appliances, determine the size of the electrical service by referring to the National Electrical Code© and local code to select the service-entrance equipment, such as conductors, panelboard, and protective devices. Steps should include: calculating the load for lighting, small appliances, and large appliances; and determining the number of branch circuits required. Describe the installation rules pertaining to dedicated circuits as applied to various equipment such as ranges, dryers, and HVAC systems.

Basic Maintenance & Repair Process

22) Identify and demonstrate basic troubleshooting strategies appropriate for evaluating electrical systems and devices. For example, in electrical systems, develop and implement a troubleshooting strategy to test and remedy an electrical fault.

23) Identify routine maintenance procedures that should be performed on electrical systems for a given building. Create a timeline of recommended maintenance procedures for a client,
justifying why each procedure is necessary by highlighting its preventive or cost-efficient characteristics. For example, create a schedule of tests to ensure emergency alarms are operating properly.

Introduction to Power Systems

24) Analyze typical electric power systems in a region by explaining how electricity is generated, transmitted, and distributed from a power plant to a given location. Describe different types of traditional power generation including fossil-fuel generation and nuclear energy. Explain the basic layout of the power grid and the function of its components, including substations and transformers.

25) Discuss the environmental impacts of generating and distributing electricity. Research alternate electric power systems, including but not limited to photovoltaic systems and wind power technologies. Describe the functions of the systems and analyze their use in regions across the country according to informational texts and technical specs. Compare and contrast at least three types of power generation systems in a written text, chart, or visual display.

Business & Project Management

26) Describe the components and purpose of a basic contract document for a residential project, determining the meaning of key terms and other industry-specific words. Recognize the relationship and responsibilities of various parties to a contract. Write a basic contract for a construction job, such as an electrical service agreement for wiring work done for a residential client.

27) Establish and implement specific goals to manage project assignments in a timely manner, including organizing teams to effectively manage assignments, monitoring and reporting on project progress, and evaluating a completed project according to client requirements. For example, inspect and critique a team member's work, providing constructive feedback for improvement. Similarly, respond to constructive feedback from a team member to improve project outcomes and meet project goals.

28) Interpret construction drawings and applicable national and local codes to determine the correct materials, tools, and equipment needed to complete a construction project. Plan and implement the steps needed to complete the project, adhering to inspection procedures and employing safe practices throughout. Draw from print and electronic examples to create a material list, cost estimation, project schedule, and inspection checklist for a project, applying the components of the documents to the given project.

29) Produce clear and coherent writing for communication in the electrical industry. Create a service order for a given electrical project. Explain the service order to a peer, as would a service technician to a client.

30) Utilize technology to write and share periodical reports (weekly, monthly, etc.) to provide others with information about progress during electrical projects as would a project
manager to a supervisor. Summarize activities in a narrative form including overall progress in relationship to a previously planned schedule.

Portfolio

31) Update materials from coursework to add to the portfolio started in *Fundamentals of Construction* and *Mechanical, Electrical, & Plumbing Systems*. Continually reflect on coursework experiences and revise and refine the career plan generated in prior courses. Include photographs or illustrations and written descriptions of sequential progress in construction projects.

Standards Alignment Notes

*References to other standards include:

- **NCCER Curriculum**: [National Center for Construction Education and Research](https://www.nccer.org)
 - Note: NCCER accreditation is required to offer NCCER credentials to students. Instructors trained through the NCCER Instructor Certification Training Program (ICTP) may use the NCCER curricula to teach the listed standards. By doing so, their students will receive a certificate of completion for NCCER Electrical Level One and be placed in NCCER's National Registry Database.

- **P21**: [Partnership for 21st Century Skills](https://www.p21.org)
 - Note: While not all standards are specifically aligned, teachers will find the framework helpful for setting expectations for student behavior in their classroom and practicing specific career readiness skills.